1
|
Hasan MR, Takatalo M, Nieminen P, Rice R, Mustonen T, Rice DP. RAB23 facilitates clathrin-coated nascent vesicle formation at the plasma membrane and modulates cell signaling. Cell Mol Life Sci 2025; 82:171. [PMID: 40261407 PMCID: PMC12014981 DOI: 10.1007/s00018-025-05694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
RAB23 is known to regulate signaling by several growth factors during organogenesis. RABs and other small GTPases function as molecular switches during cellular membrane trafficking. However, what has not been established is how RAB23 functions during cellular membrane trafficking and how this influences cell signaling. To address this, we characterized RAB23's localization in the endocytic pathway and determined the route of endocytosis. We find that RAB23 interacts with β-adaptin (AP2β1) subunit of the clathrin adaptor protein 2 (AP-2) complex, suggesting RAB23's involvement in clathrin-dependent endocytosis at the plasma membrane. Our results show that RAB23 might function at multiple steps during clathrin-coated nascent vesicle formation. We find that RAB23 interacts with clathrin assembly protein PICALM, vesicle curvature protein endophilin A2, and a protein linked with vesicle scission, cortactin. To understand the functionality of RAB23, we performed time-lapse live cell imaging of transferrin uptake, which showed that clathrin-dependent endocytosis is affected in RAB23 deficient osteoprogenitors with inefficient cargo internalization. We normalized transferrin uptake in RAB23 knockdown human osteosarcoma cells (MG-63) by overexpressing RAB23. Our results show that deficiency of RAB23 reduced the interaction between β-adaptin and clathrin. We demonstrate that vesicle formation upon BMP stimulation and subsequent signal transduction is aberrant in RAB23-deficient cells. We further show evidence by providing microarray data-driven hypergeometric test of differentially expressed genes in WT and RAB23-deficient samples which suggests RAB23's participation in vesicle formation, endocytosis and cell signaling. Collectively, our data indicate a role for RAB23 in vesicle formation, membrane trafficking, and cell signaling.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland
| | - Pekka Nieminen
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland
| | - Ritva Rice
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland
| | - David P Rice
- Orthodontics, University of Helsinki, Biomedicum 1, PL 63 (Hartmaninkatu 8), 00014, Helsinki, Finland.
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Meyer C, Breitsprecher L, Bataille L, Vincent AJM, Drechsler M, Meyer H, Paululat A. Formation and function of a highly specialised type of organelle in cardiac valve cells. Development 2022; 149:276991. [DOI: 10.1242/dev.200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.
Collapse
Affiliation(s)
- Christian Meyer
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
| | - Leonhard Breitsprecher
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| | - Laetitia Bataille
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI) 3 , Université de Toulouse UMR 5077/CNRS, F-31062 Toulouse , France
| | - Alain J. M. Vincent
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI) 3 , Université de Toulouse UMR 5077/CNRS, F-31062 Toulouse , France
| | - Maik Drechsler
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
| | - Heiko Meyer
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| | - Achim Paululat
- University of Osnabrück 1 , Department of Biology and Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs), integrated Bioimaging Facility (iBiOs), University of Osnabrück 2 , Barbarastrasse 11, 49076 Osnabrück , Germany
| |
Collapse
|
4
|
Gubar O, Croisé P, Kropyvko S, Gryaznova T, Tóth P, Blangy A, Vitale N, Rynditch A, Gasman S, Ory S. The atypical Rho GTPase RhoU interacts with intersectin-2 to regulate endosomal recycling pathways. J Cell Sci 2020; 133:jcs234104. [PMID: 32737221 DOI: 10.1242/jcs.234104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Rho GTPases play a key role in various membrane trafficking processes. RhoU is an atypical small Rho GTPase related to Rac/Cdc42, which possesses unique N- and C-terminal domains that regulate its function and its subcellular localization. RhoU localizes at the plasma membrane, on endosomes and in cell adhesion structures where it governs cell signaling, differentiation and migration. However, despite its endomembrane localization, RhoU function in vesicular trafficking has been unexplored. Here, we identified intersectins (ITSNs) as new binding partners for RhoU and showed that the second PxxP motif at the N terminus of RhoU mediated interactions with the SH3 domains of ITSNs. To evaluate the function of RhoU and ITSNs in vesicular trafficking, we used fluorescent transferrin as a cargo for uptake experiments. We showed that silencing of either RhoU or ITSN2, but not ITSN1, increased transferrin accumulation in early endosomes, resulting from a defect in fast vesicle recycling. Concomitantly, RhoU and ITSN2 colocalized to a subset of Rab4-positive vesicles, suggesting that a RhoU-ITSN2 interaction may occur on fast recycling endosomes to regulate the fate of vesicular cargos.
Collapse
Affiliation(s)
- Olga Gubar
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Pauline Croisé
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Tetyana Gryaznova
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Petra Tóth
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Anne Blangy
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Univ. Montpellier, CNRS, 34000 Montpellier, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| |
Collapse
|
5
|
The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. Biochem Res Int 2020; 2020:4186308. [PMID: 32104603 PMCID: PMC7036122 DOI: 10.1155/2020/4186308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Ras analog in brain (Rab) proteins are small guanosine triphosphatases (GTPases) that belong to the Ras-like GTPase superfamily, and they can regulate vesicle trafficking. Rab proteins alternate between an activated (GTP-bound) state and an inactivated (GDP-bound) state. Early endosome marker Rab5 GTPase, a key member of the Rab family, plays a crucial role in endocytosis and membrane transport. The activated-state Rab5 recruits its effectors and regulates the internalization and trafficking of membrane receptors by regulating vesicle fusion and receptor sorting in the early endosomes. In this review, we summarize the role of small Rab GTPases Rab5 in membrane receptor trafficking and the activation of signaling pathways, such as Ras/MAPK and PI3K/Akt, which ultimately affect cell growth, apoptosis, tumorigenesis, and tumor development. This review may provide some insights for our future research and novel therapeutic targets for diseases.
Collapse
|
6
|
Dilsizoglu Senol A, Tagliafierro L, Gorisse-Hussonnois L, Rebeillard F, Huguet L, Geny D, Contremoulins V, Corlier F, Potier MC, Chasseigneaux S, Darmon M, Allinquant B. Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cell Mol Life Sci 2019; 76:4995-5009. [PMID: 31139847 PMCID: PMC11105537 DOI: 10.1007/s00018-019-03157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Lidia Tagliafierro
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lucie Gorisse-Hussonnois
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Florian Rebeillard
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Léa Huguet
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - David Geny
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris Diderot, Paris, France
| | - Fabian Corlier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144, 75006, Paris, France
| | - Michèle Darmon
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Bernadette Allinquant
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France.
| |
Collapse
|
7
|
Nag S, Rani S, Mahanty S, Bissig C, Arora P, Azevedo C, Saiardi A, van der Sluijs P, Delevoye C, van Niel G, Raposo G, Setty SRG. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles. J Cell Sci 2018; 131:jcs.216226. [PMID: 30154210 PMCID: PMC6151265 DOI: 10.1242/jcs.216226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudeshna Nag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Shikha Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Christin Bissig
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Pooja Arora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Cedric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
8
|
CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions. Angiogenesis 2018; 22:75-93. [PMID: 30097810 PMCID: PMC6510885 DOI: 10.1007/s10456-018-9638-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
Abstract
Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting.
Collapse
|
9
|
Li H, Santos MS, Park CK, Dobry Y, Voglmaier SM. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3. Front Cell Neurosci 2017; 11:324. [PMID: 29123471 PMCID: PMC5662623 DOI: 10.3389/fncel.2017.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Magda S Santos
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chihyung K Park
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Yuriy Dobry
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Voglmaier
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Analyzing Endosomal Docking, Fusion, Sorting, and Budding Mechanisms in Isolated Organelles. Methods Mol Biol 2016. [PMID: 27943194 DOI: 10.1007/978-1-4939-6688-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Due to their central role in the reception and sorting of newly internalized material, early endosomes undergo extensive membrane remodeling. They dock and fuse with endocytic carrier vesicles originating from the plasma membrane, sort the internalized material in internal microdomains, and allow the budding of new carrier vesicles from their membrane, destined to fuse with the plasma membrane (recycling) or other organelles. Early endosomal compartments might also be involved in the recycling of synaptic vesicles in nerve terminals. The present protocol describes a technique allowing to assess the mechanistic and molecular aspects of the membrane remodeling processes of docking, fusion, sorting, and budding in early endosomes of neuron-like (and other) cells. It involves the fluorescent labeling and isolation of endosomal organelles, the setup of assays allowing for docking/fusion or sorting/budding in vitro, and finally the assessment and quantification of the membrane remodeling events by fluorescent microscopy. The technique can be easily manipulated by the addition of inhibitors or activators, and can be combined with other techniques, such as immunostaining and high-resolution microscopy, expanding the experimental possibilities in the investigation of early endosomal characteristics.
Collapse
|
11
|
Lucitti JL, Sealock R, Buckley BK, Zhang H, Xiao L, Dudley AC, Faber JE. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke 2016; 47:3022-3031. [PMID: 27811335 DOI: 10.1161/strokeaha.116.014160] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE The extent (number and diameter) of collateral vessels varies widely and is a major determinant, along with arteriogenesis (collateral remodeling), of variation in severity of tissue injury after large artery occlusion. Differences in genetic background underlie the majority of the variation in collateral extent in mice, through alterations in collaterogenesis (embryonic collateral formation). In brain and other tissues, ≈80% of the variation in collateral extent among different mouse strains has been linked to a region on chromosome 7. We recently used congenic (CNG) fine mapping of C57BL/6 (B6, high extent) and BALB/cByJ (BC, low extent) mice to narrow the region to a 737 Kb locus, Dce1. Herein, we report the causal gene. METHODS We used additional CNG mapping and knockout mice to narrow the number of candidate genes. Subsequent inspection identified a nonsynonymous single nucleotide polymorphism between B6 and BC within Rabep2 (rs33080487). We then created B6 mice with the BC single nucleotide polymorphism at this locus plus 3 other lines for predicted alteration or knockout of Rabep2 using gene editing. RESULTS The single amino acid change caused by rs33080487 accounted for the difference in collateral extent and infarct volume between B6 and BC mice attributable to Dce1. Mechanistically, variants of Rabep2 altered collaterogenesis during embryogenesis but had no effect on angiogenesis examined in vivo and in vitro. Rabep2 deficiency altered endosome trafficking known to be involved in VEGF-A→VEGFR2 signaling required for collaterogenesis. CONCLUSIONS Naturally occurring variants of Rabep2 are major determinants of variation in collateral extent and stroke severity in mice.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Robert Sealock
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Brian K Buckley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Hua Zhang
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Lin Xiao
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Andrew C Dudley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James E Faber
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
12
|
Dolat L, Spiliotis ET. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J Cell Biol 2016; 214:517-27. [PMID: 27551056 PMCID: PMC5004444 DOI: 10.1083/jcb.201603030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
How macropinosomes traffic to lysosomes is poorly understood. Dolat and Spiliotis show that septins associate preferentially with mature macropinosomes in a PI(3,5)P2-dependent manner and regulate fluid-phase cargo traffic to lysosomes by promoting macropinosome/endosome fusion. Macropinocytosis, the internalization of extracellular fluid and material by plasma membrane ruffles, is critical for antigen presentation, cell metabolism, and signaling. Macropinosomes mature through homotypic and heterotypic fusion with endosomes and ultimately merge with lysosomes. The molecular underpinnings of this clathrin-independent endocytic pathway are largely unknown. Here, we show that the filamentous septin GTPases associate preferentially with maturing macropinosomes in a phosphatidylinositol 3,5-bisphosphate–dependent manner and localize to their contact/fusion sites with macropinosomes/endosomes. Septin knockdown results in large clusters of docked macropinosomes, which persist longer and exhibit fewer fusion events. Septin depletion and overexpression down-regulates and enhances, respectively, the delivery of fluid-phase cargo to lysosomes, without affecting Rab5 and Rab7 recruitment to macropinosomes/endosomes. In vitro reconstitution assays show that fusion of macropinosomes/endosomes is abrogated by septin immunodepletion and function-blocking antibodies and is induced by recombinant septins in the absence of cytosol and polymerized actin. Thus, septins regulate fluid-phase cargo traffic to lysosomes by promoting macropinosome maturation and fusion with endosomes/lysosomes.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
13
|
Tang BL. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration. J Cell Physiol 2015; 231:1417-23. [DOI: 10.1002/jcp.25261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
14
|
Yanatori I, Yasui Y, Noguchi Y, Kishi F. Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane. Cell Biol Int 2015; 39:427-34. [DOI: 10.1002/cbin.10403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/30/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Izumi Yanatori
- Department of Molecular Genetics; Kawasaki Medical School; 577 Matsushima; Kurashiki Okayama 701-0192 Japan
| | - Yumiko Yasui
- Department of Molecular Genetics; Kawasaki Medical School; 577 Matsushima; Kurashiki Okayama 701-0192 Japan
| | - Yumiko Noguchi
- Department of Molecular Genetics; Kawasaki Medical School; 577 Matsushima; Kurashiki Okayama 701-0192 Japan
| | - Fumio Kishi
- Department of Molecular Genetics; Kawasaki Medical School; 577 Matsushima; Kurashiki Okayama 701-0192 Japan
| |
Collapse
|
15
|
Korobko EV, Kiselev SL, Korobko IV. Characterization of Rabaptin-5 γ isoform. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:856-864. [PMID: 25385014 DOI: 10.1134/s000629791409003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rab GTPases are key regulators of intracellular membrane traffic acting through their effector molecules. Rabaptin-5 is a Rab5 effector in early endosome fusion and connects Rab5- and Rab4-positive membrane compartments owing to its ability to interact with Rab4 GTPase. Recent studies showed that Rabaptin-5 transcript is subjected to extensive alternative splicing, thus resulting in expression of Rabaptin-5 isoforms mostly bearing short deletions in the polypeptide chain. As interactions of a Rab GTPase with different effectors lead to different responses, functional characterization of Rabaptin-5 isoforms becomes an attractive issue. Indeed, it was shown that Rab GTPase effector properties of Rabaptin-5 and its α and δ isoforms are different. This work focused on another Rabaptin-5 isoform, Rabaptin-5γ. Despite its ability to interact with Rab5, endogenously produced Rabaptin-5γ was absent from early endosomes. Rather, it was found to be tightly associated with trans-Golgi network and partially localized to a Rab4-positive membrane compartment. The revealed intracellular localization of Rabaptin-5γ indicates that it is not involved in Rab5-driven events; rather, it functions in other membrane transport steps. Our study signifies the role of alternative splicing in determination of functional activities of Rab effector molecules.
Collapse
Affiliation(s)
- E V Korobko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
16
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
17
|
Cihil KM, Swiatecka-Urban A. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins. J Vis Exp 2013:e50867. [PMID: 24378656 PMCID: PMC4048355 DOI: 10.3791/50867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Collapse
Affiliation(s)
- Kristine M Cihil
- Department of Nephrology, Children's Hospital of Pittsburgh of UPMC
| | | |
Collapse
|
18
|
Thomas C, Strutt D. Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol 2013; 385:107-21. [PMID: 24104056 PMCID: PMC3858806 DOI: 10.1016/j.ydbio.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 01/08/2023]
Abstract
Endocytosis plays an important role in the regulation of tumour growth and metastasis. In Drosophila, a number of endocytic neoplastic tumour suppressor genes have been identified that when mutated cause epithelial disruption and over-proliferation. Here we characterise the Drosophila homologue of the Rab5 effector Rabaptin-5, and show that it is a novel neoplastic tumour suppressor. Its ability to bind Rab5 and modulate early endosomal dynamics is conserved in Drosophila, as is its interaction with the Rab5 GEF Rabex5, for which we also demonstrate neoplastic tumour suppressor characteristics. Surprisingly, we do not observe disruption of apico-basal polarity in Rabaptin-5 and Rabex-5 mutant tissues; instead the tumour phenotype is associated with upregulation of Jun N-terminal Kinase (JNK) and Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signalling. Drosophila Rabaptin-5 and Rabex-5 are endocytic neoplastic tumour suppressor genes. The Rab5 effector function of Rabaptin-5 is highly conserved in Drosophila. Rabaptin-5 interacts with Rabex-5 to modulate early endosomal dynamics in vivo. Tumour phenotypes are associated with upregulation of JNK and JAK/STAT signalling.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
19
|
Perrin L, Laura P, Lacas-Gervais S, Sandra LG, Gilleron J, Jérôme G, Ceppo F, Franck C, Prodon F, François P, Benmerah A, Alexandre B, Tanti JF, Jean-François T, Cormont M, Mireille C. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1. J Cell Sci 2013; 126:4950-62. [PMID: 24006255 DOI: 10.1242/jcs.130575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.
Collapse
Affiliation(s)
| | - Perrin Laura
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vesicles modulate an actin network for asymmetric spindle positioning. Nat Cell Biol 2013; 15:937-47. [PMID: 23873150 PMCID: PMC3797517 DOI: 10.1038/ncb2802] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
Actin networks drive many essential cellular processes, including cell migration, cytokinesis and tissue morphogenesis. However, how cells organize and regulate dynamic actin networks that consist of long, unbranched actin filaments is only poorly understood. This study in mouse oocytes reveals that cells can use vesicles as adaptable, motorized network nodes to regulate the dynamics and density of intracellular actin networks. In particular, Rab11a-positive vesicles drive the network dynamics in a myosin-Vb-dependent manner, and modulate the network density by sequestering and clustering the network's actin nucleators. We also report a simple way by which networks of different densities can be generated, namely by adjusting the number and volume of vesicles in the cell. This vesicle-based mechanism of actin network modulation is essential for asymmetric positioning of the meiotic spindle in mouse oocytes, a vital step in the development of a fertilizable egg in mammals.
Collapse
|
21
|
Waxmonsky NC, Conner SD. Αvβ3-integrin-mediated adhesion is regulated through an AAK1L- and EHD3-dependent rapid-recycling pathway. J Cell Sci 2013; 126:3593-601. [PMID: 23781025 DOI: 10.1242/jcs.122465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein transport through the endosome is critical for maintaining proper integrin cell surface integrin distribution to support cell adhesion, motility and viability. Here we employ a live-cell imaging approach to evaluate the relationship between integrin function and transport through the early endosome. We discovered that two early endosome factors, AAK1L and EHD3, are critical for αvβ3-integrin-mediated cell adhesion in HeLa cells. siRNA-mediated depletion of either factor delays short-loop β3 integrin recycling from the early endosome back to the cell surface. Total internal reflection fluorescence-based colocalization analysis reveals that β3 integrin transits AAK1L- and EHD3-positive endosomes near the cell surface, a subcellular location consistent with a rapid-recycling role for both factors. Moreover, structure-function analysis reveals that AAK1L kinase activity, as well as its C-terminal domain, is essential for cell adhesion maintenance. Taken together, these data reveal an important role for AAK1L and EHD3 in maintaining cell viability and adhesion by promoting αvβ3 integrin rapid recycling from the early endosome.
Collapse
Affiliation(s)
- Nicole C Waxmonsky
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
22
|
Abstract
The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)–GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.
Collapse
|
23
|
Gan Z, Ram S, Ober RJ, Ward ES. Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 2013; 126:1176-88. [PMID: 23345403 DOI: 10.1242/jcs.116327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel 'looping' process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway.
Collapse
Affiliation(s)
- Zhuo Gan
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
24
|
Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes. J Neurosci 2012; 32:6014-23. [PMID: 22539861 DOI: 10.1523/jneurosci.6305-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.
Collapse
|
25
|
Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012; 86:3014-26. [PMID: 22238299 PMCID: PMC3302302 DOI: 10.1128/jvi.05826-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/23/2011] [Indexed: 12/17/2022] Open
Abstract
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry
| | | | | | | | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Abstract
Endocytic trafficking is a highly organized process regulated by a network of proteins, including the Rab family of small GTP-binding proteins and the C-terminal EHDs (Eps15 homology-domain-containing proteins). Central roles for Rab proteins have been described in vesicle budding, delivery, tethering and fusion, whereas little is known about the functions of EHDs in membrane transport. Common effectors for these two protein families have been identified, and they facilitate regulation of sequential steps in transport. By comparing and contrasting key aspects in their modes of function, we shall promote a better understanding of how Rab proteins and EHDs regulate endocytic trafficking.
Collapse
|
27
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
The norepinephrine transporter (NET) is a presynaptic plasma membrane protein that mediates reuptake of synaptically released norepinephrine. NET is also a major target for medications used for the treatment of depression, attention deficit/hyperactivity disorder, narcolepsy, and obesity. NET is regulated by numerous mechanisms, including catalytic activation and membrane trafficking. Amphetamine (AMPH), a psychostimulant and NET substrate, has also been shown to induce NET trafficking. However, neither the molecular basis nor the nature of the relevant membrane compartments of AMPH-modulated NET trafficking has been defined. Indeed, direct visualization of drug-modulated NET trafficking in neurons has yet to be demonstrated. In this study, we used a recently developed NET antibody and the presence of large presynaptic boutons in sympathetic neurons to examine basal and AMPH-modulated NET trafficking. Specifically, we establish a role for Rab11 in AMPH-induced NET trafficking. First, we found that, in cortical slices, AMPH induces a reduction in surface NET. Next, we observed AMPH-induced accumulation and colocalization of NET with Rab11a and Rab4 in presynaptic boutons of cultured neurons. Using tagged proteins, we demonstrated that NET and a truncated Rab11 effector (FIP2DeltaC2) do not redistribute in synchrony, whereas NET and wild-type Rab11a do. Analysis of various Rab11a/b mutants further demonstrates that Rab11 regulates NET trafficking. Expression of the truncated Rab11a effector (FIP2DeltaC2) attenuates endogenous Rab11 function and prevented AMPH-induced NET internalization as does GDP-locked Rab4 S22N. Our data demonstrate that AMPH leads to an increase of NET in endosomes of single boutons and varicosities in a Rab11-dependent manner.
Collapse
|
29
|
Barysch SV, Jahn R, Rizzoli SO. A fluorescence-based in vitro assay for investigating early endosome dynamics. Nat Protoc 2010; 5:1127-37. [PMID: 20539288 DOI: 10.1038/nprot.2010.84] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early endosomes receive material from the plasma membrane by fusion with endocytotic vesicles. This material is sorted within endosomes and directed to subdomains at which carrier vesicles bud. These vesicles are then transported toward different cellular destinations. In this article, we describe a protocol for the cell-free reconstitution of endosome docking/fusion and sorting/budding, which is based on labeling of endosomes by endocytotic uptake with fluorescent cargoes. The protocol includes (i) the preparation of fluorescently labeled endosomes, (ii) assays for docking/fusion and for sorting/budding in vitro and (iii) imaging of the reaction mix by fluorescence microscopy to quantify docking, fusion, cargo sorting and budding using counting of single organelles. Production of endosome stocks requires approximately 1 d. The in vitro reactions can then be performed separately (approximately 1 d) and are conveniently carried out with multiple samples in parallel. The assay can be adapted for studying the dynamics of organelles other than endosomes.
Collapse
Affiliation(s)
- Sina V Barysch
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
30
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
31
|
Kobialka S, Beuret N, Ben-Tekaya H, Spiess M. Glycosaminoglycan Chains Affect Exocytic and Endocytic Protein Traffic. Traffic 2009; 10:1845-55. [DOI: 10.1111/j.1600-0854.2009.00987.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Hong MC, Huang YS, Song PC, Lin WW, Fang LS, Chen MC. Cloning and characterization of ApRab4, a recycling Rab protein of Aiptasia pulchella, and its implication in the symbiosome biogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:771-785. [PMID: 19459008 DOI: 10.1007/s10126-009-9193-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/26/2009] [Indexed: 05/27/2023]
Abstract
The biogenesis of Symbiodinium symbiosome in the host cells of the sea anemone, Aiptasia pulchella, involves retention of ApRab5 on and exclusion of ApRab11 from the organelle. One predicted consequence of this differential Rab association is the constant membrane fusion of symbiosomes with endocytic vesicles in the absence of parallel membrane retrieval and the subsequent formation of spacious symbiosomes, which nevertheless, contradicts the common perception. To solve this discrepancy, we determined whether membrane fusion occurs between symbiosomes and endocytic vesicles, and whether ApRab11-independent recycling is involved in symbiosome biogenesis. By using the biotin-avidin detection system, we found evidence for symbiosome-endocytic vesicle fusion. Cloning and characterization of ApRab4, an A. pulchella homolog of Rab4, showed that ApRab4 is associated with both the early endocytic and the perinuclear recycling compartments, and its normal function is required for the organization of the recycling compartments. Immunostaining localized ApRab4 to the symbiosome membrane, partially overlapping with ApRab5-decorated microdomains. Significantly, a treatment that impaired Symbiodinium photosynthesis also abolished symbiosome association of ApRab4. Furthermore, ApRab4 was quickly recruited to newly formed phagosomes, but prolonged association only occurred in those harboring live zooxanthelllae. We propose that ApRab4 retention on the symbiosome is an essential part of the mechanism for the biogenesis of Symbiodinium symbiosome.
Collapse
Affiliation(s)
- Ming-Cheng Hong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc Natl Acad Sci U S A 2009; 106:17626-33. [PMID: 19826089 DOI: 10.1073/pnas.0903801106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rab GTPases and their effectors mediate docking, the initial contact of intracellular membranes preceding bilayer fusion. However, it has been unclear whether Rab proteins and effectors are sufficient for intermembrane interactions. We have recently reported reconstituted membrane fusion that requires yeast vacuolar SNAREs, lipids, and the homotypic fusion and vacuole protein sorting (HOPS)/class C Vps complex, an effector and guanine nucleotide exchange factor for the yeast vacuolar Rab GTPase Ypt7p. We now report reconstitution of lysis-free membrane fusion that requires purified GTP-bound Ypt7p, HOPS complex, vacuolar SNAREs, ATP hydrolysis, and the SNARE disassembly catalysts Sec17p and Sec18p. We use this reconstituted system to show that SNAREs and Sec17p/Sec18p, and Ypt7p and the HOPS complex, are required for stable intermembrane interactions and that the three vacuolar Q-SNAREs are sufficient for these interactions.
Collapse
|
34
|
Helchowski CM, Minea RO, Swenson SD, Markland FS. The use of pepsin in receptor internalization assays. Biochem Biophys Res Commun 2009; 388:240-6. [DOI: 10.1016/j.bbrc.2009.07.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 11/29/2022]
|
35
|
Eggers CT, Schafer JC, Goldenring JR, Taylor SS. D-AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin receptor recycling. J Biol Chem 2009; 284:32869-80. [PMID: 19797056 PMCID: PMC2781703 DOI: 10.1074/jbc.m109.022582] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.
Collapse
Affiliation(s)
- Christopher T Eggers
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
36
|
Wagener BM, Marjon NA, Revankar CM, Prossnitz ER. Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis. Traffic 2009; 10:1286-300. [PMID: 19602204 DOI: 10.1111/j.1600-0854.2009.00957.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G protein-coupled receptors (GPCRs) are integral to cellular function in nearly all physiologic and many pathologic processes. GPCR signaling represents an intricate balance between receptor activation, inactivation (desensitization, internalization and degradation) and resensitization (recycling and de novo synthesis). Complex formation between phosphorylated GPCRs, arrestins and an ever-increasing number of effector molecules is known to regulate cellular function. Previous studies have demonstrated that, although N-formyl peptide receptor (FPR) internalization occurs in the absence of arrestins, FPR recycling is arrestin-dependent. Furthermore, FPR stimulation in the absence of arrestins leads to receptor accumulation in perinuclear endosomes and apoptosis. In this study, we show that the interaction of GPCR-bound arrestin with adaptor protein-2 (AP-2) is a critical anti-apoptotic event. In addition, AP-2 associates with the receptor-arrestin complex in perinuclear endosomes and is required for proper post-endocytic GPCR trafficking. Finally, we observed that depletion of endogenous AP-2 results in the initiation of apoptosis upon stimulation of multiple GPCRs, including P2Y purinergic receptors and CXCR2, but not CXCR4. We propose a model in which the abnormal accumulation of internalized GPCR-arrestin complexes in recycling endosomes, resulting from defective arrestin-AP-2 interactions, leads to the specific initiation of aberrant signaling pathways and apoptosis.
Collapse
Affiliation(s)
- Brant M Wagener
- Department of Cell Biology and Physiology and UNM Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
37
|
Burrack LS, Harper JW, Higgins DE. Perturbation of vacuolar maturation promotes listeriolysin O-independent vacuolar escape during Listeria monocytogenes infection of human cells. Cell Microbiol 2009; 11:1382-98. [PMID: 19500109 DOI: 10.1111/j.1462-5822.2009.01338.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a bacterial pathogen that replicates within the cytosol of infected host cells. The ability to rapidly escape the phagocytic vacuole is essential for efficient intracellular replication. In the murine model of infection, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for vacuolar dissolution, as LLO-deficient (DeltaLLO) mutants remain trapped within vacuoles. In contrast, in many human cell types DeltaLLO L. monocytogenes are capable of vacuolar escape at moderate to high frequencies. To better characterize the mechanism of LLO-independent vacuolar escape in human cells, we conducted an RNA interference screen to identify vesicular trafficking factors that play a role in altering vacuolar escape efficiency of DeltaLLO L. monocytogenes. RNA interference knockdown of 18 vesicular trafficking factors resulted in increased LLO-independent vacuolar escape. Our results suggest that knockdown of one factor, RABEP1 (rabaptin-5), decreased the maturation of vacuoles containing DeltaLLO L. monocytogenes. Thus, we provide evidence that increased vacuolar escape of DeltaLLO L. monocytogenes in human cells correlates with slower vacuolar maturation. We also determined that increased LLO-independent dissolution of vacuoles during RABEP1 knockdown required the bacterial broad-range phospholipase C (PC-PLC). We hypothesize that slowing the kinetics of vacuolar maturation generates an environment conducive for vacuolar escape mediated by the bacterial phospholipases.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proc Natl Acad Sci U S A 2009; 106:9697-702. [PMID: 19487677 DOI: 10.1073/pnas.0901444106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The early endosomes constitute a major sorting platform in eukaryotic cells. They receive material through fusion with endocytotic vesicles or with trafficking vesicles from the Golgi complex and later sort it into budding vesicles. While endosomal fusion is well understood, sorting is less characterized; the 2 processes are generally thought to be effected by different, unrelated machineries. We developed here a cell-free assay for sorting/budding from early endosomes, by taking advantage of their ability to segregate different cargoes (such as transferrin, cholera toxin subunit B, and low-density lipoprotein, LDL) into different carrier vesicles. Cargo separation required both carrier vesicle formation and active maturation of the endosomes. Sorting and budding were insensitive to reagents perturbing clathrin coats, coatomer protein complex-I (COPI) coats, dynamin, and actin, but were inhibited by anti-retromer subunit antibodies. In addition, the process required Rab-GTPases, phosphatidylinositol-3-phosphate, and, surprisingly, the docking factor early endosomal autoantigen 1 (EEA1). Sorting also required the function of the N-ethylmaleimide-sensitive factor (NSF), a well-known fusion cofactor, while it did not depend on preceding fusion of endosomes. We conclude that fusion, docking, and sorting/budding are interconnected at the molecular level.
Collapse
|
39
|
Abstract
Synaptic vesicles (SVs) are composed of approximately 10 types of transmembrane proteins that must be recycled after exocytosis of neurotransmitter. The mechanisms for resorting these proteins into synaptic vesicles once incorporated into the plasma membrane after exocytosis are poorly understood. The adaptor complex AP-2 is the major clathrin-associated adaptor for cargo recognition at the plasma membrane. Here, we have investigated its role in synaptic vesicle endocytosis. shRNA-mediated knockdown of the AP-2 complex results in an approximately 96% reduction of this protein complex in primary neurons. We used simultaneous expression of shRNA and pHluorin-tagged vesicle components to show that the absence of AP-2 significantly slows but does not prevent the endocytosis of four of the major synaptic vesicle transmembrane proteins. We show that in the absence of AP-2, the AP-1 adaptor complex appears to functionally substitute for AP-2 but results in complex internalization kinetics that are now sensitive to the guanine-nucleotide exchange factor for ADP-ribosylation factor GTPase (ARF-GEF) inhibitor brefeldin-A (BFA). Simultaneous removal of both AP-2 and AP-1 prevents this compensatory substitution and results in slowed but functional endocytosis. These results demonstrate that in the absence of AP-2, SV proteins still become endocytosed, and synaptic vesicle recycling remains operational.
Collapse
|
40
|
Greaves J, Prescott GR, Gorleku OA, Chamberlain LH. The fat controller: roles of palmitoylation in intracellular protein trafficking and targeting to membrane microdomains (Review). Mol Membr Biol 2008; 26:67-79. [PMID: 19115144 DOI: 10.1080/09687680802620351] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The attachment of palmitic acid to the amino acid cysteine via thioester linkage (S-palmitoylation) is a common post-translational modification of eukaryotic proteins. In this review, we discuss the role of palmitoylation as a versatile protein sorting signal, regulating protein trafficking between distinct intracellular compartments and the micro-localization of proteins within membranes.
Collapse
Affiliation(s)
- Jennifer Greaves
- The Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
41
|
Abstract
Rab5 is a small GTPase that regulates early endocytic events and is activated by RabGEF1/Rabex-5. Rabaptin-5, a Rab5 interacting protein, was identified as a protein critical for potentiating RabGEF1/Rabex-5's activation of Rab5. Using Rabaptin-5 shRNA knockdown, we show that Rabaptin-5 is dispensable for Rab5-dependent processes in intact mast cells, including high affinity IgE receptor (FcepsilonRI) internalization and endosome fusion. However, Rabaptin-5 deficiency markedly diminished expression of FcepsilonRI and beta1 integrin on the mast cell surface by diminishing receptor surface stability. This in turn reduced the ability of mast cells to bind IgE and significantly diminished both mast cell sensitivity to antigen (Ag)-induced mediator release and Ag-induced mast cell adhesion and migration. These findings show that, although dispensable for canonical Rab5 processes in mast cells, Rabaptin-5 importantly contributes to mast cell IgE-dependent immunologic function by enhancing mast cell receptor surface stability.
Collapse
|
42
|
Inoue H, Ha VL, Prekeris R, Randazzo PA. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell 2008; 19:4224-37. [PMID: 18685082 DOI: 10.1091/mbc.e08-03-0290] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ADP-ribosylation factors (Arfs) and Arf GTPase-activating proteins (GAPs) are key regulators of membrane trafficking and the actin cytoskeleton. The Arf GAP ASAP1 contains an N-terminal BAR domain, which can induce membrane tubulation. Here, we report that the BAR domain of ASAP1 can also function as a protein binding site. Two-hybrid screening identified FIP3, which is a putative Arf6- and Rab11-effector, as a candidate ASAP1 BAR domain-binding protein. Both coimmunoprecipitation and in vitro pulldown assays confirmed that ASAP1 directly binds to FIP3 through its BAR domain. ASAP1 formed a ternary complex with Rab11 through FIP3. FIP3 binding to the BAR domain stimulated ASAP1 GAP activity against Arf1, but not Arf6. ASAP1 colocalized with FIP3 in the pericentrosomal endocytic recycling compartment. Depletion of ASAP1 or FIP3 by small interfering RNA changed the localization of transferrin receptor, which is a marker of the recycling endosome, in HeLa cells. The depletion also altered the trafficking of endocytosed transferrin. These results support the conclusion that ASAP1, like FIP3, functions as a component of the endocytic recycling compartment.
Collapse
Affiliation(s)
- Hiroki Inoue
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
43
|
Tanaka AR, Kano F, Yamamoto A, Ueda K, Murata M. Formation of cholesterol-enriched structures by aberrant intracellular accumulation of ATP-binding cassette transporter A1. Genes Cells 2008; 13:889-904. [DOI: 10.1111/j.1365-2443.2008.01213.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Abstract
HAI-1 [HGF (hepatocyte growth factor) activator inhibitor-1] is a Kunitz-type transmembrane serine protease inhibitor that forms inhibitor complexes with the trypsin-like serine protease, matriptase. HAI-1 is essential for mouse placental development and embryo survival and together with matriptase it is a key regulator of carcinogenesis. HAI-1 is expressed in polarized epithelial cells, which have the plasma membrane divided by tight junctions into an apical and a basolateral domain. In the present study we show that HAI-1 at steady-state is mainly located on the basolateral membrane of both Madin-Darby canine kidney cells and mammary gland epithelial cells. After biosynthesis, HAI-1 is exocytosed mainly to the basolateral plasma membrane from where 15% of the HAI-1 molecules are proteolytically cleaved and released into the basolateral medium. The remaining membrane-associated HAI-1 is endocytosed and then recycles between the basolateral plasma membrane and endosomes for hours until it is transcytosed to the apical plasma membrane. Minor amounts of HAI-1 present at the apical plasma membrane are proteolytically cleaved and released into the apical medium. Full-length membrane-bound HAI-1 has a half-life of 1.5 h and is eventually degraded in the lysosomes, whereas proteolytically released HAI-1 is more stable. HAI-1 is co-localized with its cognate protease, matriptase, at the basolateral plasma membrane. We suggest that HAI-1, in addition to its protease inhibitory function, plays a role in transporting matriptase as a matriptase-HAI-1 complex from the basolateral plama membrane to the apical plasma membrane, as matriptase is known to interact with prostasin, located at the apical plasma membrane.
Collapse
|
45
|
Clathrin is a key regulator of basolateral polarity. Nature 2008; 452:719-23. [PMID: 18401403 DOI: 10.1038/nature06828] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/07/2008] [Indexed: 12/20/2022]
Abstract
Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.
Collapse
|
46
|
Abstract
The intracellular trafficking of numerous proteins requires a tight control to fulfil their physiological functions. It is the case of the adipocyte and muscle glucose transporter Glut4 that is retained intracellularly until insulin induces its recruitment to the plasma membrane. Rabs are evolutionarily conserved small GTPases that control intracellular traffic events from yeast to mammalian cells. In the past few decades, considerable progresses have been made in identifying the route of Glut4, the Rabs involved in controlling it, and more recently the connection between insulin signalling and Glut4 trafficking through Rab activity control.
Collapse
Affiliation(s)
- V Kaddai
- Institut National de la Santé et de la Recherche Médicale INSERM U568 Faculté de Médecine, Université de Nice-Sophia Antipolis, Nice Cedex, France
| | | | | |
Collapse
|
47
|
Henderson DM, Conner SD. A novel AAK1 splice variant functions at multiple steps of the endocytic pathway. Mol Biol Cell 2007; 18:2698-706. [PMID: 17494869 PMCID: PMC1924820 DOI: 10.1091/mbc.e06-09-0831] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphorylation is a critical step in regulating receptor transport through the endocytic pathway. AAK1 is a serine/threonine kinase that is thought to coordinate the recruitment of AP-2 to receptors containing tyrosine-based internalization motifs by phosphorylating the micro2 subunit. Here we have identified a long form of AAK1 (AAK1L) that contains an extended C-terminus that encodes an additional clathrin-binding domain (CBD2) consisting of multiple low-affinity interaction motifs. Protein interaction studies demonstrate that AAK1L CBD2 directly binds clathrin. However, in vitro kinase assays reveal little difference between AAK1 isoforms in their basal or clathrin-stimulated kinase activity toward the AP-2 micro2 subunit. However, overexpression of AAK1L CBD2 impairs transferrin endocytosis, confirming an endocytic role for AAK1. Surprisingly, CBD2 overexpression or AAK1 depletion by RNA interference significantly impairs transferrin recycling from the early/sorting endosome. These observations suggest that AAK1 functions at multiple steps of the endosomal pathway by regulating transferrin internalization and its rapid recycling back to the plasma membrane from early/sorting endosome.
Collapse
Affiliation(s)
- Davin M. Henderson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sean D. Conner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
48
|
Newell-Litwa K, Seong E, Burmeister M, Faundez V. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 2007; 120:531-41. [PMID: 17287392 DOI: 10.1242/jcs.03365] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicles selectively exchange lipids, membrane proteins and luminal contents between organelles along the exocytic and endocytic routes. The repertoire of membrane proteins present in these vesicles is crucial for their targeting and function. Vesicle composition is determined at the time of their biogenesis by cytosolic coats. The heterotetrameric protein adaptor protein complex 3 (AP-3), a coat component, participates in the generation of a diverse group of secretory organelles and lysosome-related organelles. Recent work has shed light on the mechanisms that regulate AP-3 and the trafficking pathways controlled by this adaptor. Phenotypic analysis of organisms carrying genetic deficiencies in the AP-3 pathway highlight its role regulating the targeting of lysosomal, melanosomal and synaptic vesicle-specific membrane proteins. Synaptic vesicles from AP-3-deficient mice possess altered levels of neurotransmitter and ion transporters, molecules that ultimately define the type and amount of neurotransmitter stored in these vesicles. These findings reveal a complex picture of how AP-3 functions in multiple tissues, including neuronal tissue, and expose potential links between endocytic sorting mechanisms and the pathogenesis of psychiatric disorders such as schizophrenia.
Collapse
|
49
|
Korobko EV, Kiselev SL, Korobko IV. Dimerization properties of Rabaptin-5 and its isoforms. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:1307-1311. [PMID: 17223781 DOI: 10.1134/s0006297906120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rabaptin-5 plays an important role in intracellular membrane traffic acting as an effector molecule of small GTPases Rab5 and Rab4. It was previously demonstrated that Rabaptin-5 exists as a part of a large protein complex in vivo and is able to form dimers in vitro. Data of X-ray structural analysis suggest that dimerization of Rabaptin-5 is an important feature required for its interaction with Rab5 GTPase. Recently several isoforms of Rabaptin-5 characterized by various deletions in the polypeptide chains have been identified. These isoforms might exhibit functional properties that differ from those of Rabaptin-5. In this study, we have investigated dimerization properties of delta and gamma isoforms of Rabaptin-5. In addition, we have provided the first direct evidence for Rabaptin-5 dimerization in cells.
Collapse
Affiliation(s)
- E V Korobko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | |
Collapse
|
50
|
Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7:568-79. [PMID: 16936697 DOI: 10.1038/nrm1985] [Citation(s) in RCA: 489] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|