1
|
Santos PF, Fazendeiro B, Luca FC, Ambrósio AF, Léger H. The NDR/LATS protein kinases in neurobiology: Key regulators of cell proliferation, differentiation and migration in the ocular and central nervous system. Eur J Cell Biol 2023; 102:151333. [PMID: 37327741 DOI: 10.1016/j.ejcb.2023.151333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
Nuclear Dbf2-related (NDR) kinases are a subgroup of evolutionarily conserved AGC protein kinases that regulate various aspects of cell growth and morphogenesis. There are 4 NDR protein kinases in mammals, LATS1, LATS2 and STTK8/NDR1, STK38L/NDR2 protein kinases. LATS1 and 2 are core components of the well-studied Hippo pathway, which play a critical role in the regulation of cell proliferation, differentiation, and cell migration via YAP/TAZ transcription factor. The Hippo pathways play an important role in nervous tissue development and homeostasis, especially with regard to the central nervous system (CNS) and the ocular system. The ocular system is a very complex system generated by the interaction in a very tightly coordinated manner of numerous and diverse developing tissues, such as, but not limited to choroidal and retinal blood vessels, the retinal pigmented epithelium and the retina, a highly polarized neuronal tissue. The retina development and maintenance require precise and coordinated regulation of cell proliferation, cell death, migration, morphogenesis, synaptic connectivity, and balanced homeostasis. This review highlights the emerging roles of NDR1 and NDR2 kinases in the regulation of retinal/neuronal function and homeostasis via a noncanonical branch of the Hippo pathway. We highlight a potential role of NDR1 and NDR2 kinases in regulating neuronal inflammation and as potential therapeutic targets for the treatment of neuronal diseases.
Collapse
Affiliation(s)
- Paulo F Santos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Department of Life Sciences, University Coimbra, CC Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Beatriz Fazendeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Hélène Léger
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
2
|
SIN-like Pathway Kinases Regulate the End of Mitosis in the Methylotrophic Yeast Ogataea polymorpha. Cells 2022; 11:cells11091519. [PMID: 35563825 PMCID: PMC9105162 DOI: 10.3390/cells11091519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.
Collapse
|
3
|
Zhou X, Li W, Liu Y, Amon A. Cross-compartment signal propagation in the mitotic exit network. eLife 2021; 10:e63645. [PMID: 33481703 PMCID: PMC7822594 DOI: 10.7554/elife.63645] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
In budding yeast, the mitotic exit network (MEN), a GTPase signaling cascade, integrates spatial and temporal cues to promote exit from mitosis. This signal integration requires transmission of a signal generated on the cytoplasmic face of spindle pole bodies (SPBs; yeast equivalent of centrosomes) to the nucleolus, where the MEN effector protein Cdc14 resides. Here, we show that the MEN activating signal at SPBs is relayed to Cdc14 in the nucleolus through the dynamic localization of its terminal kinase complex Dbf2-Mob1. Cdc15, the protein kinase that activates Dbf2-Mob1 at SPBs, also regulates its nuclear access. Once in the nucleus, priming phosphorylation of Cfi1/Net1, the nucleolar anchor of Cdc14, by the Polo-like kinase Cdc5 targets Dbf2-Mob1 to the nucleolus. Nucleolar Dbf2-Mob1 then phosphorylates Cfi1/Net1 and Cdc14, activating Cdc14. The kinase-primed transmission of the MEN signal from the cytoplasm to the nucleolus exemplifies how signaling cascades can bridge distant inputs and responses.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Wenxue Li
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Yansheng Liu
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
4
|
Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020; 18:e3000917. [PMID: 33180788 PMCID: PMC7685450 DOI: 10.1371/journal.pbio.3000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/24/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
5
|
Vitulo N, Vezzi A, Galla G, Citterio S, Marino G, Ruperti B, Zermiani M, Albertini E, Valle G, Barcaccia G. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.
Collapse
Affiliation(s)
- Nicola Vitulo
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Alessandro Vezzi
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Giulio Galla
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sandra Citterio
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Giada Marino
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Benedetto Ruperti
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Monica Zermiani
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Emidio Albertini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 06121, Perugia, Italy
| | - Giorgio Valle
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Gianni Barcaccia
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
6
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
7
|
A genetic screen for high copy number suppressors of the synthetic lethality between elg1Δ and srs2Δ in yeast. G3-GENES GENOMES GENETICS 2013; 3:917-26. [PMID: 23704284 PMCID: PMC3656737 DOI: 10.1534/g3.113.005561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1Δ srs2Δ have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1Δ srs2Δ double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1Δ and srs2Δ. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus.
Collapse
|
8
|
Kottom TJ, Limper AH. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology. Yeast 2011; 28:707-19. [PMID: 21905091 DOI: 10.1002/yea.1900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 07/14/2011] [Accepted: 08/04/2011] [Indexed: 11/08/2022] Open
Abstract
Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, 8-24 Stabile, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
9
|
Hergovich A. MOB control: reviewing a conserved family of kinase regulators. Cell Signal 2011; 23:1433-40. [PMID: 21539912 PMCID: PMC3398134 DOI: 10.1016/j.cellsig.2011.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/13/2011] [Indexed: 01/01/2023]
Abstract
The family of Mps One binder (MOB) co-activator proteins is highly conserved from yeast to man. At least two different MOB proteins have been identified in every eukaryote analysed to date. Initially, yeast genetics revealed essential roles for Mob1p and Mob2p in the regulation of mitotic exit and cell morphogenesis. Studies in flies then showed that dMOB1/MATS is a core component of Hippo signalling. Loss of dMOB1 resulted in increased cell proliferation and decreased cell death, suggesting that MOB1 acts as tumour suppressor protein. Recent work focused primarily on mammalian cells has shown how hMOB1 can regulate NDR/LATS kinases, a function that can to be counteracted by hMOB2. Here we summarise and discuss our current knowledge of this emerging protein family, with emphasis on subcellular localisation, protein-protein interactions and biological functions in apoptosis, mitosis, morphogenesis, cell proliferation and centrosome duplication.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
10
|
Caydasi AK, Ibrahim B, Pereira G. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div 2010; 5:28. [PMID: 21143992 PMCID: PMC3004881 DOI: 10.1186/1747-1028-5-28] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/11/2010] [Indexed: 12/15/2022] Open
Abstract
Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.
Collapse
Affiliation(s)
- Ayse K Caydasi
- German Cancer Research Centre, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
11
|
Cdc14-dependent dephosphorylation of a kinetochore protein prior to anaphase in Saccharomyces cerevisiae. Genetics 2010; 186:1487-91. [PMID: 20923974 DOI: 10.1534/genetics.110.123653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The budding yeast Cdc14 phosphatase reverses Cdk1 phosphorylation to promote mitotic exit. Although Cdc14 activity is thought to be restricted to anaphase, we found that dephosphorylation of the Dsn1 kinetochore protein in metaphase requires Cdc14. These data suggest that there is a nonnucleolar pool of active Cdc14 prior to anaphase.
Collapse
|
12
|
Chai CC, Teh EM, Yeong FM. Unrestrained spindle elongation during recovery from spindle checkpoint activation in cdc15-2 cells results in mis-segregation of chromosomes. Mol Biol Cell 2010; 21:2384-98. [PMID: 20505077 PMCID: PMC2903668 DOI: 10.1091/mbc.e09-07-0637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During normal metaphase in Saccharomyces cerevisiae, chromosomes are captured at the kinetochores by microtubules emanating from the spindle pole bodies at opposite poles of the dividing cell. The balance of forces between the cohesins holding the replicated chromosomes together and the pulling force from the microtubules at the kinetochores result in the biorientation of the sister chromatids before chromosome segregation. The absence of kinetochore-microtubule interactions or loss of cohesion between the sister chromatids triggers the spindle checkpoint which arrests cells in metaphase. We report here that an MEN mutant, cdc15-2, though competent in activating the spindle assembly checkpoint when exposed to Noc, mis-segregated chromosomes during recovery from spindle checkpoint activation. cdc15-2 cells arrested in Noc, although their Pds1p levels did not accumulate as well as in wild-type cells. Genetic analysis indicated that Pds1p levels are lower in a mad2Delta cdc15-2 and bub2Delta cdc15-2 double mutants compared with the single mutants. Chromosome mis-segregation in the mutant was due to premature spindle elongation in the presence of unattached chromosomes, likely through loss of proper control on spindle midzone protein Slk19p and kinesin protein, Cin8p. Our data indicate that a slower rate of transition through the cell division cycle can result in an inadequate level of Pds1p accumulation that can compromise recovery from spindle assembly checkpoint activation.
Collapse
Affiliation(s)
- Chuan Chung Chai
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | |
Collapse
|
13
|
DMob4/Phocein regulates synapse formation, axonal transport, and microtubule organization. J Neurosci 2010; 30:5189-203. [PMID: 20392941 DOI: 10.1523/jneurosci.5823-09.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The monopolar spindle-one-binder (Mob) family of kinase-interacting proteins regulate cell cycle and cell morphology, and their dysfunction has been linked to cancer. Models for Mob function are primarily based on studies of Mob1 and Mob2 family members in yeast. In contrast, the function of the highly conserved metazoan Phocein/Mob3 subfamily is unknown. We identified the Drosophila Phocein homolog (DMob4) as a regulator of neurite branching in a genome-wide RNA interference screen for neuronal morphology mutants. To further characterize DMob4, we generated null and hypomorphic alleles and performed in vivo cell biological and physiological analysis. We find that DMob4 plays a prominent role in neural function, regulating axonal transport, membrane excitability, and organization of microtubule networks. DMob4 mutant neuromuscular synapses also show a profound overgrowth of synaptic boutons, similar to known Drosophila endocytotic mutants. DMob4 and human Phocein are >80% identical, and the lethality of DMob4 mutants can be rescued by a human phocein transgene, indicating a conservation of function across evolution. These findings suggest a novel role for Phocein proteins in the regulation of axonal transport, neurite elongation, synapse formation, and microtubule organization.
Collapse
|
14
|
Vizeacoumar FJ, van Dyk N, S Vizeacoumar F, Cheung V, Li J, Sydorskyy Y, Case N, Li Z, Datti A, Nislow C, Raught B, Zhang Z, Frey B, Bloom K, Boone C, Andrews BJ. Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. ACTA ACUST UNITED AC 2010; 188:69-81. [PMID: 20065090 PMCID: PMC2812844 DOI: 10.1083/jcb.200909013] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A combination of yeast genetics, synthetic genetic array analysis, and high-throughput screening reveals that sumoylation of Mcm21p promotes disassembly of the mitotic spindle. We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions.
Collapse
Affiliation(s)
- Franco J Vizeacoumar
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wilmeth LJ, Shrestha S, Montaño G, Rashe J, Shuster CB. Mutual dependence of Mob1 and the chromosomal passenger complex for localization during mitosis. Mol Biol Cell 2010; 21:380-92. [PMID: 19955215 PMCID: PMC2814784 DOI: 10.1091/mbc.e09-06-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/11/2023] Open
Abstract
The spatial and temporal coordination of chromosome segregation with cytokinesis is essential to ensure that each daughter cell receives the correct complement of chromosomal and cytoplasmic material. In yeast, mitotic exit and cytokinesis are coordinated by signaling cascades whose terminal components include a nuclear Dbf2-related family kinase and a noncatalytic subunit, Mps one binding (Mob) 1. There are five human Mob1 isoforms, all of which display redundant localization patterns at the spindle poles and kinetochores in early mitosis, and the spindle midzone during cytokinesis. Mob1 shares similar localization patterns to Polo-like kinase (Plk1) and the chromosomal passenger complex (CPC), and although depletion of Plk1 resulted in a loss of Mob1 from the spindle poles, Mob1 recruitment to kinetochores was unaffected. Conversely, disruption of CPC signaling resulted in a loss of Mob1 from kinetochores without disrupting recruitment to the spindle poles. In Mob1-depleted cells, the relocalization of the CPC and mitotic kinesin-like protein (MKLP) 2 to the spindle midzone was delayed during early anaphase, and as a consequence, the midzone recruitment of MKLP1 also was affected. Together, these results suggest that Mob1 and the other mammalian orthologues of the mitotic exit network regulate mitotic progression by facilitating the timely mobilization of the CPC to the spindle midzone.
Collapse
Affiliation(s)
- Lori Jo Wilmeth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,
| | | | | | | | | |
Collapse
|
16
|
The NDR kinase DBF-2 is involved in regulation of mitosis, conidial development, and glycogen metabolism in Neurospora crassa. EUKARYOTIC CELL 2009; 9:502-13. [PMID: 19966031 DOI: 10.1128/ec.00230-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurospora crassa dbf-2 encodes an NDR (nuclear Dbf2-related) protein kinase, homologous to LATS1, a core component of the Hippo pathway. This pathway plays important roles in restraining cell proliferation and promoting apoptosis in differentiating cells. Here, we demonstrate that DBF-2 is involved in three fundamental processes in a filamentous fungus: cell cycle regulation, glycogen biosynthesis, and conidiation. DBF-2 is predominantly localized to the nucleus, and most (approximately 60%) dbf-2 null mutant nuclei are delayed in mitosis, indicating that DBF-2 activity is required for properly completing the cell cycle. The dbf-2 mutant exhibits reduced basal hyphal extension rates accompanied by a carbon/nitrogen ratio-dependent bursting of hyphal tips, vast glycogen leakage, defects in aerial hypha formation, and impairment of all three asexual conidiation pathways in N. crassa. Our findings also indicate that DBF-2 is essential for sexual reproduction in a filamentous fungus. Defects in other Hippo and glycogen metabolism pathway components (mob-1, ccr-4, mst-1, and gsk-3) share similar phenotypes such as mitotic delay and decreased CDC-2 (cell division cycle 2) protein levels, massive hyphal swellings, hyphal tip bursting, glycogen leakage, and impaired conidiation. We propose that DBF-2 functions as a link between Hippo and glycogen metabolism pathways.
Collapse
|
17
|
Bohnert KA, Chen JS, Clifford DM, Vander Kooi CW, Gould KL. A link between aurora kinase and Clp1/Cdc14 regulation uncovered by the identification of a fission yeast borealin-like protein. Mol Biol Cell 2009; 20:3646-59. [PMID: 19570910 DOI: 10.1091/mbc.e09-04-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe. Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1-Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe.
Collapse
Affiliation(s)
- K Adam Bohnert
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
18
|
González-Novo A, Labrador L, Pablo-Hernando ME, Correa-Bordes J, Sánchez M, Jiménez J, Vázquez de Aldana CR. Dbf2 is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol Microbiol 2009; 72:1364-78. [PMID: 19460099 DOI: 10.1111/j.1365-2958.2009.06729.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterized the DBF2 gene, encoding a protein kinase of the NDR family in Candida albicans, and demonstrate that this gene is essential for cell viability. Conditional mutants were constructed by using the MET3 promoter to analyse the phenotype of cells lacking this kinase. The absence of Dbf2 resulted in cells arrested as large-budded pairs that failed to contract the actomyosin ring, a function similar to that described for its Saccharomyces cerevisiae orthologue. In addition to its role in cytokinesis, Dbf2 regulates mitotic spindle organization and nuclear segregation as Dbf2-depleted cells have abnormal microtubules and severe defects in nuclear migration to the daughter cell, which results in a cell cycle block during mitosis. Taken together, these results imply that Dbf2 performs several functions during exit from mitosis and cytokinesis. Consistent with a role in spindle organization, the protein localizes to the mitotic spindle during anaphase, and it interacts physically with tubulin, as indicated by immunoprecipitation experiments. Finally, DBF2 depletion also resulted in impaired true hyphal growth.
Collapse
Affiliation(s)
- Alberto González-Novo
- Dpto. Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Avda. Doctores de la Reina s/n. 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Mohl DA, Huddleston MJ, Collingwood TS, Annan RS, Deshaies RJ. Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. ACTA ACUST UNITED AC 2009; 184:527-39. [PMID: 19221193 PMCID: PMC2654127 DOI: 10.1083/jcb.200812022] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exit from mitosis is characterized by a precipitous decline in cyclin-dependent kinase (Cdk) activity, dissolution of mitotic structures, and cytokinesis. In Saccharomyces cerevisiae, mitotic exit is driven by a protein phosphatase, Cdc14, which is in part responsible for counteracting Cdk activity. Throughout interphase, Cdc14 is sequestered in the nucleolus, but successful anaphase activates the mitotic exit network (MEN), which triggers dispersal of Cdc14 throughout the cell by a mechanism that has remained unknown. In this study, we show that a MEN component, protein kinase Dbf2–Mob1, promotes transfer of Cdc14 to the cytoplasm and consequent exit from mitosis by direct phosphorylation of Cdc14 on serine and threonine residues adjacent to a nuclear localization signal (NLS), thereby abrogating its NLS activity. Our results define a mechanism by which the MEN promotes exit from mitosis.
Collapse
Affiliation(s)
- Dane A Mohl
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
20
|
Jwa M, Kim JH, Chan CSM. Regulation of Sli15/INCENP, kinetochore, and Cdc14 phosphatase functions by the ribosome biogenesis protein Utp7. ACTA ACUST UNITED AC 2008; 182:1099-111. [PMID: 18794331 PMCID: PMC2542472 DOI: 10.1083/jcb.200802085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sli15–Ipl1–Bir1 chromosomal passenger complex is essential for proper kinetochore–microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation. Utp7 associates with and regulates the localization of Sli15 and Cdc14. Before anaphase onset, it prevents the premature nucleolar release of Cdc14 and the premature concentration of Sli15 on the spindle. Furthermore, Utp7 can regulate the localization and phosphorylation status of Sli15 independent of its effect on Cdc14 function. Thus, Utp7 is a multifunctional protein that plays essential roles in the vital cellular processes of ribosome biogenesis, chromosome segregation, and cell cycle control.
Collapse
Affiliation(s)
- Miri Jwa
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
21
|
Abstract
Although there is no shortage of potential targets for cancer therapeutics, we know of only a handful of molecules that are differentially expressed in cancer and intersect multiple pathways required for tumour maintenance. Survivin embodies these properties, and orchestrates integrated cellular networks that are essential for tumour cell proliferation and viability. Pursuing the nodal functions of survivin in cancer might lead to the development of global pathway inhibitors with unique therapeutic potential.
Collapse
Affiliation(s)
- Dario C Altieri
- Department of Cancer Biology and the Cancer Center, Lazare Research Building 428, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
22
|
Vitulo N, Vezzi A, Galla G, Citterio S, Marino G, Ruperti B, Zermiani M, Albertini E, Valle G, Barcaccia G. Characterization and evolution of the cell cycle-associated mob domain-containing proteins in eukaryotes. Evol Bioinform Online 2007; 3:121-58. [PMID: 19468312 PMCID: PMC2684140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.
Collapse
Affiliation(s)
- Nicola Vitulo
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Alessandro Vezzi
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Giulio Galla
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Sandra Citterio
- Dipartimento di Scienze dell’Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Giada Marino
- Dipartimento di Scienze dell’Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Benedetto Ruperti
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Monica Zermiani
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Emidio Albertini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 06121, Perugia, Italy
| | - Giorgio Valle
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Gianni Barcaccia
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell’Università 16, 35020, Legnaro, Padova, Italy.,Correspondence: Gianni Barcaccia, Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova, Campus of Agripolis, Viale dell’Università 16, 35020, Legnaro, Padova, Italy. Tel: +39 049 827 2814; Fax: +39 049 827 2839;
| |
Collapse
|
23
|
Sandall S, Severin F, McLeod IX, Yates JR, Oegema K, Hyman A, Desai A. A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 2007; 127:1179-91. [PMID: 17174893 PMCID: PMC2265205 DOI: 10.1016/j.cell.2006.09.049] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/13/2006] [Accepted: 09/30/2006] [Indexed: 12/20/2022]
Abstract
Proper connections between centromeres and spindle microtubules are of critical importance in ensuring accurate segregation of the genome during cell division. Using an in vitro approach based on the sequence-specific budding yeast centromere, we identified a complex of the chromosomal passenger proteins Bir1 and Sli15 (Survivin and INCENP) that links centromeres to microtubules. This linkage does not require Ipl1/Aurora B kinase, whose targeting and activation are controlled by Bir1 and Sli15. Ipl1 is the tension-dependent regulator of centromere-microtubule interactions that ensures chromosome biorientation on the spindle. Elimination of the linkage between centromeres and microtubules mediated by Bir1-Sli15 phenocopies mutations that selectively cripple Ipl1 kinase activation. These findings lead us to propose that the Bir1-Sli15-mediated linkage, which bridges centromeres and microtubules and includes the Aurora kinase-activating domain of INCENP family proteins, is the tension sensor that relays the mechanical state of centromere-microtubule attachments into local control of Ipl1 kinase activity.
Collapse
Affiliation(s)
- Sharsti Sandall
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, CMM-E Room 3052, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hergovich A, Stegert MR, Schmitz D, Hemmings BA. NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 2006; 7:253-64. [PMID: 16607288 DOI: 10.1038/nrm1891] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential components of pathways that control important cellular processes, such as morphological changes, mitotic exit, cytokinesis, cell proliferation and apoptosis. Recent progress has shed light on the mechanisms that underlie the regulation and function of the NDR family members. Combined data from yeast, worms, flies, mice and human cells now highlight the conserved and important roles of the different NDR kinases in distinct cellular processes.
Collapse
Affiliation(s)
- Alexander Hergovich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|