1
|
The Oocyte-Specific Linker Histone H1FOO Is Not Essential for Mouse Oogenesis and Fertility. Cells 2022; 11:cells11223706. [PMID: 36429134 PMCID: PMC9688445 DOI: 10.3390/cells11223706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a highly conserved specialized cell division process that generates haploid gametes. Many of its events are associated with dynamically regulated chromosomal structures and chromatin remodeling, which are mainly modulated by histone modifications. Histone H1 is a linker histone essential for packing the nucleosome into higher-order structures, and H1FOO (H1 histone family, member O, oocyte-specific) is a H1 variant whose expression pattern is restricted to growing oocytes and zygotes. To further explore the function of H1FOO, we generated mice lacking the H1foo gene by the CRISPR/Cas9 technique. Herein, we combine mouse genetics and cellular studies to show that H1foo-null mutants have no overt phenotype, with both males and females being fertile and presenting no gross defects in meiosis progression nor in synapsis dynamics. Accordingly, the histological sections show a normal development of gametes in both male and female mice. Considering the important role of oocyte constituents in enhancing mammalian somatic cell reprogramming, we analyzed iPSCs generation in H1foo mutant MEFs and observed no differences in the absence of H1FOO. Taken all together, in this work we present the first in vivo evidence of H1FOO dispensability for mouse fertility, clarifying the debate in the field surrounding its essentiality in meiosis.
Collapse
|
2
|
Portillo-Ledesma S, Wagley M, Schlick T. Chromatin transitions triggered by LH density as epigenetic regulators of the genome. Nucleic Acids Res 2022; 50:10328-10342. [PMID: 36130289 PMCID: PMC9561278 DOI: 10.1093/nar/gkac757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Motivated by experiments connecting linker histone (LH) deficiency to lymphoma progression and retinal disorders, we study by mesoscale chromatin modeling how LH density (ρ) induces gradual, as well sudden, changes in chromatin architecture and how the process depends on DNA linker length, LH binding dynamics and binding mode, salt concentration, tail modifications, and combinations of ρ and linker DNA length. We show that ρ tightly regulates the overall shape and compaction of the fiber, triggering a transition from an irregular disordered state to a compact and ordered structure. Such a structural transition, resembling B to A compartment transition connected with lymphoma of B cells, appears to occur around ρ = 0.5. The associated mechanism is DNA stem formation by LH binding, which is optimal when the lengths of the DNA linker and LH C-terminal domain are similar. Chromatin internal and external parameters are key regulators, promoting or impeding the transition. The LH density thus emerges as a critical tunable variable in controlling cellular functions through structural transitions of the genome.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Meghna Wagley
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai 200062, China.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, USA.,Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
3
|
Climent-Cantó P, Carbonell A, Tatarski M, Reina O, Bujosa P, Font-Mateu J, Bernués J, Beato M, Azorín F. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res 2020; 48:4147-4160. [PMID: 32103264 PMCID: PMC7192587 DOI: 10.1093/nar/gkaa122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Milos Tatarski
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Sewda A, Agopian AJ, Goldmuntz E, Hakonarson H, Morrow BE, Musfee F, Taylor D, Mitchell LE, on behalf of the Pediatric Cardiac Genomics Consortium. Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects. PLoS One 2020; 15:e0234357. [PMID: 32516339 PMCID: PMC7282656 DOI: 10.1371/journal.pone.0234357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of newborns. Epidemiological studies have identified several genetically-mediated maternal phenotypes (e.g., pregestational diabetes, chronic hypertension) that are associated with the risk of CHDs in offspring. However, the role of the maternal genome in determining CHD risk has not been defined. We present findings from gene-level, genome-wide studies that link CHDs to maternal effect genes as well as to maternal genes related to hypertension and proteostasis. Maternal effect genes, which provide the mRNAs and proteins in the oocyte that guide early embryonic development before zygotic gene activation, have not previously been implicated in CHD risk. Our findings support a role for and suggest new pathways by which the maternal genome may contribute to the development of CHDs in offspring.
Collapse
Affiliation(s)
- Anshuman Sewda
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Elizabeth Goldmuntz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fadi Musfee
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Deanne Taylor
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | | |
Collapse
|
5
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
6
|
He WX, Wu M, Liu Z, Li Z, Wang Y, Zhou J, Yu P, Zhang XJ, Zhou L, Gui JF. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA (NEW YORK, N.Y.) 2018; 24:1738-1748. [PMID: 30185624 PMCID: PMC6239174 DOI: 10.1261/rna.067090.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA metabolism in mammals. Zebrafish possesses two slbps, and slbp1 is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyte-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Δ4-/-) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Δ4-/- embryos. However, homozygous mutant MZslbp1Δ1-/- developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Δ4-/- embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2a, H2b, H3, and H4, all reduced their expression, while histone variant h2afx significantly increased in MZslbp2Δ4-/- embryos at the 256-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Δ4-/- embryos can be partially rescued by overexpression of H2b. The current data indicate that maternal Slbp2 plays a pivotal role in the storage of replication-dependent histone mRNAs and proteins during zebrafish oogenesis.
Collapse
Affiliation(s)
- Wen-Xia He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang K, Smith GW. Maternal control of early embryogenesis in mammals. Reprod Fertil Dev 2017; 27:880-96. [PMID: 25695370 DOI: 10.1071/rd14441] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/10/2015] [Indexed: 12/11/2022] Open
Abstract
Oocyte quality is a critical factor limiting the efficiency of assisted reproductive technologies (ART) and pregnancy success in farm animals and humans. ART success is diminished with increased maternal age, suggesting a close link between poor oocyte quality and ovarian aging. However, the regulation of oocyte quality remains poorly understood. Oocyte quality is functionally linked to ART success because the maternal-to-embryonic transition (MET) is dependent on stored maternal factors, which are accumulated in oocytes during oocyte development and growth. The MET consists of critical developmental processes, including maternal RNA depletion and embryonic genome activation. In recent years, key maternal proteins encoded by maternal-effect genes have been determined, primarily using genetically modified mouse models. These proteins are implicated in various aspects of early embryonic development, including maternal mRNA degradation, epigenetic reprogramming, signal transduction, protein translation and initiation of embryonic genome activation. Species differences exist in the number of cell divisions encompassing the MET and maternal-effect genes controlling this developmental window. Perturbations of maternal control, some of which are associated with ovarian aging, result in decreased oocyte quality.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Kunitomi A, Yuasa S, Sugiyama F, Saito Y, Seki T, Kusumoto D, Kashimura S, Takei M, Tohyama S, Hashimoto H, Egashira T, Tanimoto Y, Mizuno S, Tanaka S, Okuno H, Yamazawa K, Watanabe H, Oda M, Kaneda R, Matsuzaki Y, Nagai T, Okano H, Yagami KI, Tanaka M, Fukuda K. H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:825-833. [PMID: 27237376 PMCID: PMC4912480 DOI: 10.1016/j.stemcr.2016.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) are a hallmark of ideal pluripotent stem cells. Epigenetic reprogramming of induced pluripotent stem cells (iPSCs) has not been fully accomplished. iPSC generation is similar to somatic cell nuclear transfer (SCNT) in oocytes, and this procedure can be used to generate ESCs (SCNT-ESCs), which suggests the contribution of oocyte-specific constituents. Here, we show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 significantly enhanced the efficiency of iPSC generation. H1foo promoted in vitro differentiation characteristics with low heterogeneity in iPSCs. H1foo enhanced the generation of germline-competent chimeric mice from iPSCs in a manner similar to that for ESCs. These findings indicate that H1foo contributes to the generation of higher-quality iPSCs. H1foo enhanced the efficiency of iPSC generation H1foo promoted in vitro differentiation characteristics with low heterogeneity H1foo enhanced the generation of germline-competent chimeric mice
Collapse
Affiliation(s)
- Akira Kunitomi
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Saito
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shin Kashimura
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Saori Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shoma Tanaka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuki Yamazawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Genetics and Genomic Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayumi Oda
- Sakaguchi Laboratory, Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
9
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|
11
|
Pérez-Montero S, Carbonell A, Azorín F. Germline-specific H1 variants: the "sexy" linker histones. Chromosoma 2015; 125:1-13. [PMID: 25921218 DOI: 10.1007/s00412-015-0517-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain. .,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Location of oocyte-specific linker histone in pig ovaries at different developmental stages postpartum. Theriogenology 2015; 83:1203-12. [DOI: 10.1016/j.theriogenology.2014.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/08/2014] [Accepted: 12/27/2014] [Indexed: 11/22/2022]
|
13
|
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 2014; 37:52-9. [PMID: 25328107 DOI: 10.1002/bies.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming.
Collapse
Affiliation(s)
- Peng Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
14
|
Abstract
SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.
Collapse
|
15
|
Pérez-Montero S, Carbonell A, Morán T, Vaquero A, Azorín F. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 2013; 26:578-90. [PMID: 24055651 DOI: 10.1016/j.devcel.2013.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/21/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023]
Abstract
Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
16
|
Abstract
During newt lens regeneration a unique transdifferentiation event occurs. In this process, dorsal iris pigmented epithelial cells transdifferentiate into lens cells. This system should provide a new insight into cellular plasticity in basic and applied research. Recently, a series of approaches to study epigenetic reprogramming during transdifferentiation have been performed. In this review, we introduce the regulation of dynamic regulation of core-histone modifications and the emergence of an oocyte-type linker histone during transdifferentiation. Finally, we show supporting evidence that there are common strategies of reprogramming between newt somatic cell in transdifferentiation and oocytes after somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Nobuyasu Maki
- Institute of Protein Research, Osaka University, Osaka, Japan.
| | | |
Collapse
|
17
|
Awe JP, Byrne JA. Identifying candidate oocyte reprogramming factors using cross-species global transcriptional analysis. Cell Reprogram 2013; 15:126-33. [PMID: 23458164 DOI: 10.1089/cell.2012.0060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is mounting evidence to suggest that the epigenetic reprogramming capacity of the oocyte is superior to that of the current factor-based reprogramming approaches and that some factor-reprogrammed induced pluripotent stem cells (iPSCs) retain a degree of epigenetic memory that can influence differentiation capacity and may be linked to the observed expression of immunogenicity genes in iPSC derivatives. One hypothesis for this differential reprogramming capacity is the "chromatin loosening/enhanced reprogramming" concept, as previously described by John Gurdon and Ian Wilmut, as well as others, which postulates that the oocyte possesses factors that loosen the somatic cell chromatin structure, providing the epigenetic and transcriptional regulatory factors more ready access to repressed genes and thereby significantly increasing epigenetic reprogramming. However, to empirically test this hypothesis a list of candidate oocyte reprogramming factors (CORFs) must be ascertained that are significantly expressed in metaphase II oocytes. Previous studies have focused on intraspecies or cross-species transcriptional analysis of up to two different species of oocytes. In this study, we have identified eight CORFs (ARID2, ASF1A, ASF1B, DPPA3, ING3, MSL3, H1FOO, and KDM6B) based on unbiased global transcriptional analysis of oocytes from three different species (human, rhesus monkey, and mouse) that both demonstrate significant (p<0.05, FC>3) expression in oocytes of all three species and have well-established roles in loosening/opening up chromatin structure. We also identified an additional 15 CORFs that fit within our proposed "chromatin opening/fate transformative" (COFT) model. These CORFs may be able to augment Shinya Yamanaka's previously identified reprogramming factors (OCT4, SOX2, KLF4, and cMYC) and potentially facilitate the removal of epigenetic memory in iPSCs and/or reduce the expression of immunogenicity genes in iPSC derivatives, and may have applications in future personalized pluripotent stem cell based therapeutics.
Collapse
Affiliation(s)
- Jason P Awe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
18
|
Replacement of H1 linker histone during bovine somatic cell nuclear transfer. Theriogenology 2012; 78:1371-80. [PMID: 22898029 DOI: 10.1016/j.theriogenology.2012.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 11/20/2022]
Abstract
Linker histone variants are involved in regulation of chromosome organization and gene transcription; several subtypes are expressed in the maturing oocyte and developing embryo. In Xenopus and mice, the transition between linker histone variants occurred following nuclear transfer, and apparently contributed to donor nuclear reprogramming. To determine whether such linker histone replacement occurred after bovine nuclear transfer, red fluorescent protein (RFP) tagged H1e (somatic linker histone H1e) donor cells and Venus tagged H1foo eggs were created, enucleated eggs were injected with donor cells, and embryos were created by fusion. Using fluorescence microscopy, release of H1e in the donor nucleus, acquisition of H1foo by donor chromosomes, and the H1foo-to-H1e transition were observed in live cells. Linker histone replacement occurred more slowly in bovine than murine embryos. Low levels of diffuse red fluorescence (H1e) in the donor nucleus were detected 5 h after fusion, at which time green fluorescence (H1foo) had incorporated into donor chromosomes. However, complete replacement did not occur until 8 h after fusion. We concluded that the linker histone transition was sufficiently conserved among species, which provided further evidence regarding its important role in nuclear reprogramming.
Collapse
|
19
|
Ooi J, Liu P. Delineating nuclear reprogramming. Protein Cell 2012; 3:329-45. [PMID: 22467264 DOI: 10.1007/s13238-012-2920-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
Nuclear reprogramming is described as a molecular switch, triggered by the conversion of one cell type to another. Several key experiments in the past century have provided insight into the field of nuclear reprogramming. Previously deemed impossible, this research area is now brimming with new findings and developments. In this review, we aim to give a historical perspective on how the notion of nuclear reprogramming was established, describing main experiments that were performed, including (1) somatic cell nuclear transfer, (2) exposure to cell extracts and cell fusion, and (3) transcription factor induced lineage switch. Ultimately, we focus on (4) transcription factor induced pluripotency, as initiated by a landmark discovery in 2006, where the process of converting somatic cells to a pluripotent state was narrowed down to four transcription factors. The conception that somatic cells possess the capacity to revert to an immature status brings about huge clinical implications including personalized therapy, drug screening and disease modeling. Although this technology has potential to revolutionize the medical field, it is still impeded by technical and biological obstacles. This review describes the effervescent changes in this field, addresses bottlenecks hindering its advancement and in conclusion, applies the latest findings to overcome these issues.
Collapse
Affiliation(s)
- Jolene Ooi
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | |
Collapse
|
20
|
Abstract
Mammalian preimplantation development is a process of dedifferentiation from the terminally differentiated eggs to the totipotent blastomeres at the cleavage stage, and then to the pluripotent cells at the blastocyst stage. Maternal factors that accumulate during oogenesis dominate early preimplantation development until the embryonic factors gain control after the activation of the embryonic genome. Recently, a handful of maternal factors that are encoded by the maternal-effect genes have been characterized in genetically modified mouse models. These factors are shown to participate in many aspects of preimplantation development, such as the degradation of maternal macromolecues, epigenetic modification, protein translation, cellular signaling transduction, and cell compaction. Even so, little is known about the interactions between different maternal factors. In this chapter, we have summarized the functions of known maternal factors and hopefully this will lead to a better understanding of the regulation of preimplantation embryogenesis by the maternal regulatory network.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
21
|
Medrzycki M, Zhang Y, McDonald JF, Fan Y. Profiling of linker histone variants in ovarian cancer. FRONT BIOSCI-LANDMRK 2012; 17:396-406. [PMID: 22201751 DOI: 10.2741/3934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H1 linker histones play a key role in facilitating higher order chromatin folding. Emerging evidence suggests that H1 and its multiple variants are important epigenetic factors in modulating chromatin function and gene expression. Ovarian cancer is a devastating disease, ranking the fifth leading cause of all women cancer death due to its poor prognosis and difficulty in early diagnosis. Although epigenetic alterations in ovarian cancers are being appreciated in general, the role of H1 has not been explored. Here, using quantitative RT-PCR assays, we systematically examined the expression of 7 H1 genes in 33 human epithelial ovarian tumors. Whereas the expression of H1.3 was markedly increased, the expression of H10, H1.1, H1.4 and H1x were significantly reduced in malignant adenocarcinomas compared with benign adenomas. Strikingly, ovarian adenocarcinomas and adenomas exhibited characteristic expression patterns, and expression profiling of 7 H1 genes in tumor samples discriminated adenocarcinomas vs. adenomas with high accuracy. These findings indicate that the expression of H1 variants is exquisitely regulated and may serve as potential epigenetic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
22
|
Freedman BS, Miller KE, Heald R. Xenopus egg extracts increase dynamics of histone H1 on sperm chromatin. PLoS One 2010; 5. [PMID: 20927327 PMCID: PMC2947519 DOI: 10.1371/journal.pone.0013111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/03/2010] [Indexed: 01/03/2023] Open
Abstract
Background Linker histone H1 has been studied in vivo and using reconstituted chromatin, but there have been few systematic studies of the effects of the cellular environment on its function. Due to the presence of many other chromatin factors and specific chaperones such as RanBP7/importin beta that regulate histone H1, linker histones likely function differently in vivo than in purified systems. Methodology/Principal Findings We have directly compared H1 binding to sperm nuclei in buffer versus Xenopus egg extract cytoplasm, and monitored the effects of adding nuclear import chaperones. In buffer, RanBP7 decondenses sperm nuclei, while H1 binds tightly to the chromatin and rescues RanBP7-mediated decondensation. H1 binding is reduced in cytoplasm, and H1 exhibits rapid FRAP dynamics in cytoplasm but not in buffer. RanBP7 decreases H1 binding to chromatin in both buffer and extract but does not significantly affect H1 dynamics in either condition. Importin beta has a lesser effect than RanBP7 on sperm chromatin decondensation and H1 binding, while a combination of RanBP7/importin beta is no more effective than RanBP7 alone. In extracts supplemented with RanBP7, H1 localizes to chromosomal foci, which increase after DNA damage. Unlike somatic H1, the embryonic linker histone H1M binds equally well to chromatin in cytoplasm compared to buffer. Amino-globular and carboxyl terminal domains of H1M bind chromatin comparably to the full-length protein in buffer, but are inhibited ∼10-fold in cytoplasm. High levels of H1 or its truncations distort mitotic chromosomes and block their segregation during anaphase. Conclusion/Significance RanBP7 can decondense sperm nuclei and decrease H1 binding, but the rapid dynamics of H1 on chromatin depend on other cytoplasmic factors. Cytoplasm greatly impairs the activity of individual H1 domains, and only the full-length protein can condense chromatin properly. Our findings begin to bridge the gap between purified and in vivo chromatin systems.
Collapse
Affiliation(s)
- Benjamin S. Freedman
- Molecular and Cell Biology Department, University of California, Berkeley, California, United States of America
| | - Kelly E. Miller
- Molecular and Cell Biology Department, University of California, Berkeley, California, United States of America
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Maki N, Suetsugu-Maki R, Sano S, Nakamura K, Nishimura O, Tarui H, Del Rio-Tsonis K, Ohsumi K, Agata K, Tsonis PA. Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 2010; 24:3462-7. [PMID: 20460584 PMCID: PMC2923362 DOI: 10.1096/fj.10-159285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/29/2010] [Indexed: 01/30/2023]
Abstract
The ability to reprogram in vivo a somatic cell after differentiation is quite limited. One of the most impressive examples of such a process is transdifferentiation of pigmented epithelial cells (PECs) to lens cells during lens regeneration in newts. However, very little is known of the molecular events that allow newt cells to transdifferentiate. Histone B4 is an oocyte-type linker histone that replaces the somatic-type linker histone H1 during reprogramming mediated by somatic cell nuclear transfer (SCNT). We found that B4 is expressed and required during transdifferentiation of PECs. Knocking down of B4 decreased proliferation and increased apoptosis, which resulted in considerable smaller lens. Furthermore, B4 knockdown altered gene expression of key genes of lens differentiation and nearly abolished expression of gamma-crystallin. These data are the first to show expression of oocyte-type linker histone in somatic cells and its requirement in newt lens transdifferentiation and suggest that transdifferentiation in newts might share common strategies with reprogramming after SCNT.
Collapse
Affiliation(s)
- Nobuyasu Maki
- Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
George EM, Izard T, Anderson SD, Brown DT. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0). J Biol Chem 2010; 285:20891-6. [PMID: 20444700 PMCID: PMC2898364 DOI: 10.1074/jbc.m110.108639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/04/2010] [Indexed: 11/06/2022] Open
Abstract
The fully organized structure of the eukaryotic nucleosome remains unsolved, in part due to limited information regarding the binding site of the H1 or linker histone. The central globular domain of H1 is believed to interact with the nucleosome core at or near the dyad and to bind at least two strands of DNA. We utilized site-directed mutagenesis and in vivo photobleaching to identify residues that contribute to the binding of the globular domain of the somatic H1 subtype H1c to the nucleosome. As was previously observed for the H1(0) subtype, the binding residues for H1c are clustered on the surface of one face of the domain. Despite considerable structural conservation between the globular domains of these two subtypes, the locations of the binding sites identified for H1c are distinct from those of H1(0). We suggest that the globular domains of these two linker histone subtypes will bind to the nucleosome with distinct orientations that may contribute to higher order chromatin structure heterogeneity or to differences in dynamic interactions with other DNA or chromatin-binding proteins.
Collapse
Affiliation(s)
- Eric M. George
- From the Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505 and
| | - Tina Izard
- the Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Stephen D. Anderson
- From the Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505 and
| | - David T. Brown
- From the Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505 and
| |
Collapse
|
25
|
Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci U S A 2010; 107:5483-8. [PMID: 20212135 DOI: 10.1073/pnas.1000599107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
When transplanted into Xenopus oocytes, the nuclei of mammalian somatic cells are reprogrammed to express stem cell genes such as Oct4, Nanog, and Sox2. We now describe an experimental system in which the pluripotency genes Sox2 and Oct4 are repressed in retinoic acid-treated ES cells but are reprogrammed up to 100% within 24 h by injection of nuclei into the germinal vesicle (GV) of growing Xenopus oocytes. The isolation of GVs in nonaqueous medium allows the reprogramming of individual injected nuclei to be seen in real time. Analysis using fluorescence recovery after photobleaching shows that nuclear transfer is associated with an increase in linker histone mobility. A simultaneous loss of somatic H1 linker histone and incorporation of the oocyte-specific linker histone B4 precede transcriptional reprogramming. The loss of H1 is not required for gene reprogramming. We demonstrate both by antibody injection experiments and by dominant negative interference that the incorporation of B4 linker histone is required for pluripotency gene reactivation during nuclear reprogramming. We suggest that the binding of oocyte-specific B4 linker histone to chromatin is a key primary event in the reprogramming of somatic nuclei transplanted to amphibian oocytes.
Collapse
|
26
|
Abstract
Histone variants and their modification have significant roles in many cellular processes. In this study, we identified and characterized the histone H2A variant h2af1o in fish and revealed its oocyte-specific expression pattern during oogenesis and embryogenesis. Moreover, posttranslational modification of H2af1o was observed that results from phosphorylation during oocyte maturation. To understand the binding dynamics of the novel core histone variant H2af1o in nucleosomes, we cloned ubiquitous gibel carp h2afx as a conventional histone control and investigated the dynamic exchange difference in chromatin by fluorescence recovery after photobleaching. H2af1o has significantly higher mobility in nucleosomes than ubiquitous H2afx. Compared with ubiquitous H2afx, H2af1o has a tightly binding C-terminal and a weakly binding N-terminal. These data indicate that fish oocytes have a novel H2A variant that destabilizes nucleosomes by protruding its N-terminal tail and stabilizes core particles by contracting its C-terminal tail. Our findings suggest that H2af1o may have intrinsic ability to modify chromatin properties during fish oogenesis, oocyte maturation, and early cleavage.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
27
|
Johnson TA, Elbi C, Parekh BS, Hager GL, John S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol Biol Cell 2008; 19:3308-22. [PMID: 18508913 DOI: 10.1091/mbc.e08-02-0123] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Brahma (BRM) and Brahma-related gene 1 (BRG1) are the ATP-dependent catalytic subunits of the SWI/SNF family of chromatin-remodeling complexes. These complexes are involved in essential processes such as cell cycle, growth, differentiation, and cancer. Using imaging approaches in a cell line that harbors tandem repeats of stably integrated copies of the steroid responsive MMTV-LTR (mouse mammary tumor virus-long terminal repeat), we show that BRG1 and BRM are recruited to the MMTV promoter in a hormone-dependent manner. The recruitment of BRG1 and BRM resulted in chromatin remodeling and decondensation of the MMTV repeat as demonstrated by an increase in the restriction enzyme accessibility and in the size of DNA fluorescence in situ hybridization (FISH) signals. This chromatin remodeling event was concomitant with an increased occupancy of RNA polymerase II and transcriptional activation at the MMTV promoter. The expression of ATPase-deficient forms of BRG1 (BRG1-K-R) or BRM (BRM-K-R) inhibited the remodeling of local and higher order MMTV chromatin structure and resulted in the attenuation of transcription. In vivo photobleaching experiments provided direct evidence that BRG1, BRG1-K-R, and BRM chromatin-remodeling complexes have distinct kinetic properties on the MMTV array, and they dynamically associate with and dissociate from MMTV chromatin in a manner dependent on hormone and a functional ATPase domain. Our data provide a kinetic and mechanistic basis for the BRG1 and BRM chromatin-remodeling complexes in regulating gene expression at a steroid hormone inducible promoter.
Collapse
Affiliation(s)
- Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | | | | | | | | |
Collapse
|
28
|
Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis. EUKARYOTIC CELL 2008; 7:560-8. [PMID: 18281601 DOI: 10.1128/ec.00460-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).
Collapse
|
29
|
|
30
|
Brink TC, Sudheer S, Janke D, Jagodzinska J, Jung M, Adjaye J. The origins of human embryonic stem cells: a biological conundrum. Cells Tissues Organs 2007; 188:9-22. [PMID: 18160822 DOI: 10.1159/000112843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human inner cell mass (ICM) cells isolated from in vitro fertilized blastocysts are the progenitor cells used to establish in vitro stable human embryonic stem cells (hESCs) which are pluripotent and self-renew indefinitely. This long-term perpetuation of hESCs in the undifferentiated state is thought to be an in vitro adaptation of the ICM cells. To investigate at the molecular level how hESCs acquired their unique properties, transcriptional profiles of isolated ICM cells and undifferentiated hESCs were compared. We identified 33 genes enriched in the ICM compared to the trophectoderm and hESCs. These genes are involved in signaling cascades (SEMA7A and MAP3K10), cell proliferation (CUZD1 and MS4A7) and chromatin remodeling (H1FOO and HRMT1L4). Furthermore, primordial germ cell-specific genes (SGCA and TEX11) were detected as expressed in the ICM cells and not hESCs. We propose that the transcriptional differences observed between ICM cells and hESCs might be accounted for by adaptive reprogramming events induced by the in vitro culture conditions which are distinct from that of in vitro fertilized blastocysts. hESCs are a distinct cell type lacking in the human embryo but, nonetheless, resemble the ICM in their ability to differentiate into cells representative of the endodermal, ectodermal and mesodermal cell lineages.
Collapse
Affiliation(s)
- Thore C Brink
- Department of Vertebrate Genomics (Molecular Embryology and Aging), Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Furuya M, Tanaka M, Teranishi T, Matsumoto K, Hosoi Y, Saeki K, Ishimoto H, Minegishi K, Iritani A, Yoshimura Y. H1foo is indispensable for meiotic maturation of the mouse oocyte. J Reprod Dev 2007; 53:895-902. [PMID: 17519519 DOI: 10.1262/jrd.19008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocyte-specific linker histone H1foo is localized in the oocyte nucleus, either diffusely or bound to chromatin, during the processes of meiotic maturation and fertilization. This expression pattern suggests that H1foo plays a key role in the control of gene expression and chromatin modification during oogenesis and early embryogenesis. To reveal the function of H1foo, we microinjected antisense morpholino oligonucleotides (MO) against H1foo into mouse germinal-vesicle stage oocytes. The rate of in vitro maturation of the antisense MO group was significantly lower than that of the control group. Eggs that failed to extrude a first polar body following injection of antisense MO arrested at metaphase I. Additionally, co-injection of in vitro synthesized H1foo mRNA along with antisense MO successfully rescued expression of H1foo and improved the in vitro maturation rate. There was no difference in the rate of parthenogenesis between the antisense MO and control groups. These results indicate that H1foo is essential for maturation of germinal vesicle-stage oocytes.
Collapse
Affiliation(s)
- Masataka Furuya
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Latham KE, Gao S, Han Z. Somatic cell nuclei in cloning: strangers traveling in a foreign land. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:14-29. [PMID: 17176552 DOI: 10.1007/978-0-387-37754-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The recent successes in producing cloned offspring by somatic cell nuclear transfer are nothing short of remarkable. This process requires the somatic cell chromatin to substitute functionally for both the egg and the sperm genomes, and indeed the processing of the transferred nuclei shares aspects in common with processing of both parental genomes in normal fertilized embryos. Recent studies have yielded new information about the degree to which this substitution is accomplished. Overall, it has become evident that multiple aspects of genome processing and function are aberrant, indicating that the somatic cell chromatin only infrequently manages the successful transition to a competent surrogate for gamete genomes. This review focuses on recent results revealing these limitations and how they might be overcome.
Collapse
Affiliation(s)
- Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
33
|
Bhattacharya D, Mazumder A, Miriam SA, Shivashankar GV. EGFP-tagged core and linker histones diffuse via distinct mechanisms within living cells. Biophys J 2006; 91:2326-36. [PMID: 16815908 PMCID: PMC1557551 DOI: 10.1529/biophysj.105.079343] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 06/09/2006] [Indexed: 11/18/2022] Open
Abstract
The effect of chromatin organization on EGFP-tagged histone protein dynamics within the cell nucleus has been probed using fluorescence correlation and recovery measurements on single living HeLa cells. Our studies reveal that free fraction of core-particle histones exist as multimers within the cell nucleus whereas the linker histones exist in monomeric forms. The multimeric state of core histones is found to be invariant across mammalian and polytene chromosomes and this is ATP dependent. In contrast, the dynamics of the linker histones exhibits two distinct diffusion timescales corresponding to its transient binding and unbinding to chromatin governed by the tail domain residues. Under conditions of chromatin condensation induced by apoptosis, the free multimeric fraction of core histones is found to become immobile, while the monomeric linker histone mobility is partially reduced. In addition, we observe differences in nuclear colocalization of linker and core particle histones. These results are validated through Brownian dynamics simulation of core and linker histone mobility. Our findings provide a framework to understand the coupling between the state of chromatin assembly and histone protein dynamics that is central to accessing regulatory sites on the genome.
Collapse
|
34
|
Catez F, Ueda T, Bustin M. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 2006; 13:305-10. [PMID: 16715048 PMCID: PMC3730444 DOI: 10.1038/nsmb1077] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dynamic interaction of chromatin-binding proteins with their nucleosome binding sites is an important element in regulating the structure and function of chromatin in living cells. Here we review the major factors regulating the intranuclear mobility and chromatin binding of the linker histone H1, the most abundant family of nucleosome-binding proteins. The information available reveals that multiple and diverse factors modulate the interaction of H1 with chromatin at both a local and global level. This multifaceted mode of modulating the interaction of H1 with nucleosomes is part of the mechanism that regulates the dynamics of the chromatin fiber in living cells.
Collapse
Affiliation(s)
- Frédéric Catez
- Protein Section, Laboratory of Metabolism, National Cancer Institute (NCI), US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
35
|
Brown DT, Izard T, Misteli T. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol 2006; 13:250-5. [PMID: 16462749 PMCID: PMC1868459 DOI: 10.1038/nsmb1050] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 12/09/2005] [Indexed: 11/09/2022]
Abstract
H1 linker histones stabilize the nucleosome, limit nucleosome mobility and facilitate the condensation of metazoan chromatin. Here, we have combined systematic mutagenesis, measurement of in vivo binding by photobleaching microscopy, and structural modeling to determine the binding geometry of the globular domain of the H1(0) linker histone variant within the nucleosome in unperturbed, native chromatin in vivo. We demonstrate the existence of two distinct DNA-binding sites within the globular domain that are formed by spatial clustering of multiple residues. The globular domain is positioned via interaction of one binding site with the major groove near the nucleosome dyad. The second site interacts with linker DNA adjacent to the nucleosome core. Multiple residues bind cooperatively to form a highly specific chromatosome structure that provides a mechanism by which individual domains of linker histones interact to facilitate chromatin condensation.
Collapse
Affiliation(s)
- David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
36
|
Miyara F, Han Z, Gao S, Vassena R, Latham KE. Non-equivalence of embryonic and somatic cell nuclei affecting spindle composition in clones. Dev Biol 2006; 289:206-17. [PMID: 16310175 DOI: 10.1016/j.ydbio.2005.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022]
Abstract
Cloning by nuclear transfer remains inefficient but is more efficient when nuclei from embryonic cells or embryonic stem cells (ECNT) are employed as compared with somatic cells (SCNT). The factors determining efficiency have not been elucidated. We find that somatic and embryonic nuclei differ in their ability to organize meiotic and mitotic spindles of normal molecular composition. Calmodulin, a component of meiotic and mitotic spindle chromosome complexes (SCCs), displays sharply reduced association with the SCC forming after SCNT but not ECNT. This defect persists in mitotic spindles at least through the second mitosis, despite abundant calmodulin expression in the cell, and correlates with slow chromosome congression. We propose that somatic cell nuclei lack factors needed to direct normal SCC formation in oocytes and early embryos. These results reveal a striking control of SCC formation by the transplanted nucleus and provide the first identified molecular correlate of donor stage-dependent restriction in nuclear potency.
Collapse
Affiliation(s)
- Faical Miyara
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|