1
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. Mol Biol Cell 2025; 36:ar28. [PMID: 39841544 PMCID: PMC11974964 DOI: 10.1091/mbc.e24-07-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The yeast Saccharomyces cerevisiae buds at sites predetermined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a predetermined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
2
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610423. [PMID: 39257763 PMCID: PMC11383998 DOI: 10.1101/2024.08.29.610423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The yeast Saccharomyces cerevisiae buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods 2022; 11:foods11213496. [DOI: 10.3390/foods11213496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Bread was supplemented with magnesium through an addition of yeasts subjected to the effect of PEF at optimised parameters to obtain the maximum bioaccumulation of magnesium in cells. Bread produced with the use of yeasts supplemented with magnesium by means of PEF was characterised by its highest content, at 39.3 mg/100 g, which was higher by 50% and 24%, respectively, compared to the control bread sample with an admixture of yeasts cultured without any addition of magnesium and with no PEF treatment and to the control bread sample with an admixture of yeasts cultured with an addition of magnesium but no PEF treatment. The addition of yeasts supplemented with magnesium using PEF in bread production did not cause any statistically significant changes in the chemical composition of any of the analysed samples. However, statistically significant changes were noted in the technological properties of breads produced with an admixture of yeasts supplemented with magnesium by means of PEF treatment. An increase of moisture to 54.03 ± 0.29% led to a reduction of the total baking loss. No statistically significant differences were noted in the bread volume in samples K1, K2, and P, varying from 239 to 269 cm3/100 g.
Collapse
|
4
|
ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci 2020; 78:1689-1708. [PMID: 32734583 PMCID: PMC7904734 DOI: 10.1007/s00018-020-03604-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.
Collapse
|
5
|
Gerien KS, Zhang S, Russell AC, Zhu YH, Purde V, Wu JQ. Roles of Mso1 and the SM protein Sec1 in efficient vesicle fusion during fission yeast cytokinesis. Mol Biol Cell 2020; 31:1570-1583. [PMID: 32432970 PMCID: PMC7521796 DOI: 10.1091/mbc.e20-01-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.
Collapse
Affiliation(s)
- Kenneth S Gerien
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Alexandra C Russell
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Vedud Purde
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
6
|
Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie 2019; 163:117-127. [PMID: 31194995 DOI: 10.1016/j.biochi.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is one of the main mechanisms by which signals are transmitted in eukaryotic cells, and it plays a crucial regulatory role in almost all cellular processes. In yeast, more than half of the proteins are phosphorylated in at least one site, and over 20,000 phosphopeptides have been experimentally verified. However, the functional consequences of these phosphorylation events for most of the identified phosphosites are unknown. A family of protein interaction domains selectively recognises phosphorylated motifs to recruit regulatory proteins and activate signalling pathways. Nine classes of dedicated modules are coded by the yeast genome: 14-3-3, FHA, WD40, BRCT, WW, PBD, and SH2. The recognition specificity relies on a few residues on the target protein and has coevolved with kinase specificity. In the present study, we review the current knowledge concerning yeast phospho-binding domains and their networks. We emphasise the relevance of both positive and negative amino acid selection to orchestrate the highly regulated outcomes of inter- and intra-molecular interactions. Finally, we hypothesise that only a small fraction of yeast phosphorylation events leads to the creation of a docking site on the target molecule, while many have a direct effect on the protein or, as has been proposed, have no function at all.
Collapse
|
7
|
Meurer M, Chevyreva V, Cerulus B, Knop M. The regulatableMAL32promoter inSaccharomyces cerevisiae: characteristics and tools to facilitate its use. Yeast 2016; 34:39-49. [DOI: 10.1002/yea.3214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/01/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg; University of Heidelberg; Im Neuenheimer Feld 282 69120 Heidelberg Germany
| | - Veronika Chevyreva
- Zentrum für Molekulare Biologie der Universität Heidelberg; University of Heidelberg; Im Neuenheimer Feld 282 69120 Heidelberg Germany
| | - Bram Cerulus
- KU Leuven Department Microbiële en Moleculaire Systemen; CMPG Laboratory of Genetics and Genomics; Gaston Geenslaan 1 3001 Leuven Belgium
- VIB Laboratory of Systems Biology; Gaston Geenslaan 1 3001 Leuven Belgium
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg; University of Heidelberg; Im Neuenheimer Feld 282 69120 Heidelberg Germany
- Deutsches Krebsforschungszentrum (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
| |
Collapse
|
8
|
Weber-Boyvat M, Chernov KG, Aro N, Wohlfahrt G, Olkkonen VM, Jäntti J. The Sec1/Munc18 Protein Groove Plays a Conserved Role in Interaction with Sec9p/SNAP-25. Traffic 2015; 17:131-53. [PMID: 26572066 DOI: 10.1111/tra.12349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
The Sec1/Munc18 (SM) proteins constitute a conserved family with essential functions in SNARE-mediated membrane fusion. Recently, a new protein-protein interaction site in Sec1p, designated the groove, was proposed. Here, we show that a sec1 groove mutant yeast strain, sec1(w24), displays temperature-sensitive growth and secretion defects. The yeast Sec1p and mammalian Munc18-1 grooves were shown to play an important role in the interaction with the SNAREs Sec9p and SNAP-25b, respectively. Incubation of SNAP-25b with the Munc18-1 groove mutant resulted in a lag in the kinetics of SNARE complex assembly in vitro when compared with wild-type Munc18-1. The SNARE regulator SRO7 was identified as a multicopy suppressor of sec1(w24) groove mutant and an intact Sec1p groove was required for the plasma membrane targeting of Sro7p-SNARE complexes. Simultaneous inactivation of Sec1p groove and SRO7 resulted in reduced levels of exocytic SNARE complexes. Our results identify the groove as a conserved interaction surface in SM proteins. The results indicate that this structural element is important for interactions with Sec9p/SNAP-25 and participates, in concert with Sro7p, in the initial steps of SNARE complex assembly.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Konstantin G Chernov
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Nina Aro
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,VTT Technical Research Centre of Finland, Tietotie 2, FIN 02044 VTT, Espoo, Finland
| | - Gerd Wohlfahrt
- Computer-Aided Drug Design, Orion Pharma, P.O. Box 65, 02101, Espoo, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, FI-00290, Helsinki, Finland
| | - Jussi Jäntti
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,VTT Technical Research Centre of Finland, Tietotie 2, FIN 02044 VTT, Espoo, Finland
| |
Collapse
|
9
|
Saxena RK, Tripathi P, Rawat G. Pandemism of swine flu and its prospective drug therapy. Eur J Clin Microbiol Infect Dis 2012; 31:3265-79. [PMID: 22895890 DOI: 10.1007/s10096-012-1716-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Swine flu is a respiratory disease caused by influenza A H1N1 virus. The current pandemic of swine flu is most probably due to a mutation-more specifically, a re-assortment of four known strains of influenza A virus subtype H1N1. Antigenic variation of influenza viruses while circulating in the population is an important factor leading to difficulties in controlling influenza by vaccination. Due to the global effect of swine flu and its effect on humans, extensive investigations are being undertaken. In this context, Tamiflu is the only available drug used in the prophylaxis of this disease and is made from the compound shikimic acid. Due to the sudden increase in the demand of shikimic acid, its price has increased greatly. Thus, it is necessary to find an alternative approach for the treatment of swine flu. This review presents the overall information of swine flu, beginning from its emergence to the prevention and treatment of the disease, with a major emphasis on the alternative approach (bacterial fermentation process) for the treatment of swine flu. The alternative approach for the treatment of swine flu includes the production of shikimic acid from a fermentation process and it can be produced in large quantities without any time limitations.
Collapse
Affiliation(s)
- R K Saxena
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | | | | |
Collapse
|
10
|
Weber-Boyvat M, Zhao H, Aro N, Yuan Q, Chernov K, Peränen J, Lappalainen P, Jäntti J. A conserved regulatory mode in exocytic membrane fusion revealed by Mso1p membrane interactions. Mol Biol Cell 2012. [PMID: 23197474 PMCID: PMC3564535 DOI: 10.1091/mbc.e12-05-0415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion. We identify two membrane-binding sites on Mso1p. The N-terminal region inserts into the lipid bilayer and appears to interact with the plasma membrane, whereas the C-terminal region of the protein binds phospholipids mainly through electrostatic interactions and may associate with secretory vesicles. The Mso1p membrane interactions are essential for correct subcellular localization of Mso1p-Sec1p complexes and for membrane fusion in Saccharomyces cerevisiae. These characteristics are conserved in the phosphotyrosine-binding (PTB) domain of β-amyloid precursor protein-binding Mint1, the mammalian homologue of Mso1p. Both Mint1 PTB domain and Mso1p induce vesicle aggregation/clustering in vitro, supporting a role in a membrane-associated process. The results identify Mso1p as a novel lipid-interacting protein in the SNARE complex assembly machinery. Furthermore, our data suggest that a general mode of interaction, consisting of a lipid-binding protein, a Rab family GTPase, and a Sec1/Munc18 family protein, is important in all SNARE-mediated membrane fusion events.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Cell and Molecular Biology Program, Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lobingier BT, Merz AJ. Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol Biol Cell 2012; 23:4611-22. [PMID: 23051737 PMCID: PMC3510022 DOI: 10.1091/mbc.e12-05-0343] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vps33, a member of the Sec1/Munc18 family of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) chaperones, is a subunit of the homotypic fusion and protein sorting and class C core vacuole/endosome tethering complexes and essential for endolysosomal transport. In this study, Vps33 interactions with SNARE proteins are investigated using genetic and biochemical approaches. Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | |
Collapse
|
12
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
13
|
Weber-Boyvat M, Aro N, Chernov KG, Nyman T, Jäntti J. Sec1p and Mso1p C-terminal tails cooperate with the SNAREs and Sec4p in polarized exocytosis. Mol Biol Cell 2010; 22:230-44. [PMID: 21119007 PMCID: PMC3020918 DOI: 10.1091/mbc.e10-07-0592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is shown that Sec1p C-terminal tail is needed for proper Sec1p-SNARE complex interaction. Furthermore, evidence is provided that the Mso1p C terminus collaborates with the GTP-bound form of Sec4p in the bud. These results reveal a role for the Sec1p C-terminal tail in SNARE complex binding and suggest Mso1p as an effector for Sec4p. The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Cell and Molecular Biology Program Research Program in Structural Biology and Biophysics, Institute of Biotechnology, FI-0001 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
14
|
Functional analysis of phosphorylation on Saccharomyces cerevisiae syntaxin 1 homologues Sso1p and Sso2p. PLoS One 2010; 5:e13323. [PMID: 20948969 PMCID: PMC2952630 DOI: 10.1371/journal.pone.0013323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Saccharomyces cerevisiae syntaxin1 homologues Sso1p and Sso2p perform an essential function in membrane fusion in exocytosis. While deletion of either SSO1 or SSO2 causes no obvious phenotype in vegetatively grown cells, deletion of both genes is lethal. In sporulating diploid S. cerevisiae cells only Sso1p, but not Sso2p, is needed for membrane fusion during prospore membrane formation. Mass spectrometry and in vivo labeling data suggest that serines 23, 24, and 79 in Sso1p and serines 31 and 34 in Sso2p can be phosphorylated in vivo. Here we set out to assess the contribution of phosphorylation on Sso protein in vivo function. PRINCIPAL FINDINGS Different mutant versions of SSO1 and SSO2 were generated to target the phosphorylation sites in Sso1p and Sso2p. Basal or overexpression of phospho-mimicking or putative non-phosphorylated Sso1p or Sso2p mutants resulted in no obvious growth phenotype. However, S79A and S79E mutations caused a mild defect in the ability of Sso1p to complement the temperature-sensitive growth phenotype of sso2-1 sso1Δ cells. Combination of all mutations did not additionally compromise Sso1p in vivo function. When compared to the wild type SSO1 and SSO2, the phosphoamino acid mutants displayed similar genetic interactions with late acting sec mutants. Furthermore, diploid cells expressing only the mutant versions of Sso1p had no detectable sporulation defects. In addition to sporulation, also pseudohyphal and invasive growth modes are regulated by the availability of nutrients. In contrast to sporulating diploid cells, deletion of SSO1 or SSO2, or expression of the phospho-mutant versions of SSO1 or SSO2 as the sole copies of SSO genes caused no defects in haploid or diploid pseudohyphal and invasive growth. CONCLUSIONS The identified phosphorylation sites do not significantly contribute to the in vivo functionality of Sso1p and Sso2p in S. cerevisiae.
Collapse
|
15
|
Weber M, Chernov K, Turakainen H, Wohlfahrt G, Pajunen M, Savilahti H, Jäntti J. Mso1p regulates membrane fusion through interactions with the putative N-peptide-binding area in Sec1p domain 1. Mol Biol Cell 2010; 21:1362-74. [PMID: 20181830 PMCID: PMC2854094 DOI: 10.1091/mbc.e09-07-0546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion. Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p–Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.
Collapse
Affiliation(s)
- Marion Weber
- Research Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 2009; 122:3015-24. [PMID: 19692588 DOI: 10.1242/jcs.034561] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
When migrating away from a primary tumour, cancer cells interact with and remodel the extracellular matrix (ECM). Matrix metalloproteinases (MMPs), and in particular the transmembrane MT1-MMP (also known as MMP-14), are key enzymes in tumour-cell invasion. Results from recent in vitro studies highlight that MT1-MMP is implicated both in the breaching of basement membranes by tumour cells and in cell invasion through interstitial type-I collagen tissues. Remarkably, MT1-MMP accumulates at invadopodia, which are specialized ECM-degrading membrane protrusions of invasive cells. Here we review current knowledge about MT1-MMP trafficking and its importance for the regulation of protease activity at invadopodia. In invasive cells, endocytosis of MT1-MMP by clathrin- and caveolae-dependent pathways can be counteracted by several mechanisms, which leads to protease stabilization at the cell surface and increased pericellular degradation of the matrix. Furthermore, the recent identification of cellular components that control delivery of MT1-MMP to invadopodia brings new insight into mechanisms of cancer-cell invasion and reveals potential pharmacological targets.
Collapse
Affiliation(s)
- Renaud Poincloux
- CNRS, UMR144, Membrane and Cytoskeleton Dynamics, and Institut Curie, Paris, France
| | | | | |
Collapse
|
17
|
Swennen D, Beckerich JM. Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 2007; 7:219. [PMID: 17997821 PMCID: PMC2241642 DOI: 10.1186/1471-2148-7-219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 11/12/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. RESULTS We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. CONCLUSION These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae.
Collapse
Affiliation(s)
- Dominique Swennen
- Laboratoire de Microbiologie et Génétique Moléculaire INRA-CNRS-AgroParisTech UMR 1238 CBAI BP01 F-78850 Thiverval Grignon, France.
| | | |
Collapse
|
18
|
Suda Y, Nakanishi H, Mathieson EM, Neiman AM. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:2009-17. [PMID: 17905927 PMCID: PMC2168413 DOI: 10.1128/ec.00238-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
19
|
Liu S, Wilson KA, Rice-Stitt T, Neiman AM, McNew JA. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Traffic 2007; 8:1630-43. [PMID: 17714435 DOI: 10.1111/j.1600-0854.2007.00628.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.
Collapse
Affiliation(s)
- Song Liu
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
20
|
Morishita M, Mendonsa R, Wright J, Engebrecht J. Snc1p v-SNARE Transport to the Prospore Membrane During Yeast Sporulation is Dependent on Endosomal Retrieval Pathways. Traffic 2007; 8:1231-45. [PMID: 17645731 DOI: 10.1111/j.1600-0854.2007.00606.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vesicular traffic is essential for sporulation in Saccharomyces cerevisiae. The Golgi-associated retrograde protein (GARP) tethering complex is required for retrograde traffic from both the early and late endosomes to the Golgi. Analyses of GARP complex mutants in sporulation reveal defects in meiotic progression and spore formation. In contrast, inactivation of the retromer complex, which mediates vesicle budding and cargo selection from the late endosome, or Snx4p, which is involved in retrieval of proteins from the early endosome, has little effect on sporulation. A retromer GARP double mutant is defective in the formation of the prospore membrane (PSM) that surrounds the haploid nuclei. In the retromer GARP double mutant, PSM precursor vesicles carrying the cargo, Dtr1p, are transported to the spindle pole body (SPB), where PSM formation is initiated. However, the v-SNARE Snc1p is not transported to the SPB in the double mutant, suggesting that the defect in PSM formation is because of the failure to retrieve Snc1p, and perhaps other proteins, from the endosomal pathway. Taken together, these results indicate that retrograde trafficking from the endosome is essential for sporulation by retrieving molecules important for PSM and spore wall formation.
Collapse
Affiliation(s)
- Masayo Morishita
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Ioanoviciu A, Yukl ET, Moënne-Loccoz P, Ortiz de Montellano PR. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry 2007; 46:4250-60. [PMID: 17371046 PMCID: PMC2518089 DOI: 10.1021/bi602422p] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis can exist in the actively growing state of the overt disease or in a latent quiescent state that can be induced, among other things, by anaerobiosis. Eradication of the latent state is particularly difficult with the available drugs and requires prolonged treatment. DevS is a member of the DevS-DevR two-component regulatory system that is thought to mediate the cellular response to anaerobiosis. Here we report the cloning, expression, and initial characterization of a truncated version of DevS (DevS642) containing only the N-terminal GAF sensor domain (GAF-A) and of the full-length protein DevS. The DevS truncated construct quantitatively binds heme in a 1:1 stoichiometry, and the complex of the protein with ferrous heme reversibly binds O2, NO, and CO. UV-vis and resonance Raman spectroscopy of the wild-type protein and the H149A mutant confirm that His149 is the proximal ligand to the heme iron atom. While the heme-CO complex is present as two conformers in the GAF-A domain, a single set of [Fe-C-O] vibrations is observed with the full-length protein, suggesting that interactions between domains within DevS influence the distal pocket environment of the heme in the GAF-A domain.
Collapse
Affiliation(s)
- Alexandra Ioanoviciu
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Erik T. Yukl
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Pierre Moënne-Loccoz
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
22
|
Maier P, Rathfelder N, Finkbeiner MG, Taxis C, Mazza M, Panse SL, Haguenauer-Tsapis R, Knop M. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J 2007; 26:1843-52. [PMID: 17347652 PMCID: PMC1847655 DOI: 10.1038/sj.emboj.7601621] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/26/2007] [Indexed: 01/21/2023] Open
Abstract
Intracellular budding is a developmentally regulated type of cell division common to many fungi and protists. In Saccaromyces cerevisiae, intracellular budding requires the de novo assembly of membranes, the prospore membranes (PSMs) and occurs during spore formation in meiosis. Ssp1p is a sporulation-specific protein that has previously been shown to localize to secretory vesicles and to recruit the leading edge protein coat (LEP coat) proteins to the opening of the PSM. Here, we show that Ssp1p is a multidomain protein with distinct domains important for PI(4,5)P(2) binding, binding to secretory vesicles and inhibition of vesicle fusion, interaction with LEP coat components and that it is subject to sumoylation and degradation. We found non-essential roles for Ssp1p on the level of vesicle transport and an essential function of Ssp1p to regulate the opening of the PSM. Together, our results indicate that Ssp1p has a domain architecture that resembles to some extent the septin class of proteins, and that the regulated removal of Ssp1p from the PSM is the major step underlying cytokinesis in yeast sporulation.
Collapse
Affiliation(s)
- Peter Maier
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | - Christof Taxis
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | | | - Michael Knop
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
- EMBL, Cell Biology and Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387631; Fax: +49 6221 387512; E-mail:
| |
Collapse
|
23
|
Taxis C, Maeder C, Reber S, Rathfelder N, Miura K, Greger K, Stelzer EHK, Knop M. Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic 2007; 7:1628-42. [PMID: 17118118 DOI: 10.1111/j.1600-0854.2006.00496.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.
Collapse
Affiliation(s)
- Christof Taxis
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakanishi H, Suda Y, Neiman AM. Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. J Cell Sci 2007; 120:908-16. [PMID: 17298976 DOI: 10.1242/jcs.03405] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are created within a single mother cell. During this process, the prospore membrane is generated de novo on the spindle pole body, elongates along the nuclear envelope and engulfs the nucleus. By screening previously identified sporulation-defective mutants, we identified additional genes required for prospore membrane formation. Deletion of either ERV14, which encodes a COPII cargo receptor, or the meiotically induced SMA2 gene resulted in misshapen prospore membranes. Sma2p is a predicted integral membrane that localized to the prospore membrane in wild-type cells but was retained in the ER in erv14 cells, suggesting that the prospore membrane morphology defect of erv14 cells is due to mislocalization of Sma2p. Overexpression of the ERV14 paralog ERV15 largely suppressed the sporulation defect in erv14 cells. Although deletion of ERV15 alone had no phenotype, erv14 erv15 double mutants displayed a complete block of prospore membrane formation. Plasma membrane proteins, including the t-SNARE Sso1p, accumulated in the ER upon transfer of the double mutant cells to sporulation medium. These results reveal a developmentally regulated change in the requirements for ER export in S. cerevisiae.
Collapse
Affiliation(s)
- Hideki Nakanishi
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, SUNY Stony Brook, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
25
|
Rogelj B, Mitchell JC, Miller CCJ, McLoughlin DM. The X11/Mint family of adaptor proteins. BRAIN RESEARCH REVIEWS 2006; 52:305-15. [PMID: 16764936 DOI: 10.1016/j.brainresrev.2006.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/27/2006] [Accepted: 04/16/2006] [Indexed: 12/25/2022]
Abstract
The X11 protein family are multidomain proteins composed of a conserved PTB domain and two C-terminal PDZ domains. They are involved in formation of multiprotein complexes and two of the family members, X11alpha and X11beta, are expressed primarily in neurones. Not much is known about the principal function of X11s, but through interactions with other neuronal proteins, they are believed to be involved in regulating neuronal signaling, trafficking and plasticity. Furthermore, they have been shown to modulate processing of APP and accumulation of Abeta, making them potential therapeutic targets for Alzheimer's disease. This article reviews the known interactions of the different X11s and their involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Boris Rogelj
- King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | | | | | | |
Collapse
|
26
|
Gordon O, Taxis C, Keller PJ, Benjak A, Stelzer EHK, Simchen G, Knop M. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO J 2006; 25:3856-68. [PMID: 16888627 PMCID: PMC1553201 DOI: 10.1038/sj.emboj.7601254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/03/2006] [Indexed: 12/30/2022] Open
Abstract
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.
Collapse
Affiliation(s)
- Oren Gordon
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Nakanishi H, Morishita M, Schwartz CL, Coluccio A, Engebrecht J, Neiman AM. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J Cell Sci 2006; 119:1406-15. [PMID: 16554438 DOI: 10.1242/jcs.02841] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae requires the de novo formation of prospore membranes. The coalescence of secretory vesicles into a membrane sheet occurs on the cytoplasmic surface of the spindle pole body. Spo14p, the major yeast phospholipase D, is necessary for prospore membrane formation; however, the specific function of Spo14p in this process has not been elucidated. We report that loss of Spo14p blocks vesicle fusion, leading to the accumulation of prospore membrane precursor vesicles docked on the spindle pole body. A similar phenotype was seen when the t-SNARE Sso1p, or the partially redundant t-SNAREs Sec9p and Spo20p were mutated. Although phosphatidic acid, the product of phospholipase D action, was necessary to recruit Spo20p to the precursor vesicles, independent targeting of Spo20p to the membrane was not sufficient to promote fusion in the absence of SPO14. These results demonstrate a role for phospholipase D in vesicle fusion and suggest that phospholipase D-generated phosphatidic acid plays multiple roles in the fusion process.
Collapse
Affiliation(s)
- Hideki Nakanishi
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, NY 4-5215, USA
| | | | | | | | | | | |
Collapse
|
28
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, Stelzer EHK, Knop M. Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system. J Cell Biol 2005; 171:627-40. [PMID: 16286509 PMCID: PMC2171547 DOI: 10.1083/jcb.200507168] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/19/2005] [Indexed: 12/17/2022] Open
Abstract
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.
Collapse
Affiliation(s)
- Christof Taxis
- The European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|