1
|
Eboji OK, Borges G, Harrington L, Lin W, Sofidiya MO, Sowemimo AA. Catechin from Burkea africana Hook. Exhibits in vitro inhibition of human telomerase activity. Nat Prod Res 2020; 35:6175-6179. [PMID: 33930985 DOI: 10.1080/14786419.2020.1831497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There has been an increasing interest in natural products with the ability to inhibit telomerase activity in tumour and cancerous cells. Green tea catechins have been reported previously to inhibit telomerase, but it was unknown whether catechins from other plant sources could exhibit this property. We isolated 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (catechin without the presence of a galloyl unit) from the stem bark of B. africana, and tested its ability to inhibit recombinant, partially purified telomerase produced in rabbit reticulocyte lysates. The B. africana catechin inhibited the telomere extension activity of telomerase with an IC50 of approximately 4.7 µg/ml. This finding indicates that the galloyl unit may not be solely responsible for the inhibition of telomerase activity by catechins. This is the first report of the telomerase-inhibiting potential of catechin from the stem bark of B. africana.
Collapse
Affiliation(s)
- Okwuchukwu Kodichinma Eboji
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| | - Gustavo Borges
- Institute for Research in Immunology & Cancer, Université de Montréal, Montreal, QC, Canada
| | - Lea Harrington
- Institute for Research in Immunology & Cancer, Université de Montréal, Montreal, QC, Canada
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Margaret Oluwatoyin Sofidiya
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| | - Abimbola Adepeju Sowemimo
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
2
|
Nickens DG, Rogers CM, Bochman ML. The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro. J Biol Chem 2018; 293:14481-14496. [PMID: 30068549 DOI: 10.1074/jbc.ra118.004092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Telomere length homeostasis is vital for maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant WT and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.
Collapse
Affiliation(s)
- David G Nickens
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Cody M Rogers
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Matthew L Bochman
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
3
|
Zhdanov DD, Vasina DA, Grachev VA, Orlova EV, Orlova VS, Pokrovskaya MV, Alexandrova SS, Sokolov NN. Alternative splicing of telomerase catalytic subunit hTERT generated by apoptotic endonuclease EndoG induces human CD4 + T cell death. Eur J Cell Biol 2017; 96:653-664. [PMID: 28886883 DOI: 10.1016/j.ejcb.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023] Open
Abstract
Telomerase activity is regulated by alternative splicing of its catalytic subunit human Telomerase Reverse Transcriptase (hTERT) mRNA. Induction of a non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of the apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. A strong correlation was identified between EndoG expression levels and hTERT splice variants in human CD4+ and CD8+ T lymphocytes. Overexpression of EndoG in CD4+ T cells down-regulated the expression of the active full-length hTERT variant and up-regulated expression of the non-active spliced variant. A reduction in full-length hTERT transcripts down-regulated telomerase activity. Long-term in vitro cultivation of EndoG-overexpressing CD4+ T cells led to dramatically shortened telomeres, conversion of cells into a replicative senescence state, and activation of the BCL2/BAX-associated apoptotic pathway finally leading to cell death. These data indicated the participation of EndoG in alternative mRNA splicing of the telomerase catalytic subunit hTERT, regulation of telomerase activity and determination of cell fate.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Moscow, Russia; Peoples Friendship University of Russia, Moscow, Russia.
| | | | | | - Elena V Orlova
- Institute of Theoretical and Experimental Biophysics, Puschino, Moscow region, Russia
| | | | - Marina V Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Nikolai N Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Vasina DA, Zhdanov DD, Orlova EV, Orlova VS, Pokrovskaya MV, Aleksandrova SS, Sokolov NN. Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells. BIOCHEMISTRY (MOSCOW) 2017; 82:24-37. [DOI: 10.1134/s0006297917010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Zhdanov DD, Vasina DA, Orlova VS, Gotovtseva VY, Bibikova MV, Pokrovsky VS, Pokrovskayaa MV, Aleksandrova SS, Sokolov NN. Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816040090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Fouquerel E, Lormand J, Bose A, Lee HT, Kim GS, Li J, Sobol RW, Freudenthal BD, Myong S, Opresko PL. Oxidative guanine base damage regulates human telomerase activity. Nat Struct Mol Biol 2016; 23:1092-1100. [PMID: 27820808 PMCID: PMC5140714 DOI: 10.1038/nsmb.3319] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2′-deoxyguanine (8-oxoG) regulates telomere elongation by telomerase. When present in the deoxynucleoside triphosphate pool as 8-oxodGTP, telomerase utilization of the oxidized nucleotide during telomere extension is mutagenic and terminates further elongation. Depletion of the enzyme that removes oxidized dNTPs, MTH1, increases telomere dysfunction and cell death in telomerase positive cancer cells harboring shortened telomeres. In contrast, a pre-existing 8-oxoG within the telomeric DNA sequence promotes telomerase activity by destabilizing G-quadruplex structure in the DNA. We show that the mechanism by which 8-oxoG arises in the telomere, either by insertion of oxidized nucleotides or by direct reaction with free radicals, dictates whether telomerase is inhibited or stimulated and thereby, mediates the biological outcome.
Collapse
Affiliation(s)
- Elise Fouquerel
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Justin Lormand
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Arindam Bose
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hui-Ting Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Grace S Kim
- Department of Bioengineering, University of Illinois, Urbana, IL, USA
| | - Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.,Department of Bioengineering, University of Illinois, Urbana, IL, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zhdanov D, Vasina D, Orlova V, Gotovtseva V, Bibikova M, Pokrovsky V, Pokrovskaya M, Aleksandrova S, Sokolov N. Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells. ACTA ACUST UNITED AC 2016; 62:239-50. [DOI: 10.18097/pbmc20166203239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Telomerase activity is known to be regulated by alternative splicing of its catalytic subunit hTERT (human Telomerase Reverse Transcriptase) mRNA. Induction of non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. Strong correlation was found between expression of EndoG and hTERT splice-variants in 12 colon cancer cell lines. Overexpression of EndoG in СаСо-2 cells downregulated the expression of active full-length hTERT variant and upregulated non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, dramatically shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. These data indicated the participation of EndoG in alternative splicing of mRNA of telomerase catalytic subunit, regulation of telomerase activity and cell fate.
Collapse
Affiliation(s)
- D.D. Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Ecological Faculty, Peoples Friendship University of Russia, Moscow, Russia
| | - D.A. Vasina
- Ecological Faculty, Peoples Friendship University of Russia, Moscow, Russia
| | - V.S. Orlova
- Ecological Faculty, Peoples Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | - N.N. Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Rana C, Piplani H, Vaish V, Nehru B, Sanyal SN. Downregulation of telomerase activity by diclofenac and curcumin is associated with cell cycle arrest and induction of apoptosis in colon cancer. Tumour Biol 2015; 36:5999-6010. [PMID: 25744732 DOI: 10.1007/s13277-015-3276-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/18/2015] [Indexed: 12/31/2022] Open
Abstract
Uncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors. We studied the regulation of telomerase and telomerase reverse transcriptase catalytic subunit (TERT) by diclofenac and curcumin, alone and also in combination, in 1, 2-dimethylhydrazine dihydrochloride-induced colorectal cancer in rats. The relationship of telomerase activity with tumors suppressor proteins (p51, Rb, p21), cell cycle machinery, and apoptosis was also studied. Telomerase is highly expressed in DMH group and its high activity is associated with increased TERT expression. However, telomerase is absent or is present at lower levels in normal tissue. CDK4, CDK2, cyclin D1, and cyclin E are highly expressed in DMH as assessed by RT-PCR, qRT-PCR, Western blot, and immunofluorescence analysis. Diclofenac and curcumin overcome these carcinogenic effects by downregulating telomerase activity, diminishing the expression of TERT, CDK4, CDK2, cyclin D1, and cyclin E. The anticarcinogenic effects shown after the inhibition of telomerase activity by diclofenac and curcumin may be associated with upregulation of tumor suppressor proteins p51, Rb, and p21, whose activation induces the cells cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Chandan Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | | | | | |
Collapse
|
9
|
Vallabhaneni H, Zhou F, Maul RW, Sarkar J, Yin J, Lei M, Harrington L, Gearhart PJ, Liu Y. Defective repair of uracil causes telomere defects in mouse hematopoietic cells. J Biol Chem 2015; 290:5502-11. [PMID: 25572391 DOI: 10.1074/jbc.m114.607101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.
Collapse
Affiliation(s)
| | - Fang Zhou
- From the Laboratory of Molecular Gerontology
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Jaya Sarkar
- From the Laboratory of Molecular Gerontology
| | - Jinhu Yin
- From the Laboratory of Molecular Gerontology
| | - Ming Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Lea Harrington
- Department of Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224,
| | - Yie Liu
- From the Laboratory of Molecular Gerontology,
| |
Collapse
|
10
|
Zheng YL, Zhang F, Sun B, Du J, Sun C, Yuan J, Wang Y, Tao L, Kota K, Liu X, Schlegel R, Yang Q. Telomerase enzymatic component hTERT shortens long telomeres in human cells. Cell Cycle 2014; 13:1765-76. [PMID: 24721976 DOI: 10.4161/cc.28705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT's enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Prevention and Control; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Fan Zhang
- Cancer Biology Division; Washington University School of Medicine; Saint Louis, MO USA
| | - Bing Sun
- Cancer Prevention and Control; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Juan Du
- Cancer Biology Division; Washington University School of Medicine; Saint Louis, MO USA
| | - Chongkui Sun
- Cancer Biology Division; Washington University School of Medicine; Saint Louis, MO USA
| | - Jie Yuan
- Medical College; Jinan University; Guangzhou, China
| | - Ying Wang
- Cancer Prevention and Control; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Lian Tao
- Cancer Prevention and Control; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Krishna Kota
- Cancer Prevention and Control; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Xuefeng Liu
- Molecular Oncology Programs; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Richard Schlegel
- Molecular Oncology Programs; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Qin Yang
- Cancer Biology Division; Washington University School of Medicine; Saint Louis, MO USA
| |
Collapse
|
11
|
Wong L, Unciti-Broceta A, Spitzer M, White R, Tyers M, Harrington L. A yeast chemical genetic screen identifies inhibitors of human telomerase. CHEMISTRY & BIOLOGY 2013; 20:333-40. [PMID: 23521791 PMCID: PMC3650558 DOI: 10.1016/j.chembiol.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 01/13/2023]
Abstract
Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers.
Collapse
Affiliation(s)
- Lai Hong Wong
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Michaela Spitzer
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Rachel White
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Mike Tyers
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique, Montreal, Quebec, H3T 1J4 Canada
| | - Lea Harrington
- Wellcome Trust Centre for Cell Biology, King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique, Montreal, Quebec, H3T 1J4 Canada
| |
Collapse
|
12
|
Rubtsova M, Vasilkova D, Malyavko A, Naraikina Y, Zvereva M, Dontsova O. Telomere lengthening and other functions of telomerase. Acta Naturae 2012; 4:44-61. [PMID: 22872811 PMCID: PMC3408703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.
Collapse
Affiliation(s)
- M.P. Rubtsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | | | - A.N. Malyavko
- Lomonosov Moscow State University, Chemistry Department
| | - Yu.V. Naraikina
- Lomonosov Moscow State University, Faculty of Bioengineering and
Bioinformatics
| | - M.I. Zvereva
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | - O.A. Dontsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| |
Collapse
|
13
|
Sealey DCF, Kostic AD, LeBel C, Pryde F, Harrington L. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis. BMC Mol Biol 2011; 12:45. [PMID: 22011238 PMCID: PMC3215184 DOI: 10.1186/1471-2199-12-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/18/2011] [Indexed: 12/03/2022] Open
Abstract
Background The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully. Results To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. Conclusions These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.
Collapse
Affiliation(s)
- David C F Sealey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 2011; 108:20345-50. [PMID: 21940498 DOI: 10.1073/pnas.1100275108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.
Collapse
|
15
|
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1563-83. [PMID: 21417995 DOI: 10.1134/s0006297910130055] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.
Collapse
Affiliation(s)
- M I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
16
|
Function, replication and structure of the mammalian telomere. Cytotechnology 2011; 45:3-12. [PMID: 19003238 DOI: 10.1007/s10616-004-5120-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/21/2004] [Indexed: 10/25/2022] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.
Collapse
|
17
|
Telomerase promotes efficient cell cycle kinetics and confers growth advantage to telomerase-negative transformed human cells. Oncogene 2011; 31:954-65. [PMID: 21743490 DOI: 10.1038/onc.2011.292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constitutive telomerase activity maintains telomere length and confers immortal phenotypes to human cancers. The prevalence of telomerase, rather than a homologous recombination-based mechanism, in telomere length maintenance suggests that telomerase also has auxiliary roles in tumorigenesis. Here, we investigate growth advantages provided by the telomerase enzyme in oncogene-transformed human cells that do not require telomerase activity for telomere length control. Our data suggest that in oncogene-transformed cells, telomerase activity accelerates cell growth kinetics in a cell cycle phase-specific manner and promotes anchorage-independent growth. Coculture experiments demonstrated that this growth advantage conferred by telomerase activity is not due to increased cellular cross-talk. Growth advantages provided by telomerase required all functional aspects of the enzyme. Dissociation-of-activity-in-telomerase mutants and other functionally defective versions of telomerase were unable to promote oncogene-transformed cell growth, suggesting that canonical telomerase activities may be involved. We conclude that telomerase provides advantages to oncogene-transformed human cells, thereby supporting the development of telomerase-based anticancer chemotherapies targeting these growth-promoting effects.
Collapse
|
18
|
Meier B, Barber LJ, Liu Y, Shtessel L, Boulton SJ, Gartner A, Ahmed S. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 2009; 28:3549-63. [PMID: 19779462 DOI: 10.1038/emboj.2009.278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 08/24/2009] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase adds de novo DNA repeats to chromosome termini. Here we define Caenorhabditis elegans MRT-1 as a novel factor required for telomerase-mediated telomere replication and the DNA-damage response. MRT-1 is composed of an N-terminal domain homologous to the second OB-fold of POT1 telomere-binding proteins and a C-terminal SNM1 family nuclease domain, which confer single-strand DNA-binding and processive 3'-to-5' exonuclease activity, respectively. Furthermore, telomerase activity in vivo depends on a functional MRT-1 OB-fold. We show that MRT-1 acts in the same telomere replication pathway as telomerase and the 9-1-1 DNA-damage response complex. MRT-1 is dispensable for DNA double-strand break repair, but functions with the 9-1-1 complex to promote DNA interstrand cross-link (ICL) repair. Our data reveal MRT-1 as a dual-domain protein required for telomerase function and ICL repair, which raises the possibility that telomeres and ICL lesions may share a common feature that plays a critical role in de novo telomere repeat addition.
Collapse
Affiliation(s)
- Bettina Meier
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sekaran VG, Soares J, Jarstfer MB. Structures of telomerase subunits provide functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1190-201. [PMID: 19665593 DOI: 10.1016/j.bbapap.2009.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/09/2009] [Accepted: 07/28/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Telomerase continues to generate substantial attention both because of its pivotal roles in cellular proliferation and aging and because of its unusual structure and mechanism. By replenishing telomeric DNA lost during the cell cycle, telomerase overcomes one of the many hurdles facing cellular immortalization. Functionally, telomerase is a reverse transcriptase, and it shares structural and mechanistic features with this class of nucleotide polymerases. Telomerase is a very unusual reverse transcriptase because it remains stably associated with its template and because it reverse transcribes multiple copies of its template onto a single primer in one reaction cycle. SCOPE OF REVIEW Here, we review recent findings that illuminate our understanding of telomerase. Even though the specific emphasis is on structure and mechanism, we also highlight new insights into the roles of telomerase in human biology. GENERAL SIGNIFICANCE Recent advances in the structural biology of telomerase, including high resolution structures of the catalytic subunit of a beetle telomerase and two domains of a ciliate telomerase catalytic subunit, provide new perspectives into telomerase biochemistry and reveal new puzzles.
Collapse
Affiliation(s)
- Vijay G Sekaran
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
20
|
Sowemimo AA, Fakoya FA, Awopetu I, Omobuwajo OR, Adesanya SA. Toxicity and mutagenic activity of some selected Nigerian plants. JOURNAL OF ETHNOPHARMACOLOGY 2007; 113:427-32. [PMID: 17707603 DOI: 10.1016/j.jep.2007.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 06/10/2007] [Accepted: 06/29/2007] [Indexed: 05/16/2023]
Abstract
The toxicity and mutagenic potential of most African plants implicated in the management of cancer have not been investigated. The ethanolic extracts of selected Nigerian plants were subsequently studied using the brine shrimp lethality tests, inhibition of telomerase activity and induction of chromosomal aberrations in vivo in rat lymphocytes. Morinda lucida root bark, Nymphaea lotus whole plant and Garcinia kola root were active in the three test systems. Bryophyllum calycinum whole plant, Annona senegalensis root, Hymenocardia acida stem bark, Erythrophleum suaveolens leaves and Spondiathus preussii stem bark were toxic to brine shrimps and caused chromosomal damage in rat lymphocytes. Ficus exasperata leaves, Chrysophyllum albidum root bark and Hibiscus sabdariffa leaves were non-toxic to all the three test systems. Chenopodium ambrosioides whole plant was non-toxic to brine shrimps and rat lymphocyte chromosomes but showed inhibition in the conventional telomerase assay indicating a possible selectivity for human chromosomes. The result justified the use of the first eight plants and Chenopodium ambrosioides in the management of cancer in south west Nigeria although they appear to be non-selective and their mode of action may be different from plant to plant. All these plants except Chenopodium ambrosioides are also mutagenic and cytotoxic.
Collapse
Affiliation(s)
- A A Sowemimo
- Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | | | | | |
Collapse
|
21
|
Abstract
The structure and integrity of telomeres are essential for genome stability. Telomere dysregulation can lead to cell death, cell senescence, or abnormal cell proliferation. The maintenance of telomere repeats in most eukaryotic organisms requires telomerase, which consists of a reverse transcriptase (RT) and an RNA template that dictates the synthesis of the G-rich strand of telomere terminal repeats. Structurally, telomerase reverse transcriptase (TERT) contains unique and variable N- and C-terminal extensions that flank a central RT-like domain. The enzymology of telomerase includes features that are both similar to and distinct from those characteristic of other RTs. Two distinguishing features of TERT are its stable association with the telomerase RNA and its ability to repetitively reverse transcribe the template segment of RNA. Here we discuss TERT structure and function; its regulation by RNA-DNA, TERT-DNA, TERT-RNA, TERT-TERT interactions, and TERT-associated proteins; and the relationship between telomerase enzymology and telomere maintenance.
Collapse
Affiliation(s)
- Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Quebec, Canada.
| | | |
Collapse
|
22
|
Garforth S, Wu Y, Prasad V. Structural features of mouse telomerase RNA are responsible for the lower activity of mouse telomerase versus human telomerase. Biochem J 2006; 397:399-406. [PMID: 16669789 PMCID: PMC1533308 DOI: 10.1042/bj20060456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human and mouse telomerases show a high degree of similarity in both the protein and RNA components. Human telomerase is more active and more processive than the mouse telomerase. There are two key differences between hTR [human TR (telomerase RNA)] and mTR (mouse TR) structures. First, the mouse telomerase contains only 2 nt upstream of its template region, whereas the human telomerase contains 45 nt. Secondly, the template region of human telomerase contains a 5-nt alignment domain, whereas that of mouse has only 2 nt. We hypothesize that these differences are responsible for the differential telomerase activities. Mutations were made in both the hTR and mTR, changing the template length and the length of the RNA upstream of the template, and telomerase was reconstituted in vitro using mouse telomerase reverse transcriptase generated by in vitro translation. We show that the sequences upstream of the template region, with a potential to form a double-stranded helix (the P1 helix) as in hTR, increase telomerase activity. The longer alignment domain increases telomerase activity only in the context of the P1 helix. Thus the TR contributes to regulating the level of activity of mammalian telomerases.
Collapse
Affiliation(s)
- Scott J. Garforth
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
| | - Yan Yun Wu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
| | - Vinayaka R. Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Shcherbakova DM, Zvereva ME, Shpanchenko OV, Dontsova OA. Telomerase: Structure and properties of the enzyme, and peculiarities of yeast telomerase. Mol Biol 2006. [DOI: 10.1134/s0026893306040042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bampi C, Bibillo A, Wendeler M, Divita G, Gorelick RJ, Le Grice SFJ, Darlix JL. Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein. J Biol Chem 2006; 281:11736-43. [PMID: 16500895 DOI: 10.1074/jbc.m600290200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During HIV replication, reverse transcriptase (RT), assisted by the nucleocapsid protein (NC), converts the genomic RNA into proviral DNA. This process appears to be the major source of genetic variability, as RT can misincorporate nucleotides during minus and plus strand DNA synthesis. To investigate nucleotide addition or substitution by RT, we set up in vitro models containing HIV-1 RNA, cDNA, NC, and various RTs. We used the wild type RT and azidothymidine- and didanosine-resistant RTs, because they represent the major forms of resistant RTs selected in patients undergoing therapies. Results show that all RTs can add nucleotides in a non-template fashion at the cDNA 3'-end, a reaction stimulated by NC. Nucleotide substitutions were examined using in vitro systems where 3'-mutated cDNAs were extended by RT on an HIV-1 RNA template. With NC, RT extension of the mutated cDNAs was efficient, and surprisingly, mutations were frequently corrected. These results suggest for the first time that RT has excision-repair activity that is triggered by NC. Chaperoning of RT by NC might be explained by the fact that NC stabilizes an RT-DNA binary complex. In conclusion, RT-NC interactions appear to play critical roles in HIV-1 variability.
Collapse
Affiliation(s)
- Carole Bampi
- LaboRetro, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Institut Fédératif de Recherche 128, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Moriarty TJ, Marie-Egyptienne DT, Autexier C. Regulation of 5' template usage and incorporation of noncognate nucleotides by human telomerase. RNA (NEW YORK, N.Y.) 2005; 11:1448-60. [PMID: 16120835 PMCID: PMC1370828 DOI: 10.1261/rna.2910105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Telomerase accurately synthesizes telomeric DNA by reverse transcription of a tightly defined template region in the telomerase RNA (TR). Reverse transcription past the 5' boundary of the template can cause the incorporation of noncognate nucleotides into telomeric DNA, which can result in disruption of normal telomere function. The products synthesized by human telomerase do not contain the nucleotide cytosine, which is encoded by an hTR residue 2 nucleotides (nt) 5' of the template boundary. We examined dCTP incorporation by a series of telomerases reconstituted with N- and C-terminally mutated human telomerase reverse transcriptases (hTERTs). We found that altering sequences in the N-terminal RNA interaction domain 1 (RID1) and C terminus caused dCTP-dependent catalytic phenotypes suggestive of reverse transcription of sequences 5' of the template boundary. A RID1 mutant that exhibited a dCTP-dependent phenotype interacted less efficiently with a human telomerase RNA (hTR) variant in which the 5' template boundary-defining P1b element was disrupted, whereas C-terminal mutations did not alter hTR interactions in a P1b-dependent fashion. Disruption of P1b or template linker sequences between P1b and the 5' template boundary also impaired 5' template usage in RID1 and C-terminal hTERT mutants. These observations identify overlapping roles for hTR sequences and structures 5' of the template in regulating both 5' template boundary definition and 5' template usage, and implicate hTERT N- and C-terminal regions in 5' template usage and suppression of noncognate nucleotide incorporation.
Collapse
Affiliation(s)
- Tara J Moriarty
- Lady Davis Institute for Medical Research, 3755 chemin Côte Ste. Catherine, Montréal, QC H3T 1E2, Canada
| | | | | |
Collapse
|
26
|
Lue NF, Bosoy D, Moriarty TJ, Autexier C, Altman B, Leng S. Telomerase can act as a template- and RNA-independent terminal transferase. Proc Natl Acad Sci U S A 2005; 102:9778-83. [PMID: 15994230 PMCID: PMC1174988 DOI: 10.1073/pnas.0502252102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Telomerase is a special reverse transcriptase that extends one strand of the telomere repeat by using a template embedded in an RNA subunit. Like other polymerases, telomerase is believed to use a pair of divalent metal ions (coordinated by a triad of aspartic acid residues) for catalyzing nucleotide addition. Here we show that, in the presence of manganese, both yeast and human telomerase can switch to a template- and RNA-independent mode of DNA synthesis, acting in effect as a terminal transferase. Even as a terminal transferase, yeast telomerase retains a species-dependent preference for GT-rich, telomere-like DNA on the 5' end of the substrate. The terminal transferase activity of telomerase may account for some of the hitherto unexplained effects of telomerase overexpression on cell physiology.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Sfeir AJ, Chai W, Shay JW, Wright WE. Telomere-end processing the terminal nucleotides of human chromosomes. Mol Cell 2005; 18:131-8. [PMID: 15808515 DOI: 10.1016/j.molcel.2005.02.035] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/17/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Mammalian telomeres end in single-stranded, G-rich 3' overhangs resulting from both the "end-replication problem" (the inability of DNA polymerase to replicate the very end of the telomeres) and postreplication processing. Telomeric G-rich overhangs are precisely defined in ciliates; the length and the terminal nucleotides are fixed. Human telomeres have very long overhangs that are heterogeneous in size (35-600 nt), indicating that their processing must differ in some respects from model organisms. We developed telomere-end ligation protocols that allowed us to identify the terminal nucleotides of both the C-rich and the G-rich telomere strands. Up to approximately 80% of the C-rich strands terminate in CCAATC-5', suggesting that after replication a nuclease with high specificity or constrained action acts on the C strand. In contrast, the G-terminal nucleotide was less precise than Tetrahymena and Euplotes but still had a bias that changed as a function of telomerase expression.
Collapse
Affiliation(s)
- Agnel J Sfeir
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
28
|
Moriarty TJ, Ward RJ, Taboski MAS, Autexier C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 2005; 16:3152-61. [PMID: 15857955 PMCID: PMC1165400 DOI: 10.1091/mbc.e05-02-0148] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Telomerase-mediated telomeric DNA synthesis is important for eukaryotic cell immortality. Telomerase adds tracts of short telomeric repeats to DNA substrates using a unique repeat addition form of processivity. It has been proposed that repeat addition processivity is partly regulated by a telomerase reverse transcriptase (TERT)-dependent anchor site; however, anchor site-mediating residues have not been identified in any TERT. We report the characterization of an N-terminal human TERT (hTERT) RNA interaction domain 1 (RID1) mutation that caused telomerase activity defects consistent with disruption of a template-proximal anchor site, including reduced processivity on short telomeric primers and reduced activity on substrates with nontelomeric 5' sequences, but not on primers with nontelomeric G-rich 5' sequences. This mutation was located within a subregion of RID1 previously implicated in biological telomerase functions unrelated to catalytic activity (N-DAT domain). Other N-DAT and C-terminal DAT (C-DAT) mutants and a C-terminally tagged hTERT-HA variant were defective in elongating short telomeric primers, and catalytic phenotypes of DAT variants were partially or completely rescued by increasing concentrations of DNA primers. These observations imply that RID1 and the hTERT C terminus contribute to telomerase's affinity for its substrate, and that RID1 may form part of the human telomerase anchor site.
Collapse
Affiliation(s)
- Tara J Moriarty
- Department of Anatomy and Cell Biology, Experimental Medicine Division, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Trypanosomatid parasite infections have a devastating impact on human health. Little is known about the requirements for parasite growth during any stage of their complex, multi-host life cycle. In most eukaryotic organisms, sustained cell proliferation requires telomerase-dependent telomere length maintenance. Here we investigate the regulation and biochemical features of telomerase from Trypanosoma cruzi, the causative agent of Chagas disease. We found that T.cruzi telomerase is active in extracts from multiple developmental stages of the parasite life cycle. Detailed characterization of the enzymatic properties of telomerase using epimatigote-stage extract revealed a unique combination of substrate specificities, consistent with the evolutionary divergence of trypanosomes from previously established model systems for telomerase biochemical characterization. Results from partial purification of T.cruzi telomerase suggest that the catalytically active enzyme is a large ribonucleoprotein complex and that the internal RNA template has an atypical, cytosine-rich permutation. These results expand our understanding of telomerase enzymology and should encourage the development of parasite-specific telomerase inhibitors as a method for disease therapy.
Collapse
Affiliation(s)
- Denise P Muñoz
- Department of Molecular and Cell Biology, 16 Barker Hall, University of California at Berkeley, Berkeley, CA 94720-3204, USA.
| | | |
Collapse
|