1
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Xu D, Pan J, Fang Y, Zhao L, Su Y. RpS25 is required for sperm elongation and individualization during Drosophila spermatogenesis. Biochem Biophys Res Commun 2024; 702:149633. [PMID: 38341921 DOI: 10.1016/j.bbrc.2024.149633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Ribosomal protein 25 (RPS25) has been related to male fertility diseases in humans. However, the role of RPS25 in spermatogenesis has yet to be well understood. RpS25 is evolutionarily highly conserved from flies to humans through sequence alignment and phylogenetic tree construction. In this study, we found that RpS25 plays a critical role in Drosophila spermatogenesis and its knockdown leads to male sterility. Examination of each stage of spermatogenesis from RpS25-knockdown flies showed that RpS25 was not required for initial germline cell divisions, but was required for spermatid elongation and individualization. In RpS25-knockdown testes, the average length of cyst elongation was shortened, the spermatid nuclei bundling was disrupted, and the assembly of individualization complex from actin cones failed, resulting in the failure of mature sperm production. Our data revealed an essential role of RpS25 during Drosophila spermatogenesis through regulating spermatid elongation and individualization.
Collapse
Affiliation(s)
- Di Xu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiahui Pan
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Yap YT, Li W, Huang Q, Zhou Q, Zhang D, Sheng Y, Mladenovic-Lucas L, Yee SP, Orwig KE, Granneman JG, Williams DC, Hess RA, Toure A, Zhang Z. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice. eLife 2023; 12:e79620. [PMID: 37083624 PMCID: PMC10185345 DOI: 10.7554/elife.79620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Wei Li
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Qian Huang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - Qi Zhou
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - David Zhang
- College of William and MaryWilliamsburgUnited States
| | - Yi Sheng
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Ljljiana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North CarolinaChapel HillUnited States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of IllinoisUrbanaUnited States
| | - Aminata Toure
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Physiology and Pathophysiology of Sperm cells, Institute for Advanced BiosciencesGrenobleFrance
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics & Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
4
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Chen MY, Duan X, Wang Q, Ran MJ, Ai H, Zheng Y, Wang YF. Cytochrome c1-like is required for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. J Exp Biol 2023; 226:286665. [PMID: 36645102 DOI: 10.1242/jeb.245277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The Drosophila testis is an excellent system for studying the process from germ stem cells to motile sperm, including the proliferation of male germ cells, meiosis of primary spermatocytes, mitochondrial morphogenesis, and spermatid individualization. We previously demonstrated that ocnus (ocn) plays an essential role in male germ cell development. Among those genes and proteins whose expression levels were changed as a result of ocn knockdown, cytochrome c1-like (cyt-c1L) was downregulated significantly. Here, we show that cyt-c1L is highly expressed in the testis of D. melanogaster. Knockdown or mutation of cyt-c1L in early germ cells of flies resulted in male sterility. Immunofluorescence staining showed that cyt-c1L knockdown testes had no defects in early spermatogenesis; however, in late stages, in contrast to many individualization complexes (ICs) composed of F-actin cones that appeared at different positions in control testes, no actin cones or ICs were observed in cyt-c1L knockdown testes. Furthermore, no mature sperm were found in the seminal vesicle of cyt-c1L knockdown testes whereas the control seminal vesicle was full of mature sperm with needle-like nuclei. cyt-c1L knockdown also caused abnormal mitochondrial morphogenesis during spermatid elongation. Excessive apoptotic signals accumulated in the base of cyt-c1L knockdown fly testes. These results suggest that cyt-c1L may play an important role in spermatogenesis by affecting the mitochondrial morphogenesis and individualization of sperm in D. melanogaster.
Collapse
Affiliation(s)
- Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
6
|
Koenig N, Almunia C, Bonnal-Conduzorgues A, Armengaud J, Chaumot A, Geffard O, Esposti DD. Co-expression network analysis identifies novel molecular pathways associated with cadmium and pyriproxyfen testicular toxicity in Gammarus fossarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105816. [PMID: 33838495 DOI: 10.1016/j.aquatox.2021.105816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Omics approaches are continuously providing new clues on the mechanisms of action of contaminants in species of environmental relevance, contributing to the emergence of molecular ecotoxicology. Co-expression network approaches represent a suitable methodological framework for studying the rich content of omics datasets. This study aimed to find evidence of key pathways and proteins related to the testicular toxicity in the sentinel crustacean species Gammarus fossarum exposed to endocrine disruptors using a weighted protein co-expression network analysis. From a shotgun proteomics dataset of male gonads of G. fossarum organisms exposed to cadmium (Cd), pyriproxyfen (Pyr) and methoxyfenozide (Met) in laboratory conditions, four distinct modules were identified as significantly correlated to contaminants' exposure. Protein set enrichment analysis identified modules involved in cytoskeleton organization and oxidative stress response associated with the Cd exposure. The module associated with Pyr exposure was associated with endoplasmic reticulum stress (ER) response, and the module correlated with Met exposure was characterized by a significant proportion of amphipod-restricted proteins whose functions are still not characterized. Our results show that co-expression networks are efficient and adapted tools to identify new potential mode of actions from environmental sentinel species, such as G. fossarum, using a proteogenomic approach, even without an annotated genome.
Collapse
Affiliation(s)
- Natacha Koenig
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Christine Almunia
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Cèze, France
| | - Aurore Bonnal-Conduzorgues
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Jean Armengaud
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| |
Collapse
|
7
|
Bouska MJ, Bai H. Long noncoding RNA regulation of spermatogenesis via the spectrin cytoskeleton in Drosophila. G3 (BETHESDA, MD.) 2021; 11:jkab080. [PMID: 33720346 PMCID: PMC8104941 DOI: 10.1093/g3journal/jkab080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/07/2021] [Indexed: 11/14/2022]
Abstract
The spectrin cytoskeleton has been shown to be critical in diverse processes such as axon development and degeneration, myoblast fusion, and spermatogenesis. Spectrin can be modulated in a tissue specific manner through junctional protein complexes, however, it has not been shown that long noncoding RNAs (lncRNAs) interact with and modulate spectrin. Here, we provide evidence of a lncRNA CR45362 that interacts with α-Spectrin, is required for spermatid nuclear bundling during Drosophila spermatogenesis. We observed that CR45362 showed high expression in the cyst cells at the basal testis, and CRISPR-mediated knockout of CR45362 led to sterile male, unbundled spermatid nuclei, and disrupted actin cones. Through chromatin isolation by RNA precipitation-mass spectrometry (ChIRP-MS), we identified actin-spectrin cytoskeletal components physically interact with the lncRNA CR45362. Genetic screening on identified cytoskeletal factors revealed that cyst cell-specific knockdown of α-Spectrin phenocopied CR45362 mutants and resulted in spermatid nuclear bundle defects. Consistently, CR45362 knockout disrupted the co-localization of α-Spectrin and spermatid nuclear bundles in the head cyst cells at the basal testis. Thus, we uncovered a novel lncRNA CR45362 that interacts with α-Spectrin to stabilize spermatid nuclear bundles during spermatid maturation.
Collapse
Affiliation(s)
- Mark J Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| |
Collapse
|
8
|
Chen MY, Tayyeb A, Wang YF. shrub is required for spermatogenesis of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21779. [PMID: 33660341 DOI: 10.1002/arch.21779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Shrub (CG8055) encodes the vps32/snf7 protein, a filament-forming subunit of the ESCRT (endosomal sorting complexes required for transport)-III complex involved in inward membrane budding. It was reported that shrub was required for abscission in female germline stem cells. In this study, we showed that the expression level of shrub in the testis was significantly higher than that in the ovary of 1-day-old Drosophila melanogaster, suggesting a role in male reproduction. Then we used nosGal4 driver to knockdown shrub specifically in the fly testis and found that this resulted in a significantly lower paternal effect egg hatch rate relative to the control group. Immunofluorescence staining showed that shrub knockdown in fly testes caused an accumulation of early-stage germ cells and lack of spectrin caps. In the late stages (spermiogenesis), the control testis contained multiple compacted spermatid bundles and individualization complexes (ICs) consisting of actin cones, whereas there were scattered spermatid nuclei and only a few ICs with disorganized actin cones in the shrub knockdown testis. Finally, the control seminal vesicle was full of mature sperms with needle-like heads, but in shrub knockdown testis 75% of seminal vesicles had no mature sperms. We also found that knockdown of shrub in fly testes led to upregulated expression of several cytoskeleton-associated genes, and an accumulation of ubiquitylated proteins. These results suggest that knockdown of shrub in fly testes might damage spermatogenesis by affecting transportability.
Collapse
Affiliation(s)
- Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Abdulqadir Tayyeb
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
9
|
Bauerly E, Yi K, Gibson MC. Wampa is a dynein subunit required for axonemal assembly and male fertility in Drosophila. Dev Biol 2020; 463:158-168. [PMID: 32387369 PMCID: PMC8451153 DOI: 10.1016/j.ydbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
In cilia and flagella, dyneins form complexes which give rise to the inner and outer axonemal arms. Defects in the dynein arms are the leading cause of primary ciliary dyskinesia (PCD), which is characterized by chronic respiratory infections, situs inversus, and sterility. While the pathological features associated with PCD are increasingly well characterized, many of the causative genetic lesions remain elusive. Using Drosophila, here we analyze genetic requirements for wampa (wam), a previously uncharacterized component of the outer dynein arm. While homozygous mutant animals are viable and display no morphological defects, loss of wam results in complete male sterility. Ultrastructural analysis further reveals that wam mutant spermatids lack the axonemal outer dynein arms, which leads to a complete loss of flagellar motility. In addition to a role in outer dynein arm formation, we also uncover other novel microtubule-associated requirements for wam during spermatogenesis, including the regulation of mitochondrial localization and the shaping of the nuclear head. Due to the conserved nature of dyneins, this study advances our understanding of the pathology of PCD and the functional role of dyneins in axoneme formation and other aspects of spermatogenesis.
Collapse
Affiliation(s)
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
10
|
Steinhauer J, Statman B, Fagan JK, Borck J, Surabhi S, Yarikipati P, Edelman D, Jenny A. Combover interacts with the axonemal component Rsp3 and is required for Drosophila sperm individualization. Development 2019; 146:dev179275. [PMID: 31391193 PMCID: PMC6765124 DOI: 10.1242/dev.179275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
Gamete formation is key to survival of higher organisms. In male animals, spermatogenesis gives rise to interconnected spermatids that differentiate and individualize into mature sperm, each tightly enclosed by a plasma membrane. In Drosophila melanogaster, individualization of sister spermatids requires the formation of specialized actin cones that synchronously move along the sperm tails, removing inter-spermatid bridges and most of the cytoplasm. Here, we show that Combover (Cmb), originally identified as an effector of planar cell polarity (PCP) under control of Rho kinase, is essential for sperm individualization. cmb mutants are male sterile, with actin cones that fail to move in a synchronized manner along the flagella, despite being correctly formed and polarized initially. These defects are germline autonomous, independent of PCP genes, and can be rescued by wild-type Cmb, but not by a version of Cmb in which known Rho kinase phosphorylation sites are mutated. Furthermore, Cmb binds to the axonemal component Radial spoke protein 3, knockdown of which causes similar individualization defects, suggesting that Cmb coordinates the individualization machinery with the microtubular axonemes.
Collapse
Affiliation(s)
| | - Benjamin Statman
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Jeremy K Fagan
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jacob Borck
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Satya Surabhi
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Prathibha Yarikipati
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Daniel Edelman
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
11
|
Wang Y, Xu R, Cheng Y, Cao H, Wang Z, Zhu T, Jiang J, Zhang H, Wang C, Qi L, Liu M, Guo X, Huang J, Sha J. RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. J Genet Genomics 2019; 46:281-290. [DOI: 10.1016/j.jgg.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
12
|
Drosophila Pif1A is essential for spermatogenesis and is the homolog of human CCDC157, a gene associated with idiopathic NOA. Cell Death Dis 2019; 10:125. [PMID: 30741974 PMCID: PMC6370830 DOI: 10.1038/s41419-019-1398-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
The dynamic process of spermatogenesis shows little variation between invertebrate models such as Drosophila, and vertebrate models such as mice and rats. In each case, germ stem cells undergo mitotic division to proliferate and then continue, via meiosis, through various stages of elongation and individualization from spermatogonia to spermatid to finally to form mature sperm. Mature sperm are then stored in the seminal vesicles for fertilization. Errors in any of these stages can lead to male infertility. Here, we identify that Drosophila Pif1A acts as a key regulator for sperm individualization. Loss of Pif1A leads to male sterility associated with irregular individualization complex and empty seminal vesicles without mature sperm. Pif1A is highly expressed in the testes of mated male adult flies and the Pif1A protein is expressed at a higher level in male than in female flies. Pif1A is homologous to mammalian coiled-coil domain-containing protein 157 (CCDC157), which is also enriched in the testes of humans and mice. Human CCDC157, with unknown function, was identified to be downregulated in men with idiopathic non-obstructive azoospermia (NOA). We map the function of Drosophila Pif1A during spermatogenesis, showing that Pif1A is essential for spermatide individualization and involved in the regulation of the lipid metabolism genes. Our findings might be applicable for studying the function of CCDC157 in spermatogenesis and other aspects of human male fertility.
Collapse
|
13
|
Dubey P, Kapoor T, Gupta S, Shirolikar S, Ray K. Atypical septate junctions maintain the somatic enclosure around maturing spermatids and prevent premature sperm release in Drosophila testis. Biol Open 2019; 8:bio.036939. [PMID: 30635267 PMCID: PMC6398457 DOI: 10.1242/bio.036939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tight junctions prevent paracellular flow and maintain cell polarity in an epithelium. These junctions are also required for maintaining the blood-testis barrier, which is essential for sperm differentiation. Septate junctions in insects are orthologous to the tight junctions. In Drosophila testis, major septate junction components co-localize at the interface of germline and somatic cells initially, and then condense between the two somatic cells in a cyst after germline meiosis. Their localization is extensively remodeled in subsequent stages. We find that characteristic septate junctions are formed between the somatic cyst cells at the elongated spermatid stage. Consistent with previous reports, knockdown of essential junctional components – Discs-large-1 and Neurexin-IV – during the early stages disrupted sperm differentiation beyond the spermatocyte stage. Knockdown of these proteins during the final stages of spermatid maturation caused premature release of spermatids inside the testes, resulting in partial loss of male fertility. These results indicate the importance of maintaining the integrity of the somatic enclosure during spermatid coiling and release in Drosophila testis. It also highlights the functional similarity with the tight junction proteins during mammalian spermatogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Septate junctions seal the somatic enclosure around maturing spermatids in Drosophila testis. The junction integrity, maintained by Dlg1 and NrxIV, is essential for keeping the somatic enclosure intact until the mature spermatids are released.
Collapse
Affiliation(s)
- Pankaj Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Tushna Kapoor
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Seema Shirolikar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
14
|
Abstract
Background The formation of matured and individual sperm involves a series of molecular and spectacular morphological changes of the developing cysts in Drosophila melanogaster testis. Recent advances in RNA Sequencing (RNA-Seq) technology help us to understand the complexity of eukaryotic transcriptomes by dissecting different tissues and developmental stages of organisms. To gain a better understanding of cellular differentiation of spermatogenesis, we applied RNA-Seq to analyse the testis-specific transcriptome, including coding and non-coding genes. Results We isolated three different parts of the wild-type testis by dissecting and cutting the different regions: 1.) the apical region, which contains stem cells and developing spermatocytes 2.) the middle region, with enrichment of meiotic cysts 3.) the basal region, which contains elongated post-meiotic cysts with spermatids. Total RNA was isolated from each region and analysed by next-generation sequencing. We collected data from the annotated 17412 Drosophila genes and identified 5381 genes with significant transcript accumulation differences between the regions, representing the main stages of spermatogenesis. We demonstrated for the first time the presence and region specific distribution of 2061 lncRNAs in testis, with 203 significant differences. Using the available modENCODE RNA-Seq data, we determined the tissue specificity indices of Drosophila genes. Combining the indices with our results, we identified genes with region-specific enrichment in testis. Conclusion By multiple analyses of our results and integrating existing knowledge about Drosophila melanogaster spermatogenesis to our dataset, we were able to describe transcript composition of different regions of Drosophila testis, including several stage-specific transcripts. We present searchable visualizations that can facilitate the identification of new components that play role in the organisation and composition of different stages of spermatogenesis, including the less known, but complex regulation of post-meiotic stages. Electronic supplementary material The online version of this article (10.1186/s12864-018-5085-z) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, Tao J. Comparative transcriptome analysis of Eimeria necatrix third-generation merozoites and gametocytes reveals genes involved in sexual differentiation and gametocyte development. Vet Parasitol 2018; 252:35-46. [PMID: 29559148 DOI: 10.1016/j.vetpar.2018.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
Abstract
Eimeria necatrix is one of the most pathogenic parasites causing high mortality in chicken older than 8 weeks. Eimeria spp. possess a coccidian lifecycle including both sexual and asexual stages. Sexual differentiation and development occupies a central place in the life cycle of the Eimeria parasite. However, our knowledge of the sexual differentiation and gametocyte development of Eimeria is very limited. Here using RNA sequencing, we conducted a comparative transcriptome analysis between third-generation merozoites (MZ-3) and gametocytes (GAM) of E. necatrix to identify genes with functions related to sexual differentiation and gametocyte development. Approximately 4267 genes were differentially expressed between MZ-3 and GAM. Compared with MZ-3, 2789 genes were upregulated and 1478 genes were downregulated in GAM. Approximately 329 genes in MZ-3 and 1289 genes in GAM were further analyzed in the evaluation of stage-specific genes. Gene Ontology (GO) classification and KEGG analysis revealed that 953 upregulated gametocyte genes were annotated with 170 GO assignments, and 405 upregulated genes were associated with 231 signaling pathways. We also predicted a further 83 upregulated gametocyte genes, of which 53 were involved in the biosynthesis of the oocyst wall, and 30 were involved in microgametocyte development. This information offers insights into the mechanisms governing the sexual development of E. necatrix and may potentially allow the identification of targets for blocking parasite transmission.
Collapse
Affiliation(s)
- Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chuanli Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis. PLoS Genet 2017; 13:e1007026. [PMID: 28957323 PMCID: PMC5634645 DOI: 10.1371/journal.pgen.1007026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis is a dynamic developmental process requiring precisely timed transitions between discrete stages. Specifically, the germline undergoes three transitions: from mitotic spermatogonia to spermatocytes, from meiotic spermatocytes to spermatids, and from morphogenetic spermatids to spermatozoa. The somatic cells of the testis provide essential support to the germline throughout spermatogenesis, but their precise role during these developmental transitions has not been comprehensively explored. Here, we describe the identification and characterization of genes that are required in the somatic cells of the Drosophila melanogaster testis for progress through spermatogenesis. Phenotypic analysis of candidate genes pinpointed the stage of germline development disrupted. Bioinformatic analysis revealed that particular gene classes were associated with specific developmental transitions. Requirement for genes associated with endocytosis, cell polarity, and microtubule-based transport corresponded with the development of spermatogonia, spermatocytes, and spermatids, respectively. Overall, we identify mechanisms that act specifically in the somatic cells of the testis to regulate spermatogenesis. Sexual reproduction in animals requires the production of male and female gametes, spermatozoa and ova, respectively. Gametes are derived from specialized cells known as the germline through a process called gametogenesis. Gametogenesis typically takes place in a gonad and requires the germ cells to be surrounded by specialized somatic cells that support germline development. While many prior studies have identified germline specific genes required for gametogenesis few have systematically identified genes required in the somatic cells for gametogenesis. To this end we performed an RNAi screen where we disrupted the function of genes specifically in the somatic cyst cells of the Drosophila melanogaster testis. Using fertility assays we identified 281 genes that are required in somatic cyst cells for fertility. To better understand the role of these genes in regulating spermatogenesis we classified the resulting phenotypes by the stage of germline development disrupted. This revealed distinct sets of genes required to support specific stages of spermatogenesis. Our study characterizes the somatic specific defects resulting from disruption of candidate genes and provides insight into their function in the testes. Overall, our findings reveal the mechanisms controlling Drosophila melanogaster spermatogenesis and provide a resource for studying soma-germline interactions more broadly.
Collapse
|
17
|
Wu CH, Zong Q, Du AL, Zhang W, Yao HC, Yu XQ, Wang YF. Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev Biol 2016; 420:79-89. [DOI: 10.1016/j.ydbio.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
18
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|
19
|
Drosophila RecQ5 is involved in proper progression of early spermatogenesis. Biochem Biophys Res Commun 2014; 452:1071-7. [PMID: 25245292 DOI: 10.1016/j.bbrc.2014.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
RecQ5, a member of the conserved RecQ DNA helicase family, is required for the maintenance of genome stability. The human RECQL5 gene is expressed ubiquitously in almost all tissues, with strong expression in the testes (Shimamoto et al., 2000). However, it remains to be elucidated in which cells RecQ5 is expressed and how RecQ5 functions in the testes. In this present study we analyzed the expression of RecQ5 in Drosophila testes. The RecQ5 protein was specifically expressed in germline cells in larval, pupal, and adult testes. Drosophila RecQ5 was localized in nuclei of male germline stem cells, spermatogoniablasts, spermatogonia, and early spermatocytes. As growth of the early spermatocyte proceeded, the amount of RecQ5 increased in the nuclei. However, before maturation of the spermatocyte, the level of RecQ5 declined. Thus, RecQ5 expression was regulated. Furthermore, we compared recq5 mutant testes with the wild-type ones. The most conspicuous alterations were swelling of the apical region of and an increase in the number of spermatocytes in the recq5 testis, suggesting a relative accumulation of spermatocytes in the recq5 mutant testes. Therefore, Drosophila RecQ5 may contribute to the proper progression from germline stem cells to spermatocytes for maintenance of genome stability.
Collapse
|
20
|
Asthana J, Kuchibhatla A, Jana SC, Ray K, Panda D. Dynein light chain 1 (LC8) association enhances microtubule stability and promotes microtubule bundling. J Biol Chem 2012; 287:40793-805. [PMID: 23038268 DOI: 10.1074/jbc.m112.394353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Dynein Light Chain 1 (LC8) has been shown to pull down tubulin subunits, suggesting that it interacts with microtubules. RESULTS LC8 decorates microtubules in vitro and in Drosophila embryos, promotes microtubule assembly, and stabilizes microtubules both in vitro and in tissue-cultured cells. CONCLUSION LC8 stabilizes microtubules. SIGNIFICANCE Data provide the first evidence of a novel MAP-like function of LC8. Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.
Collapse
Affiliation(s)
- Jayant Asthana
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
21
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
22
|
Wainman A, Giansanti MG, Goldberg ML, Gatti M. The Drosophila RZZ complex - roles in membrane trafficking and cytokinesis. J Cell Sci 2012; 125:4014-25. [PMID: 22685323 DOI: 10.1242/jcs.099820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Zw10 protein, in the context of the conserved Rod-Zwilch-Zw10 (RZZ) complex, is a kinetochore component required for proper activity of the spindle assembly checkpoint in both Drosophila and mammals. In mammalian and yeast cells, the Zw10 homologues, together with the conserved RINT1/Tip20p and NAG/Sec39p proteins, form a second complex involved in vesicle transport between Golgi and ER. However, it is currently unknown whether Zw10 and the NAG family member Rod are also involved in Drosophila membrane trafficking. Here we show that Zw10 is enriched at both the Golgi stacks and the ER of Drosophila spermatocytes. Rod is concentrated at the Golgi but not at the ER, whereas Zwilch does not accumulate in any membrane compartment. Mutations in zw10 and RNAi against the Drosophila homologue of RINT1 (rint1) cause strong defects in Golgi morphology and reduce the number of Golgi stacks. Mutations in rod also affect Golgi morphology, whereas zwilch mutants do not exhibit gross Golgi defects. Loss of either Zw10 or Rint1 results in frequent failures of spermatocyte cytokinesis, whereas Rod or Zwilch are not required for this process. Spermatocytes lacking zw10 or rint1 function assemble regular central spindles and acto-myosin rings, but furrow ingression halts prematurely due to defective plasma membrane addition. Collectively, our results suggest that Zw10 and Rint1 cooperate in the ER-Golgi trafficking and in plasma membrane formation during spermatocyte cytokinesis. Our findings further suggest that Rod plays a Golgi-related function that is not required for spermatocyte cytokinesis.
Collapse
Affiliation(s)
- Alan Wainman
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
23
|
Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis. PLoS One 2011; 6:e27822. [PMID: 22145020 PMCID: PMC3228723 DOI: 10.1371/journal.pone.0027822] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051(c05439) and CG7051(f07138) failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051(c05439) and CG7051(f07138), exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051(c05439) and CG7051(f07138) alleles to be in 5'UTR and 4(th) exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis.
Collapse
|
24
|
Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila. Sci Rep 2011; 1:173. [PMID: 22355688 PMCID: PMC3240984 DOI: 10.1038/srep00173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/10/2011] [Indexed: 11/26/2022] Open
Abstract
Stem cell progeny often undergo transit amplifying divisions before differentiation. In Drosophila, a spermatogonial precursor divides four times within an enclosure formed by two somatic-origin cyst cells, before differentiating into spermatocytes. Although germline and cyst cell-intrinsic factors are known to regulate these divisions, the mechanistic details are unclear. Here, we show that loss of dynein-light-chain-1 (DDLC1/LC8) in the cyst cells eliminates bag-of-marbles (bam) expression in spermatogonia, causing gonial cell hyperplasia in Drosophila testis. The phenotype is dominantly enhanced by Dhc64C (cytoplasmic Dynein) and didum (Myosin V) loss-of-function alleles. Loss of DDLC1 or Myosin V in the cyst cells also affects their differentiation. Furthermore, cyst cell-specific loss of ddlc1 disrupts Armadillo, DE-cadherin and Integrin-βPS localizations in the cyst. Together, these results suggest that Dynein and Myosin V activities, and independent DDLC1 functions in the cyst cells organize the somatic microenvironment that regulates spermatogonial proliferation and differentiation.
Collapse
|
25
|
Sanders C, Smith DP. LUMP is a putative double-stranded RNA binding protein required for male fertility in Drosophila melanogaster. PLoS One 2011; 6:e24151. [PMID: 21912621 PMCID: PMC3166160 DOI: 10.1371/journal.pone.0024151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/31/2011] [Indexed: 01/10/2023] Open
Abstract
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.
Collapse
Affiliation(s)
- Charcacia Sanders
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sartain CV, Cui J, Meisel RP, Wolfner MF. The poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster. Development 2011; 138:1619-29. [PMID: 21427144 DOI: 10.1242/dev.059618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA of a developing sperm is normally inaccessible for transcription for part of spermatogenesis in many animals. In Drosophila melanogaster, many transcripts needed for late spermatid differentiation are synthesized in pre-meiotic spermatocytes, but are not translated until later stages. Thus, post-transcriptional control mechanisms are required to decouple transcription and translation during spermatogenesis. In the female germline, developing germ cells accomplish similar decoupling through poly(A) tail alterations to ensure that dormant transcripts are not prematurely translated: a transcript with a short poly(A) tail will remain untranslated, whereas elongating the poly(A) tail permits protein production. In Drosophila, the ovary-expressed cytoplasmic poly(A) polymerase WISPY is responsible for stage-specific poly(A) tail extension in the female germline. Here, we examine the possibility that a recently derived testis-expressed WISPY paralog, GLD2, plays a similar role in the Drosophila male germline. We show that knockdown of Gld2 transcripts causes male sterility, as GLD2-deficient males do not produce mature sperm. Spermatogenesis up to and including meiosis appears normal in the absence of GLD2, but post-meiotic spermatid development rapidly becomes abnormal. Nuclear bundling and F-actin assembly are defective in GLD2 knockdown testes and nuclei fail to undergo chromatin reorganization in elongated spermatids. GLD2 also affects the incorporation of protamines and the stability of dynamin and transition protein transcripts. Our results indicate that GLD2 is an important regulator of late spermatogenesis and is the first example of a Gld-2 family member that plays a significant role specifically in male gametogenesis.
Collapse
Affiliation(s)
- Caroline V Sartain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
27
|
Wongsurawat T, Leelatanawit R, Thamniemdee N, Uawisetwathana U, Karoonuthaisiri N, Menasveta P, Klinbunga S. Identification of testis-relevant genes using in silico analysis from testis ESTs and cDNA microarray in the black tiger shrimp (Penaeus monodon). BMC Mol Biol 2010; 11:55. [PMID: 20696033 PMCID: PMC2928233 DOI: 10.1186/1471-2199-11-55] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/09/2010] [Indexed: 01/27/2023] Open
Abstract
Background Poor reproductive maturation of the black tiger shrimp (Penaeus monodon) in captivity is one of the serious threats to sustainability of the shrimp farming industry. Understanding molecular mechanisms governing reproductive maturation processes requires the fundamental knowledge of integrated expression profiles in gonads of this economically important species. In P. monodon, a non-model species for which the genome sequence is not available, expressed sequence tag (EST) and cDNA microarray analyses can help reveal important transcripts relevant to reproduction and facilitate functional characterization of transcripts with important roles in male reproductive development and maturation. Results In this study, a conventional testis EST library was exploited to reveal novel transcripts. A total of 4,803 ESTs were unidirectionally sequenced and analyzed in silico using a customizable data analysis package, ESTplus. After sequence assembly, 2,702 unique sequences comprised of 424 contigs and 2,278 singletons were identified; of these, 1,133 sequences are homologous to genes with known functions. The sequences were further characterized according to gene ontology categories (41% biological process, 24% molecular function, 35% cellular component). Through comparison with EST libraries of other tissues of P. monodon, 1,579 transcripts found only in the testis cDNA library were identified. A total of 621 ESTs have not been identified in penaeid shrimp. Furthermore, cDNA microarray analysis revealed several ESTs homologous to testis-relevant genes were more preferentially expressed in testis than in ovary. Representatives of these transcripts, homologs of saposin (PmSap) and Dmc1 (PmDmc1), were further characterized by RACE-PCR. The more abundant expression levels in testis than ovary of PmSap and PmDmc1 were verified by quantitative real-time PCR in juveniles and wild broodstock of P. monodon. Conclusions Without a genome sequence, a combination of EST analysis and high-throughput cDNA microarray technology can be a useful integrated tool as an initial step towards the identification of transcripts with important biological functions. Identification and expression analysis of saposin and Dmc1 homologs demonstrate the power of these methods for characterizing functionally important genes in P. monodon.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | | | | | | | | | | | | |
Collapse
|
28
|
Fabian L, Wei HC, Rollins J, Noguchi T, Blankenship JT, Bellamkonda K, Polevoy G, Gervais L, Guichet A, Fuller MT, Brill JA. Phosphatidylinositol 4,5-bisphosphate directs spermatid cell polarity and exocyst localization in Drosophila. Mol Biol Cell 2010; 21:1546-55. [PMID: 20237161 PMCID: PMC2861613 DOI: 10.1091/mbc.e09-07-0582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 01/15/2023] Open
Abstract
During spermiogenesis, Drosophila melanogaster spermatids coordinate their elongation in interconnected cysts that become highly polarized, with nuclei localizing to one end and sperm tail growth occurring at the other. Remarkably little is known about the signals that drive spermatid polarity and elongation. Here we identify phosphoinositides as critical regulators of these processes. Reduction of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) by low-level expression of the PIP(2) phosphatase SigD or mutation of the PIP(2) biosynthetic enzyme Skittles (Sktl) results in dramatic defects in spermatid cysts, which become bipolar and fail to fully elongate. Defects in polarity are evident from the earliest stages of elongation, indicating that phosphoinositides are required for establishment of polarity. Sktl and PIP(2) localize to the growing end of the cysts together with the exocyst complex. Strikingly, the exocyst becomes completely delocalized when PIP(2) levels are reduced, and overexpression of Sktl restores exocyst localization and spermatid cyst polarity. Moreover, the exocyst is required for polarity, as partial loss of function of the exocyst subunit Sec8 results in bipolar cysts. Our data are consistent with a mechanism in which localized synthesis of PIP(2) recruits the exocyst to promote targeted membrane delivery and polarization of the elongating cysts.
Collapse
Affiliation(s)
- Lacramioara Fabian
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Ho-Chun Wei
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Janet Rollins
- Division of Natural Science, The College of Mount Saint Vincent, Riverdale, NY 10471
| | - Tatsuhiko Noguchi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | | - Kishan Bellamkonda
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon Polevoy
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Louis Gervais
- Institut Jacques Monod, CNRS-University of Paris Diderot, 75205 Paris, France; and
| | - Antoine Guichet
- Institut Jacques Monod, CNRS-University of Paris Diderot, 75205 Paris, France; and
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Palo Alto, CA 95305
| | - Julie A. Brill
- *Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
29
|
Steinhauer J, Gijón MA, Riekhof WR, Voelker DR, Murphy RC, Treisman JE. Drosophila lysophospholipid acyltransferases are specifically required for germ cell development. Mol Biol Cell 2010; 20:5224-35. [PMID: 19864461 DOI: 10.1091/mbc.e09-05-0382] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Enzymes of the membrane-bound O-acyltransferase (MBOAT) family add fatty acyl chains to a diverse range of protein and lipid substrates. A chromosomal translocation disrupting human MBOAT1 results in a novel syndrome characterized by male sterility and brachydactyly. We have found that the Drosophila homologues of MBOAT1, Oysgedart (Oys), Nessy (Nes), and Farjavit (Frj), are lysophospholipid acyltransferases. When expressed in yeast, these MBOATs esterify specific lysophospholipids preferentially with unsaturated fatty acids. Generating null mutations for each gene allowed us to identify redundant functions for Oys and Nes in two distinct aspects of Drosophila germ cell development. Embryos lacking both oys and nes show defects in the ability of germ cells to migrate into the mesoderm, a process guided by lipid signals. In addition, oys nes double mutant adult males are sterile due to specific defects in spermatid individualization. oys nes mutant testes, as well as single, double, and triple mutant whole adult animals, show an increase in the saturated fatty acid content of several phospholipid species. Our findings suggest that lysophospholipid acyltransferase activity is essential for germline development and could provide a mechanistic explanation for the etiology of the human MBOAT1 mutation.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
30
|
Vibranovski MD, Lopes HF, Karr TL, Long M. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 2009; 5:e1000731. [PMID: 19936020 PMCID: PMC2770318 DOI: 10.1371/journal.pgen.1000731] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 10/19/2009] [Indexed: 01/01/2023] Open
Abstract
In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes. During the course of Drosophila evolution, genes expressed in males have accumulated on the autosomes. Meiotic sex chromosome X inactivation in males was proposed, among other hypotheses, as a selective force favoring the accumulation of testis-expressed genes on the autosomes. Under such a model, the inactivation of X-linked genes would favor the accumulation of testis-expressed genes in autosomes, wherein these genes would still be expressed. In this study, we observed meiotic expression reduction for X-linked genes in D. melanogaster through a global gene expression analysis in different phases of spermatogenesis, in agreement with MSCI. In order to test the effects of MSCI on the chromosomal distribution of testis-expressed genes, we analyzed their expression pattern throughout spermatogenesis. First, X chromosome underrepresentation was restricted to testis-biased genes over-expressed in meiosis. Second, we observed that the autosomal genes retroposed from the X chromosome more often showed complementary expression in meiosis to their X-linked parents. These results support MSCI in Drosophila, suggesting its mechanistic role in the evolution of testis-expressed genes.
Collapse
Affiliation(s)
- Maria D. Vibranovski
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Hedibert F. Lopes
- The University of Chicago Booth School of Business, Chicago, Illinois, United States of America
| | - Timothy L. Karr
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gaspar I, Szabad J. Glu415 in the alpha-tubulins plays a key role in stabilizing the microtubule-ADP-kinesin complexes. J Cell Sci 2009; 122:2857-65. [PMID: 19622631 DOI: 10.1242/jcs.050252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kavar(21g), a dominant female-sterile mutation of Drosophila, identifies the alphaTubulin67C gene that encodes alpha4-tubulin, the maternally provided alpha-tubulin isoform. Although alpha4-tubulin is synthesized during oogenesis, its function is required only in the early cleavage embryos. However, once present in the developing oocyte, much of the alpha4-tubulin and the Kavar(21g)-encoded E426K-alpha4-tubulin molecules become incorporated into the microtubules. We analyzed ooplasmic streaming and lipid-droplet transport, with confocal reflection microscopy, in the developing egg primordia in the presence and absence of alpha4-tubulin and E426K-alpha4-tubulin and learnt that the E426K-alpha4-tubulin molecules eliminate ooplasmic streaming and alter lipid-droplet transport. Apparently, Glu426 is involved in stabilization of the microtubule-kinesin complexes when the kinesins are in the most labile, ADP-bound state. Replacement of Glu426 by Lys results in frequent detachments of the kinesins from the microtubules leading to reduced transport efficiency and death of the embryos derived from the Kavar(21g)-carrying females. Glu426 is a component of the twelfth alpha-helix, which is the landing and binding platform for the mechanoenzymes. Since the twelfth alpha-helix is highly conserved in the alpha-tubulin family, Glu415, which corresponds to Glu426 in the constitutively expressed alpha-tubulins, seems be a key component of microtubule-kinesin interaction and thus the microtubule-based transport.
Collapse
Affiliation(s)
- Imre Gaspar
- University of Szeged, Faculty of Medicine, Department of Biology, Szeged, Hungary
| | | |
Collapse
|
32
|
Desai BS, Shirolikar S, Ray K. F-actin-based extensions of the head cyst cell adhere to the maturing spermatids to maintain them in a tight bundle and prevent their premature release in Drosophila testis. BMC Biol 2009; 7:19. [PMID: 19416498 PMCID: PMC2683793 DOI: 10.1186/1741-7007-7-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 11/15/2022] Open
Abstract
Background In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear. Results We show that dynamic F-actin-based processes extend from the head cyst cell at the start of individualization, filling the interstitial space at the rostral ends of the maturing spermatid bundle. In addition to actin, these structures contained lamin, beta-catenin, dynamin, myosin VI and several other filopodial components. Further, pharmacological and genetic analyses showed that cytoskeletal stability and dynamin function are essential for their maintenance. Disruption of these F-actin based processes was associated with spermatid bundle disassembly and premature sperm release inside the testis. Conclusion Altogether, our data suggests that the head cyst cell adheres to the maturing spermatid heads through F-actin-based extensions, thus maintaining them in a tight bundle. This is likely to regulate mature sperm release into the seminal vesicle. Overall, this process bears resemblance to mammalian spermiation.
Collapse
Affiliation(s)
- Bela S Desai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India.
| | | | | |
Collapse
|
33
|
Popodi EM, Hoyle HD, Turner FR, Raff EC. Cooperativity between the beta-tubulin carboxy tail and the body of the molecule is required for microtubule function. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:955-63. [PMID: 18802936 PMCID: PMC2778853 DOI: 10.1002/cm.20318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using Drosophila spermatogenesis as a model, we show that function of the beta-tubulin C-terminal tail (CTT) is not independent of the body of the molecule. For optimal microtubule function, the beta-tubulin CTT and body must match. beta2 is the only beta-tubulin used in meiosis and spermatid differentiation. beta1-tubulin is used in basal bodies, but beta1 cannot replace beta2. However, when beta1 is co-expressed with beta2, both beta-tubulins are equally incorporated into all microtubules, and males exhibit near wild type fertility. In contrast, co-expression of beta2beta1C and beta1beta2C, two reciprocal chimeric molecules with bodies and tails swapped, results in defects in meiosis, cytoskeletal microtubules, and axonemes; males produce few functional sperm and few or no progeny. In these experiments, all the same beta-tubulin parts are present, but unlike the co-assembled native beta-tubulins, the "trans" configuration of the co-assembled chimeras is poorly functional. Our data thus reveal essential intra-molecular interactions between the CTT and other parts of the beta-tubulin molecule, even though the CTT is a flexible surface feature of tubulin heterodimers and microtubules. In addition, we show that Drosophila sperm tail length depends on the total tubulin pool available for axoneme assembly and spermatid elongation. D. melanogaster and other Drosophila species have extraordinarily long sperm tails, the length of which is remarkably constant in wild type flies. We show that in males of experimental genotypes that express wild type tubulins but have half the amount of the normal tubulin pool size, sperm tails are substantially shorter than wild type.
Collapse
Affiliation(s)
- Ellen M Popodi
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
34
|
Identification, characterization and expression of sex-related genes in testes of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:66-76. [PMID: 18824117 DOI: 10.1016/j.cbpa.2008.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 11/22/2022]
Abstract
Isolation and characterization of genes involving gonadal development are an initial step towards understanding reproductive maturation and sex determination of the giant tiger shrimp (Penaeus monodon). In the present study, 896 clones from the testis cDNA library were sequenced. A total of 606 ESTs (67.6%) significantly matched sequences in the GenBank (E-value <1e-04) whereas 290 ESTs (32.4%) were newly unidentified transcripts. The full length cDNA of genes functionally involved in testicular development including cyclophilin A (PMCYA), small ubiquitin-like modifier 1 (PMSUMO-1), ubiquitin conjugating enzyme E2, dynactin subunit 5, cell division cycle 2 (cdc2) and mitotic checkpoint BUB3 were discovered. In addition, Tra-2, a gene involving sex determination cascades, was successfully characterized by RACE-PCR and first reported in crustaceans. Expression analysis indicated that a homologue of low molecular weight neurofilament protein XNF-L (termed P. monodon testis-specific transcript 1, PMTST1; N=8 for each sex) was only expressed in testes but not ovaries. PMCYA, thyroid hormone receptor-associated protein complex 240 kDa component (Trap240), multiple inositol polyphosphate phosphatase 2 (MIPP2) and heat shock-related 70 kDa protein 2 (HSP70-2), but not PMSUMO-1, PMTra-2 and prohibitin2 were differentially expressed between ovaries and testes of P. monodon. Expression of PMTST1 was up-regulated but that of the remaining genes in testes of P. monodon broodstock was down-regulated after shrimp were molted (P<0.05). Significant reduction of PMSUMO-1 and increment of prohibitin2 transcripts in domesticated broodstock (P<0.05) suggested that these reproductively related genes may be used as biomarkers to evaluate reduced degrees of the reproductive maturation in domesticated P. monodon.
Collapse
|
35
|
Popodi EM, Hoyle HD, Turner FR, Xu K, Kruse S, Raff EC. Axoneme specialization embedded in a “Generalist” β-tubulin. ACTA ACUST UNITED AC 2008; 65:216-37. [DOI: 10.1002/cm.20256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Riparbelli MG, Giordano R, Callaini G. Effects of Wolbachia on sperm maturation and architecture in Drosophila simulans Riverside. Mech Dev 2007; 124:699-714. [PMID: 17693061 DOI: 10.1016/j.mod.2007.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/11/2007] [Accepted: 07/02/2007] [Indexed: 11/18/2022]
Abstract
Wolbachia is an intracellular obligate symbiont, that is relatively common in insects and also found in some nematodes. Cytoplasmic incompatibility (CI) is the most commonly expressed form, of several sex altering phenotypes caused by this rickettsial-like bacterium. CI is induced when infected males mate with uninfected females, and is likely the result of bacterial-induced modification of sperm grown in a Wolbachia-infected environment. Several studies have explored the dynamics of Wolbachia bacteria during sperm development in Drosophila. This study confirms and extends these earlier investigations of Wolbachia's distribution and proliferation in male germ cell lines. We examined Wolbachia population dynamics during testis development of Drosophila simulans (Riverside) by studying their distribution during the early mitotic divisions of secondary spermatogonial and subsequent meiotic cyst cells. Wolbachia are found in lower concentration in spermatogonial than in spermatocyte cells. Cytoplasmically incompatible crosses result in low levels of viable embryos despite the occurrence of fairly high levels of uninfected cysts. During meiotic divisions Wolbachia organize themselves at the poles during prophase and telophase but arrange themselves in equatorial bands during metaphase and anaphase. Moreover, during meiosis Wolbachia are asymmetrically divided between some daughter cells. There is no strong relationship between the fusome and Wolbachia and we have not found evidence that bacteria cross the ring canals. Wolbachia were observed at the distal and proximal sides of individualization complexes. Multiple altered sperm structures were observed during the process of individualization of infected sperm.
Collapse
|
37
|
Rom I, Faicevici A, Almog O, Neuman-Silberberg FS. Drosophila Dynein light chain (DDLC1) binds to gurken mRNA and is required for its localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1526-33. [PMID: 17561283 DOI: 10.1016/j.bbamcr.2007.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/23/2022]
Abstract
During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.
Collapse
Affiliation(s)
- Inna Rom
- Department of Virology and Developmental Genetics, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
38
|
Suseendranathan K, Sengupta K, Rikhy R, D'Souza JS, Kokkanti M, Kulkarni MG, Kamdar R, Changede R, Sinha R, Subramanian L, Singh K, Rodrigues V, Rao BJ. Expression pattern of Drosophila translin and behavioral analyses of the mutant. Eur J Cell Biol 2007; 86:173-86. [PMID: 17275950 DOI: 10.1016/j.ejcb.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/21/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022] Open
Abstract
Translin is an evolutionarily conserved approximately 27-kDa protein that binds to specific DNA and RNA sequences and has diverse cellular functions. Here, we report the cloning and characterization of the translin orthologue from the fruit fly Drosophila melanogaster. Under protein-denaturing conditions, purified Drosophila translin exists as a mixture of dimers and monomers just like human translin. In contrast to human translin, the Drosophila translin dimers do not appear to be stabilized by disulfide interactions. Drosophila translin shows a ubiquitous cytoplasmic localization in early embryonal syncytial stage, with an enhanced staining in ventral neuroblasts at later stages (8-9), which are probably at metaphase. An elevated expression was seen in several other cell types, such as cells around the tracheal pits in the embryo and oenocytes in the third instar larva. RNA in situ hybridization showed an increased expression in the ventral midline cells of the larval brain, suggesting a neuronal expression, which was corroborated by protein immunostaining. In adult flies, Drosophila translin is localized in the brain neuronal cell bodies and in early spermatocytes. Interestingly, Drosophila translin mutants exhibit an impaired motor response which is sex specific. Taken together, the multiple cellular localizations, the high neuronal expression and the attendant locomotor defect of the Drosophila translin mutant suggest that Drosophila translin may have roles in neuronal development and behavior analogous to that of mouse translin.
Collapse
Affiliation(s)
- Kumud Suseendranathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chatterjee A, Krishna Mohan PM, Prabhu A, Ghosh-Roy A, Hosur RV. Equilibrium unfolding of DLC8 monomer by urea and guanidine hydrochloride: Distinctive global and residue level features. Biochimie 2007; 89:117-34. [PMID: 17029744 DOI: 10.1016/j.biochi.2006.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.
Collapse
Affiliation(s)
- Amarnath Chatterjee
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India
| | | | | | | | | |
Collapse
|
40
|
Riparbelli MG, Callaini G. The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev Biol 2006; 303:108-20. [PMID: 17123504 DOI: 10.1016/j.ydbio.2006.10.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 11/28/2022]
Abstract
Drosophila parkin, the ortholog of the human parkin gene, responsible for a familiar form of autosomal recessive juvenile parkinsonism, has been shown previously to be involved in Drosophila male fertility. Loss-of-function mutations in the parkin gene cause failure of spermatid individualization by affecting the proper progression of the actin-based investment cones that assemble in the nuclear region, but fail to translocate in synchrony down the cyst. In parkin mutants, the investment cones are scattered along the post-elongated spermatid bundles and fail to act properly in the process of sperm individualization. Using phase-contrast and electron microscopy analysis, we demonstrate that the parkin spermatids assemble a seemingly normal onion-stage nebenkern, but when the axoneme elongates only one mitochondrial derivative unfurls from the nebenkern. This unique mitochondrial derivative undergoes abnormal shaping and condensation during spermatid elongation. Our results indicate that parkin gene function is necessary for mitochondrial morphogenesis during earlier and later phases of spermiogenesis. The failure of cyst individualization may be due to the sensitivity of investment cone movement to the perturbation of mitochondrial morphology during spermatid elongation.
Collapse
|
41
|
Ghosh-Roy A, Desai BS, Ray K. Dynein light chain 1 regulates dynamin-mediated F-actin assembly during sperm individualization in Drosophila. Mol Biol Cell 2005; 16:3107-16. [PMID: 15829565 PMCID: PMC1165396 DOI: 10.1091/mbc.e05-02-0103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin-dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.
Collapse
|