1
|
A R, Ueki H, Nishioka S, Yamazaki R, Maekawa M, Kitagawa K, Miyake H, Shirakawa T. A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer. Cancer Gene Ther 2025; 32:306-317. [PMID: 40011711 PMCID: PMC11946899 DOI: 10.1038/s41417-025-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Muscle-invasive bladder cancer (MIBC), a highly heterogeneous disease, shows genomic instability and a high mutation rate, making it difficult to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in MIBC frequent recurrence and high morbidity. Previous research has shown that Cyclooxygenases-2 (COX-2) is particularly highly expressed in bladder cancer cells. In recent years, the development of oncolytic adenoviruses and their use in clinical trials have gained increased attention. In this study, we composed a conditionally replicative adenovirus vector (CRAd-synNotch) that carries the COX-2 promotor driving adenoviral E1 gene, the synNotch receptor therapeutic gene, and the Ad5/35 fiber gene. Activation of the COX-2 promoter gene causes replication only within COX-2 expressing cancer cells, thereby leading to tumor oncolysis. Also, CD44 and HIF signals contribute to cancer stemness and maintaining CSCs in bladder cancer, and the transduced synNotch receptor inhibits both CD44 and HIF signals simultaneously. We performed an in vivo study using a mouse xenograft model of T24 human MIBC cells and confirmed the significant antitumor activity of CRAd-synNotch. Our findings in this study warrant the further development of CRAd-synNotch for treating patients with MIBC.
Collapse
Affiliation(s)
- Ruhan A
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Hideto Ueki
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunya Nishioka
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Rion Yamazaki
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Marina Maekawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Koichi Kitagawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan.
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
2
|
OMICS Analyses Unraveling Related Gene and Protein-Driven Molecular Mechanisms Underlying PACAP 38-Induced Neurite Outgrowth in PC12 Cells. Int J Mol Sci 2023; 24:ijms24044169. [PMID: 36835581 PMCID: PMC9964364 DOI: 10.3390/ijms24044169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3β, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.
Collapse
|
3
|
Ji R, Zhu XJ, Wang ZR, Huang LQ. Cortactin in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2020; 8:585619. [PMID: 33195233 PMCID: PMC7606982 DOI: 10.3389/fcell.2020.585619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cortactin, a member of the actin-binding protein family, plays an important role in cell movement involving the cytoskeleton, as cell movement mediated by cortactin may induce the epithelial–mesenchymal transition. Cortactin participates in tumor proliferation, migration, and invasion and other related disease processes by binding to different proteins and participating in different pathways and mechanisms that induce the occurrence of these disease processes. Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the epithelial–mesenchymal transition and discusses its clinical importance in tumor therapy.
Collapse
Affiliation(s)
- Rong Ji
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Xiao-Juan Zhu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Zhi-Rong Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Li-Qiang Huang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
4
|
Somparn P, Boonkrai C, Charngkaew K, Chomanee N, Hodge KG, Fenton RA, Pisitkun T, Khositseth S. Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2. Am J Physiol Renal Physiol 2020; 318:F135-F147. [PMID: 31736351 PMCID: PMC7054639 DOI: 10.1152/ajprenal.00113.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After the release of bilateral ureteral obstruction (BUO), postobstructive diuresis from an impaired urine concentration mechanism is associated with reduced aquaporin 2 (AQP2) abundance in the inner medullary collecting duct (IMCD). However, the underlying molecular mechanism of this AQP2 reduction is incompletely understood. To elucidate the mechanisms responsible for this phenomenon, we studied molecular changes in IMCDs isolated from rats with 4-h BUO or sham operation at the early onset of AQP2 downregulation using mass spectrometry-based proteomic analysis. Two-hundred fifteen proteins had significant changes in abundances, with 65% of them downregulated in the IMCD of 4-h BUO rats compared with sham rats. Bioinformatic analysis revealed that significantly changed proteins were associated with functional Gene Ontology terms, including “cell-cell adhesion,” “cell-cell adherens junction,” “mitochondrial inner membrane,” “endoplasmic reticulum chaperone complex,” and the KEGG pathway of glycolysis/gluconeogenesis. Targeted liquid chromatography-tandem mass spectrometry or immunoblot analysis confirmed the changes in 19 proteins representative of each predominant cluster, including AQP2. Electron microscopy demonstrated disrupted tight junctions, disorganized adherens junctions, swollen mitochondria, enlargement of the endoplasmic reticulum lumen, and numerous autophagosomes/lysosomes in the IMCD of rats with 4-h BUO. AQP2 and seven proteins chosen as representative of the significantly altered clusters had a significant increase in immunofluorescence-based colocalization with autophagosomes/lysosomes. Immunogold electron microscopy confirmed colocalization of AQP2 with the autophagosome marker microtubule-associated protein 1A/1B-light chain 3 and the lysosomal marker cathepsin D in IMCD cells of rats with 4-h BUO. We conclude that enhanced autophagic degradation of AQP2 and other critical proteins, as well as endoplasmic reticulum stress in the IMCD, are initiated shortly after BUO.
Collapse
Affiliation(s)
- Poorichaya Somparn
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Kenneth G Hodge
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
5
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
6
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
7
|
Khositseth S, Charngkaew K, Boonkrai C, Somparn P, Uawithya P, Chomanee N, Payne DM, Fenton RA, Pisitkun T. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney Int 2017; 91:1070-1087. [PMID: 28139295 DOI: 10.1016/j.kint.2016.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.
Collapse
Affiliation(s)
- Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Panapat Uawithya
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Michael Payne
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Przybyla L, Muncie JM, Weaver VM. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu Rev Cell Dev Biol 2016; 32:527-554. [DOI: 10.1146/annurev-cellbio-111315-125150] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
| | - Jonathon M. Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Joint Graduate Group in Bioengineering (University of California, San Francisco, and University of California, Berkeley), San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Departments of Anatomy, Bioengineering, and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
9
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
10
|
van Buul JD, Timmerman I. Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 2016; 7:21-31. [PMID: 26825121 DOI: 10.1080/21541248.2015.1131802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell junctions. Although the molecular mechanisms that couple cadherins to actin filaments are beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-cadherin-based junctions remains unexplained. Accumulating evidence has suggested that depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and locally regulated by Rho GTPases and GEFs in the endothelium.
Collapse
Affiliation(s)
- Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| | - Ilse Timmerman
- b Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
11
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Sun Z, Parrish AR, Hill MA, Meininger GA. N-cadherin, A Vascular Smooth Muscle Cell-Cell Adhesion Molecule: Function and Signaling for Vasomotor Control. Microcirculation 2014; 21:208-18. [DOI: 10.1111/micc.12123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
| | - Alan R. Parrish
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| | - Michael A. Hill
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| |
Collapse
|
13
|
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32. [PMID: 24562000 PMCID: PMC5025286 DOI: 10.1038/nn.3657] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and subsequent changes in synapse morphology and efficacy, remain unanswered. We demonstrate that the intracellular cadherin binding protein, δ-catenin, is transiently palmitoylated by DHHC5 following enhanced synaptic activity, and that palmitoylation increases δ-catenin/cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses, the enlargement of postsynaptic spines, as well as insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in mEPSC amplitude. Importantly, context-dependent fear conditioning in mice results in increased δ-catenin palmitoylation as well as increased δ-catenin/cadherin associations at hippocampal synapses. Together, this suggests a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure, and receptor localization that are involved in memory formation.
Collapse
|
14
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
15
|
Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, van der Wall E, van Diest PJ, Vooijs M, Derksen PWB. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013; 32:5582-92. [PMID: 23873028 PMCID: PMC3898493 DOI: 10.1038/onc.2013.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer cannot be treated successfully. Currently, the targeted therapies for metastatic disease are limited to human epidermal growth factor receptor 2 and hormone receptor antagonists. Understanding the mechanisms of breast cancer growth and metastasis is therefore crucial for the development of new intervention strategies. Here, we show that FER kinase (FER) controls migration and metastasis of invasive human breast cancer cell lines by regulating α6- and β1-integrin-dependent adhesion. Conversely, the overexpression of FER in non-metastatic breast cancer cells induces pro-invasive features. FER drives anoikis resistance, regulates tumour growth and is necessary for metastasis in a mouse model of human breast cancer. In human invasive breast cancer, high FER expression is an independent prognostic factor that correlates with high-grade basal/triple-negative tumours and worse overall survival, especially in lymph node-negative patients. These findings establish FER as a promising target for the prevention and inhibition of metastatic breast cancer.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Ercan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J M Houthuijzen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F A Saig
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E J Vlug
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E van der Wall
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Vooijs
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Department of Radiation Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Patel VB, Wang Z, Fan D, Zhabyeyev P, Basu R, Das SK, Wang W, Desaulniers J, Holland SM, Kassiri Z, Oudit GY. Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Circ Res 2013; 112:1542-56. [PMID: 23553616 DOI: 10.1161/circresaha.111.300299] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox) or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47(phox) subunit and is linked to heart failure. We hypothesized that loss of p47(phox) subunit will result in decreased reactive oxygen species production and resistance to heart failure. OBJECTIVE To define the role of p47(phox) in pressure overload-induced biomechanical stress. METHODS AND RESULTS Eight-week-old male p47(phox) null (p47(phox) knockout [KO]), Nox2 null (Nox2KO), and wild-type mice were subjected to transverse aortic constriction-induced pressure overload. Contrary to our hypothesis, p47(phox)KO mice showed markedly worsened systolic dysfunction in response to pressure overload at 5 and 9 weeks after transverse aortic constriction compared with wild-type-transverse aortic constriction mice. We found that biomechanical stress upregulated N-cadherin and β-catenin in p47(phox)KO hearts but disrupted the actin filament cytoskeleton and reduced phosphorylation of focal adhesion kinase. p47(phox) interacts with cytosolic cortactin by coimmunoprecipitation and double immunofluorescence staining in murine and human hearts and translocated to the membrane on biomechanical stress where cortactin interacted with N-cadherin, resulting in adaptive cytoskeletal remodeling. However, p47(phox)KO hearts showed impaired interaction of cortactin with N-cadherin, resulting in loss of biomechanical stress-induced actin polymerization and cytoskeletal remodeling. In contrast, Nox2 does not interact with cortactin, and Nox2-deficient hearts were protected from pressure overload-induced adverse myocardial and intracellular cytoskeletal remodeling. CONCLUSIONS We showed a novel role of p47(phox) subunit beyond and independent of nicotinamide adenine dinucleotide phosphate oxidase activity as a regulator of cortactin and adaptive cytoskeletal remodeling, leading to a paradoxically enhanced susceptibility to biomechanical stress and heart failure.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Regulation of adherens junction dynamics by phosphorylation switches. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:125295. [PMID: 22848810 PMCID: PMC3403498 DOI: 10.1155/2012/125295] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning "on" or "off" their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.
Collapse
|
18
|
Yoneyama T, Angata K, Bao X, Courtneidge S, Chanda SK, Fukuda M. Fer kinase regulates cell migration through α-dystroglycan glycosylation. Mol Biol Cell 2012; 23:771-80. [PMID: 22238358 PMCID: PMC3290637 DOI: 10.1091/mbc.e11-06-0517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This is the first report on the role of Fer kinase in down-regulating the expression of laminin-binding glycans that suppress cell migration. The data show a novel biochemical interaction between glycan-based adhesion and cell migration, mediated by a tyrosine kinase. Glycans of α-dystroglycan (α-DG), which is expressed at the epithelial cell–basement membrane (BM) interface, play an essential role in epithelium development and tissue organization. Laminin-binding glycans on α-DG expressed on cancer cells suppress tumor progression by attenuating tumor cell migration from the BM. However, mechanisms controlling laminin-binding glycan expression are not known. Here, we used small interfering RNA (siRNA) library screening and identified Fer kinase, a non–receptor-type tyrosine kinase, as a key regulator of laminin-binding glycan expression. Fer overexpression decreased laminin-binding glycan expression, whereas siRNA-mediated down-regulation of Fer kinase increased glycan expression on breast and prostate cancer cell lines. Loss of Fer kinase function via siRNA or mutagenesis increased transcription levels of glycosyltransferases, including protein O-mannosyltransferase 1, β3-N-acetylglucosaminyltransferase 1, and like-acetylglucosaminyltransferase that are required to synthesize laminin-binding glycans. Consistently, inhibition of Fer expression decreased cell migration in the presence of laminin fragment. Fer kinase regulated STAT3 phosphorylation and consequent activation, whereas knockdown of STAT3 increased laminin-binding glycan expression on cancer cells. These results indicate that the Fer pathway negatively controls expression of genes required to synthesize laminin-binding glycans, thus impairing BM attachment and increasing tumor cell migration.
Collapse
Affiliation(s)
- Tohru Yoneyama
- Glycobiology Unit, Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
This chapter discusses the biochemical and functional links between classical cadherin adhesion systems and the cytoskeleton. Cadherins are best understood to cooperate with the actin cytoskeleton, but there is increasing evidence for the role of junctional microtubules in regulating cadherin biology. Cadherin adhesions and the junctional cytoskeleton are both highly dynamic systems that undergo continual assembly, turnover and remodeling, and yet maintain steady state structures necessary for intercellular adhesion. This requires the functional coordination of cadherins and cadherin-binding proteins, actin regulatory proteins, organizers of microtubule assembly and structure, and signaling pathways. These components act in concert to regulate junctional organization in response to extracellular forces and changing cellular contexts, which is essential for intercellular cohesion and tissue integrity.
Collapse
Affiliation(s)
- Siew Ping Han
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Brisbane, Queensland, Australia
| | | |
Collapse
|
20
|
Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci 2011; 124:1183-93. [PMID: 21444749 DOI: 10.1242/jcs.064618] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell-cell and cell-extracellular-matrix (cell-ECM) adhesions have much in common, including shared cytoskeletal linkages, signaling molecules and adaptor proteins that serve to regulate multiple cellular functions. The term 'adhesive crosstalk' is widely used to indicate the presumed functional communication between distinct adhesive specializations in the cell. However, this distinction is largely a simplification on the basis of the non-overlapping subcellular distribution of molecules that are involved in adhesion and adhesion-dependent signaling at points of cell-cell and cell-substrate contact. The purpose of this Commentary is to highlight data that demonstrate the coordination and interdependence of cadherin and integrin adhesions. We describe the convergence of adhesive inputs on cell signaling pathways and cytoskeletal assemblies involved in regulating cell polarity, migration, proliferation and survival, differentiation and morphogenesis. Cell-cell and cell-ECM adhesions represent highly integrated networks of protein interactions that are crucial for tissue homeostasis and the responses of individual cells to their adhesive environments. We argue that the machinery of adhesion in multicellular tissues comprises an interdependent network of cell-cell and cell-ECM interactions and signaling responses, and not merely crosstalk between spatially and functionally distinct adhesive specializations within cells.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
21
|
Etienne-Manneville S. Control of polarized cell morphology and motility by adherens junctions. Semin Cell Dev Biol 2011; 22:850-7. [PMID: 21839846 DOI: 10.1016/j.semcdb.2011.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Cell-cell interactions play a key role in tissue homeostasis. Intercellular adhesions share the complex task of establishing and maintaining tissue architecture while allowing tissue growth, renewal and repair. In particular, adherens junctions (AJs) have been implicated in the formation of diverse tissues and organs like epitheliums, blood vessels or the central nervous system. At the cellular level, AJs are well known for their essential role in epithelial cell differentiation and baso-apical polarity. They also contribute to the control of cell polarity to promote neuronal morphogenesis, growth cone guidance and directed migration in a variety of cell types during embryonic development. AJs based on classical cadherin- and nectin-mediated cell-cell interactions control local membrane dynamics to polarize cell morphology and motility at the single cell level and to coordinate cell shape changes and motile behaviour at the tissue level. I review here the molecular mechanisms allowing control of polarized cell morphology and motility by AJs.
Collapse
|
22
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
23
|
Cheng L, Yung A, Covarrubias M, Radice GL. Cortactin is required for N-cadherin regulation of Kv1.5 channel function. J Biol Chem 2011; 286:20478-89. [PMID: 21507952 DOI: 10.1074/jbc.m111.218560] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intercalated disc serves as an organizing center for various cell surface components at the termini of the cardiomyocyte, thus ensuring proper mechanoelectrical coupling throughout the myocardium. The cell adhesion molecule, N-cadherin, is an essential component of the intercalated disc. Cardiac-specific deletion of N-cadherin leads to abnormal electrical conduction and sudden arrhythmic death in mice. The mechanisms linking the loss of N-cadherin in the heart and spontaneous malignant ventricular arrhythmias are poorly understood. To investigate whether ion channel remodeling contributes to arrhythmogenesis in N-cadherin conditional knock-out (N-cad CKO) mice, cardiac myocyte excitability and voltage-gated potassium channel (Kv), as well as inwardly rectifying K(+) channel remodeling, were investigated in N-cad CKO cardiomyocytes by whole cell patch clamp recordings. Action potential duration was prolonged in N-cad CKO ventricle myocytes compared with wild type. Relative to wild type, I(K,slow) density was significantly reduced consistent with decreased expression of Kv1.5 and Kv accessory protein, Kcne2, in the N-cad CKO myocytes. The decreased Kv1.5/Kcne2 expression correlated with disruption of the actin cytoskeleton and reduced cortactin at the sarcolemma. Biochemical experiments revealed that cortactin co-immunoprecipitates with Kv1.5. Finally, cortactin was required for N-cadherin-mediated enhancement of Kv1.5 channel activity in a heterologous expression system. Our results demonstrate a novel mechanistic link among the cell adhesion molecule, N-cadherin, the actin-binding scaffold protein, cortactin, and Kv channel remodeling in the heart. These data suggest that in addition to gap junction remodeling, aberrant Kv1.5 channel function contributes to the arrhythmogenic phenotype in N-cad CKO mice.
Collapse
Affiliation(s)
- Lan Cheng
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
24
|
Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L, Mayer BJ, Weed SA. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 2010; 123:3923-32. [PMID: 20980387 DOI: 10.1242/jcs.075200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Voisset E, Lopez S, Chaix A, Vita M, George C, Dubreuil P, De Sepulveda P. FES kinase participates in KIT-ligand induced chemotaxis. Biochem Biophys Res Commun 2010; 393:174-8. [PMID: 20117079 DOI: 10.1016/j.bbrc.2010.01.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/27/2010] [Indexed: 12/31/2022]
Abstract
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.
Collapse
Affiliation(s)
- Edwige Voisset
- INSERM U891, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98:178-205. [PMID: 20816235 DOI: 10.1016/s0091-679x(10)98008-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrices of mammals undergo coordinated synthesis and degradation, dynamic remodeling processes that enable tissue adaptations to a broad range of environmental factors, including applied mechanical forces. The soft and mineralized connective tissues of mammals also exhibit a wide repertoire of mechanical properties, which enable their tissue-specific functions and modulate cellular responses to forces. The expression of genes in response to applied forces are important for maintaining the support, attachment, and function of various organs including kidney, heart, liver, lung, joint, and periodontium. Several high-prevalence diseases of extracellular matrices including arthritis, heart failure, and periodontal diseases involve pathological levels of mechanical forces that impact the gene expression repertoires and function of bone, cartilage, and soft connective tissues. Recent work on the application of mechanical forces to cultured connective tissue cells and various in vivo force models have enabled study of the regulatory networks that control mechanically induced gene expression in connective tissue cells. In addition to the influence of mechanical forces on the expression of type 1 collagen, which is the most abundant protein of mammals, new work has shown that the expression of a wide range of matrix, signaling, and cytoskeletal proteins are regulated by exogenous mechanical forces and by the forces generated by cells themselves. In this chapter, we first discuss the fundamental nature of the extracellular matrix in health and the impact of mechanical forces. Next we consider the utilization of several, widely employed model systems for mechanical stimulation of cells. Finally, we consider in detail how application of tensile forces to cultured cardiac fibroblasts can be used for the characterization of the signaling systems by which mechanical forces regulate myofibroblast differentiation that is seen in cardiac pressure overload.
Collapse
Affiliation(s)
- Matthew W C Chan
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
27
|
fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation. Exp Cell Res 2009; 315:2929-40. [PMID: 19732771 DOI: 10.1016/j.yexcr.2009.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 12/18/2022]
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.
Collapse
|
28
|
Giannone G, Mège RM, Thoumine O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol 2009; 19:475-86. [PMID: 19716305 DOI: 10.1016/j.tcb.2009.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/09/2023]
Abstract
To trigger cell motility, forces generated by the cytoskeleton must be transmitted physically to the external environment through transmembrane adhesion molecules. One model put forward twenty years ago to describe this process is the molecular clutch by which a modular interface of adaptor proteins mediates a dynamic mechanical connection between the actin flow and cell adhesion complexes. Recent optical imaging experiments have identified key clutch molecules linked to specific chemical and mechanical signal transduction pathways, particularly regarding integrins in migrating cells, IgCAMs in neuronal growth cones, and cadherins at intercellular junctions. We propose here the concept of a multi-level clutch as a useful analogy to grasp the complexity of the dynamic molecular interactions involved in a panel of motile behaviors and shapes.
Collapse
Affiliation(s)
- Grégory Giannone
- CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, 33077 Bordeaux, France
| | | | | |
Collapse
|
29
|
Abstract
The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Collapse
Affiliation(s)
- Mahmut Yilmaz
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Decourt B, Munnamalai V, Lee AC, Sanchez L, Suter DM. Cortactin colocalizes with filopodial actin and accumulates at IgCAM adhesion sites in Aplysia growth cones. J Neurosci Res 2009; 87:1057-68. [PMID: 19021290 DOI: 10.1002/jnr.21937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both IgCAMs and the actin cytoskeleton play critical roles in neuronal growth cone motility and guidance. However, it is unclear how IgCAM receptors transduce signals from the plasma membrane to induce actin remodeling. Previous studies have shown that local clustering and immobilization of apCAM, the Aplysia homolog of NCAM, induces Src kinase activity and F-actin polymerization in the peripheral domain of cultured Aplysia bag cell growth cones. Therefore, we wanted to test whether the Src kinase substrate and actin regulator cortactin could be a molecular link between Src activity and actin assembly during apCAM-mediated growth cone guidance. Here, we cloned Aplysia cortactin and showed that it is abundant in the nervous system. Immunostaining of growth cones revealed a strong colocalization of cortactin with F-actin in filopodial bundles and at the leading edge of lamellipodia. Perturbation of the cytoskeleton indicated that cortactin distribution largely depends on actin filaments. Furthermore, active Src colocalized with cortactin in regions of actin assembly, including leading edge and filopodia tips. Finally, we observed that cortactin, like F-actin, localizes to apCAM adhesion sites mediating growth cone guidance. Altogether, these data suggest that cortactin is a mediator of IgCAM-triggered actin assembly involved in growth cone motility and guidance.
Collapse
Affiliation(s)
- Boris Decourt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | |
Collapse
|
31
|
Ren G, Helwani FM, Verma S, McLachlan RW, Weed SA, Yap AS. Cortactin is a functional target of E-cadherin-activated Src family kinases in MCF7 epithelial monolayers. J Biol Chem 2009; 284:18913-22. [PMID: 19457864 DOI: 10.1074/jbc.m109.000307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family kinases (SFKs) signal in response to E-cadherin to support cadherin adhesion and the integrity of cell-cell contacts (McLachlan, R. W., Kraemer, A., Helwani, F. M., Kovacs, E. M., and Yap, A. S. (2007) Mol. Biol. Cell 18, 3214-3223). We now identify the actin-regulatory protein, cortactin, as a target of E-cadherin-activated SFK signaling. Tyr-phosphorylated cortactin was found at cell-cell contacts in established epithelial monolayers, and cortactin became acutely tyrosine-phosphorylated when E-cadherin adhesion was engaged. In all circumstances, cortactin tyrosine phosphorylation was blocked by inhibiting SFK signaling. Importantly, Tyr-phosphorylated cortactin was necessary to preserve the integrity of cadherin contacts and the perijunctional actin cytoskeleton. Moreover, expression of a phosphomimetic cortactin mutant could prevent SFK blockade from disrupting cadherin organization, thereby placing cortactin functionally downstream of SFK signaling at cadherin adhesions. We conclude that SFK and cortactin constitute an important signaling pathway that functionally links E-cadherin adhesion and the actin cytoskeleton.
Collapse
Affiliation(s)
- Gang Ren
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J 2009; 418:247-60. [PMID: 19196245 DOI: 10.1042/bj20081844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The morphogenesis of epithelial cells in the tissue microenvironment depends on the regulation of the forces and structures that keep cells in contact with their neighbours. The formation of cell-cell contacts is integral to the establishment and maintenance of epithelial morphogenesis. In epithelial tissues, the misregulation of the signalling pathways that control epithelial polarization induces migratory and invasive cellular phenotypes. Many cellular processes influence cadherin targeting and function, including exocytosis, endocytosis and recycling. However, the localized generation of the lipid messenger PtdIns(4,5)P(2) is emerging as a fundamental signal controlling all of these processes. The PtdIns(4,5)P(2)-generating enzymes, PIPKs (phosphatidylinositol phosphate kinases) are therefore integral to these pathways. By the spatial and temporal targeting of PIPKs via the actions of its functional protein associates, PtdIns(4,5)P(2) is generated at discrete cellular locales to provide the cadherin-trafficking machinery with its required lipid messenger. In the present review, we discuss the involvement of PtdIns(4,5)P(2) and the PIPKs in the regulation of the E-cadherin (epithelial cadherin) exocytic and endocytic machinery, the modulation of actin structures at sites of adhesion, and the direction of cellular pathways which determine the fate of E-cadherin and cell-cell junctions. Recent work is also described that has defined phosphoinositide-mediated E-cadherin regulatory pathways by the use of organismal models.
Collapse
|
33
|
Hsp90 and a tyrosine embedded in the Hsp90 recognition loop are required for the Fer tyrosine kinase activity. Cell Signal 2008; 21:588-96. [PMID: 19159681 DOI: 10.1016/j.cellsig.2008.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/17/2023]
Abstract
Hsp90 is a key regulator of tyrosine kinases activity and is therefore considered as a promising target for intervention with deregulated signaling pathways in malignant cells. Here we describe a novel Hsp90 client - the intracellular tyrosine kinase, Fer, which is subjected to a unique regulatory regime by this chaperone. Inhibition of Hsp90 activity led to proteasomal degradation of the Fer enzyme. However, circumventing the dependence of Fer accumulation on Hsp90, revealed the dependence of the Fer kinase activity and its ability to phosphorylate Stat3 on the chaperone, expressing the necessity of Hsp90 for its function. Mutation analysis unveiled a tyrosine (Tyr(616)) embedded in the Hsp90 recognition loop, which is required for the kinase activity of Fer. Replacement of this tyrosine by phenylalanine (Y616F) disabled the auto-phosphorylation activity of Fer and abolished its ability to phosphorylate Stat3. Notably, surrounding the replaced Y616F with subtle mutations restored the auto and trans-phosphorylation activities of Fer suggesting that Y(616) is not itself an essential auto-phosphorylation site of the kinase. Taken together, our results portray Hsp90 and its recognition loop as novel positive regulators of the Fer tyrosine kinase stability and activity.
Collapse
|
34
|
Ding SJ, Wang Y, Jacobs JM, Qian WJ, Yang F, Tolmachev AV, Du X, Wang W, Moore RJ, Monroe ME, Purvine SO, Waters K, Heibeck TH, Adkins JN, Camp DG, Klemke RL, Smith RD. Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dual-step (18)O labeling coupled with immobilized metal-ion affinity chromatography. J Proteome Res 2008; 7:4215-24. [PMID: 18785766 DOI: 10.1021/pr7007785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.
Collapse
Affiliation(s)
- Shi-Jian Ding
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Weaver AM. Cortactin in tumor invasiveness. Cancer Lett 2008; 265:157-66. [PMID: 18406052 DOI: 10.1016/j.canlet.2008.02.066] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 01/09/2023]
Abstract
Cortactin is a cytoskeletal protein and src kinase substrate that is frequently overexpressed in cancer. Animal studies suggest that cortactin overexpression increases tumor aggressiveness, possibly through promotion of tumor invasion and metastasis. Recently, many studies have documented a role for cortactin in promoting cell motility and invasion, including a critical role in invadopodia, actin rich-subcellular protrusions associated with degradation of the extracellular matrix by cancer cells. Here, I review the evidence and potential mechanisms for cortactin as a critical mediator of tumor cell invasion.
Collapse
Affiliation(s)
- Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, 448 PRB, VUMC, Nashville, TN 37232-6840, USA.
| |
Collapse
|
36
|
Herrera Abreu MT, Penton PC, Kwok V, Vachon E, Shalloway D, Vidali L, Lee W, McCulloch CA, Downey GP. Tyrosine phosphatase PTPalpha regulates focal adhesion remodeling through Rac1 activation. Am J Physiol Cell Physiol 2008; 294:C931-44. [PMID: 18216165 DOI: 10.1152/ajpcell.00359.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We characterized the role of protein tyrosine phosphatase (PTP)-alpha in focal adhesion (FA) formation and remodeling using wild-type and PTPalpha-deficient (PTPalpha(-/-)) cells. Compared with wild-type cells, spreading PTPalpha(-/-) fibroblasts displayed fewer leading edges and formed elongated alpha-actinin-enriched FA at the cell periphery. These features suggest the presence of slowly remodeling cell adhesions and were phenocopied in human fibroblasts in which PTPalpha was knocked down using short interfering RNA (siRNA) or in NIH-3T3 fibroblasts expressing catalytically inactive (C433S/C723S) PTPalpha. Fluorescence recovery after photobleaching showed slower green fluorescence protein-alpha-actinin recovery in the FA of PTPalpha(-/-) than wild-type cells. These alterations correlated with reduced cell spreading, adhesion, and polarization and retarded contraction of extracellular matrices in PTPalpha(-/-) fibroblasts. Activation of Rac1 and its recruitment to FA during spreading were diminished in cells expressing C433S/C723S PTPalpha. Rac1(-/-) cells also displayed abnormally elongated and peripherally distributed FA that failed to remodel. Conversely, expression of constitutively active Rac1 restored normal FA remodeling in PTPalpha(-/-) cells. We conclude that PTPalpha is required for remodeling of FA during cell spreading via a pathway involving Rac1.
Collapse
Affiliation(s)
- Maria Teresa Herrera Abreu
- Division of Respirology, Department of Medicine, University of Toronto, Toronto General Hospital Research Institute of the University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yap AS, Crampton MS, Hardin J. Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 2008; 19:508-14. [PMID: 17935963 DOI: 10.1016/j.ceb.2007.09.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/03/2007] [Accepted: 09/07/2007] [Indexed: 12/15/2022]
Abstract
Cadherin-mediated cell-cell interactions are dynamic processes, and cadherin function is tightly regulated in response to cellular context and signaling. Ultimately, cadherin regulation is likely to reflect the interplay between a range of fundamental cellular processes, including surface organization of receptors, cytoskeletal organization and cell trafficking, that are coordinated by signaling events. In this review we focus on recent advances in understanding how interplay with membrane trafficking and other cell-cell junctions can control cadherin function. The endocytosis of cadherins, and their post-internalization fate, influences surface expression and metabolic stability of these adhesion receptors. Similarly, at the surface, components of tight junctions provide a mode of cross-talk that regulates assembly of adherens junctions.
Collapse
Affiliation(s)
- Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
38
|
The Fer tyrosine kinase regulates an axon retraction response to Semaphorin 3A in dorsal root ganglion neurons. BMC DEVELOPMENTAL BIOLOGY 2007; 7:133. [PMID: 18053124 PMCID: PMC2217550 DOI: 10.1186/1471-213x-7-133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 11/30/2007] [Indexed: 12/22/2022]
Abstract
Background Fps/Fes and Fer are the only two members of a distinct subclass of cytoplasmic protein tyrosine kinases. Fps/Fes was previously implicated in Semaphorin 3A (Sema3A)-induced growth cone collapse signaling in neurons from the dorsal root ganglion (DRG) through interaction with and phosphorylation of the Sema3A receptor component PlexinA1, and members of the collapsin response mediator protein (CRMP) family of microtubule regulators. However, the potential role of the closely related Fer kinase has not been examined. Results Here we provide novel biochemical and genetic evidence that Fer plays a prominent role in microtubule regulation in DRG neurons in response to Sema3A. Although Fps/Fes and Fer were both expressed in neonatal brains and isolated DRGs, Fer was expressed at higher levels; and Fer, but not Fps/Fes kinase activity was detected in vivo. Fer also showed higher in vitro kinase activity toward tubulin, as an exogenous substrate; and this activity was higher when the kinases were isolated from perinatal relative to adult brain stages. CRMP2 was a substrate for both kinases in vitro, but both CRMP2 and PlexinA1 inhibited their autophosphorylation activities. Cultured mouse DRG neurons retracted their axons upon exposure to Sema3A, and this response was significantly diminished in Fer-deficient, but only slightly attenuated in Fps/Fes-deficient DRG neurons. Conclusion Fps/Fes and Fer are both capable of phosphorylating tubulin and the microtubule regulator CRMP2 in vitro; and their in vitro kinase activities were both inhibited by CRMP2 or PlexinA1, suggesting a possible regulatory interaction. Furthermore, Fer plays a more prominent role than Fps/Fes in regulating the axon retraction response to Sema3A in DRG neurons. Therefore, Fps/Fes and Fer may play important roles in developmental or regenerative axon pathfinding through signaling from Sema3A to the microtubule cytoskeleton.
Collapse
|
39
|
Parsons SA, Mewburn JD, Truesdell P, Greer PA. The Fps/Fes kinase regulates leucocyte recruitment and extravasation during inflammation. Immunology 2007; 122:542-50. [PMID: 17627769 PMCID: PMC2228385 DOI: 10.1111/j.1365-2567.2007.02670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Fps/Fes and Fer comprise a distinct subfamily of cytoplasmic protein-tyrosine kinases, and have both been implicated in the regulation of innate immunity. Previous studies showed that Fps/Fes-knockout mice were hypersensitive to systemic lipopolysaccharide (LPS) challenge, and Fer-deficient mice displayed enhanced recruitment of leucocytes in response to localized LPS challenge. We show here for the first time, a role for Fps in the regulation of leucocyte recruitment to areas of inflammation. Using the cremaster muscle intravital microscopy model, we observed increased leucocyte adherence to venules, and increased rates and degrees of transendothelial migration in Fps/Fes-knockout mice relative to wild-type animals subsequent to localized LPS challenge. There was also a decreased vessel wall shear rate in the post-capillary venules of LPS-challenged Fps/Fes-knockout mice, and an increase in neutrophil migration into the peritoneal cavity subsequent to thioglycollate challenge. Using flow cytometry to quantify the expression of surface molecules, we observed prolonged expression of the selectin ligand PSGL-1 on peripheral blood neutrophils from Fps/Fes-knockout mice stimulated ex vivo with LPS. These observations provide important insights into the observed in vivo behaviour of leucocytes in LPS-challenged Fps/Fes-knockout mice and provide evidence that the Fps/Fes kinase plays an important role in the innate immune response.
Collapse
Affiliation(s)
- Sean A Parsons
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queens University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
El Sayegh TY, Arora PD, Ling K, Laschinger C, Janmey PA, Anderson RA, McCulloch CA. Phosphatidylinositol-4,5 bisphosphate produced by PIP5KIgamma regulates gelsolin, actin assembly, and adhesion strength of N-cadherin junctions. Mol Biol Cell 2007; 18:3026-38. [PMID: 17538019 PMCID: PMC1949369 DOI: 10.1091/mbc.e06-12-1159] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositides regulate several actin-binding proteins but their role at intercellular adhesions has not been defined. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) was generated at sites of N-cadherin-mediated intercellular adhesion and was a critical regulator of intercellular adhesion strength. Immunostaining for PI(4,5)P2 or transfection with GFP-PH-PLCdelta showed that PI(4,5)P2 was enriched at sites of N-cadherin adhesions and this enrichment required activated Rac1. Isoform-specific immunostaining for type I phosphatidylinositol 4-phosphate 5 kinase (PIP5KI) showed that PIP5KIgamma was spatially associated with N-cadherin-Fc beads. Association of PIP5KIgamma with N-cadherin adhesions was in part dependent on the activation of RhoA. Transfection with catalytically inactive PIP5KIgamma blocked the enrichment of PI(4,5)P2 around beads. Catalytically inactive PIP5KIgamma or a cell-permeant peptide that mimics and competes for the PI(4,5)P2-binding region of the actin-binding protein gelsolin inhibited incorporation of actin monomers in response to N-cadherin ligation and reduced intercellular adhesion strength by more than twofold. Gelsolin null fibroblasts transfected with a gelsolin severing mutant containing an intact PI(4,5)P2 binding region, demonstrated intercellular adhesion strength similar to wild-type transfected controls. We conclude that PIP5KIgamma-mediated generation of PI(4,5)P2 at sites of N-cadherin contacts regulates intercellular adhesion strength, an effect due in part to PI(4,5)P2-mediated regulation of gelsolin.
Collapse
Affiliation(s)
- T Y El Sayegh
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada M5S 3E2.
| | | | | | | | | | | | | |
Collapse
|
41
|
Dajnowiec D, Sabatini PJB, Van Rossum TC, Lam JTK, Zhang M, Kapus A, Langille BL. Force-induced polarized mitosis of endothelial and smooth muscle cells in arterial remodeling. Hypertension 2007; 50:255-60. [PMID: 17485596 DOI: 10.1161/hypertensionaha.107.089730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arteries display highly directional growth and remodeling that are specific to increases in the mechanical loads imposed on them by blood pressure, blood flow, and lengthwise tensile forces that are transmitted from the tissues to which they are attached. This study examined the effect of mechanical forces on the direction in which mitosis delivers daughter cells, as a mechanism for directional growth. Lateral forces were imposed on surface integrins of cultured endothelial cells by seeding the cells with arginine-glycine-aspartate peptide-coated magnetic microspheres and applying a magnetic field. Video images revealed that the mitotic axis of dividing cells became highly biased in the direction of applied force. Distribution of cortactin, which participates in polarized mitoses driven by other stimuli, was highly sensitive to mechanical loading and interfering with cortactin function arrested cell growth. Smooth muscle cell mitoses also proved to be sensitive to mechanical force: when lengthwise force imposed on rabbit carotid arteries was altered by excision of a vessel segment and reanastomosis of the cut ends, direction of mitosis was dramatically altered. These findings indicate that influences of mechanical force can modulate the manner in which mitosis of vascular cells contributes to reorganization of arterial wall tissue.
Collapse
Affiliation(s)
- Dorota Dajnowiec
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
McLachlan RW, Yap AS. Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med (Berl) 2007; 85:545-54. [PMID: 17429596 DOI: 10.1007/s00109-007-0198-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/19/2007] [Accepted: 03/21/2007] [Indexed: 12/18/2022]
Abstract
Cadherin cell-cell adhesion critically determines tissue organization and integrity in many organs of the body. Cadherin function influences patterning and morphogenesis while cadherin dysfunction contributes to disease, notably tumor invasion and metastasis. Cell signaling events are intimately linked with cadherin function; it is increasingly apparent that not only do cellular signals regulate cadherin function, but cadherins can also, in turn, modulate cell signaling itself. In this review, we discuss the complex interrelationship between phosphotyrosine-based cell signaling and cadherin adhesion. We focus on the interplay of events that occur at the cell surface and address three issues: the diverse mechanisms that activate phosphotyrosine signaling at cadherin cell-cell contacts, the functional impact of such signaling for cadherin adhesion, and the emerging capacity for cadherins to regulate growth factor signaling.
Collapse
Affiliation(s)
- Robert W McLachlan
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
43
|
El Sayegh TY, Kapus A, McCulloch CA. Beyond the epithelium: Cadherin function in fibrous connective tissues. FEBS Lett 2007; 581:167-74. [PMID: 17217950 DOI: 10.1016/j.febslet.2006.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/04/2006] [Accepted: 12/12/2006] [Indexed: 11/18/2022]
Abstract
In fibrous connective tissues, fibroblasts are organized into syncytia, cellular networks that enable matrix remodeling and that are interconnected by intercellular adherens junctions (AJs). The AJs of fibroblasts are mediated by N-cadherin, a broadly expressed classical cadherin that is critically involved in developmental processes, wound healing and several diseases of mesenchymal tissues. In contrast to E-cadherin-dependent junctions of epithelia, the formation of AJs in fibrous connective tissues is relatively uncharacterized. Work over the last several years has documented an expanding list of molecules which function to regulate N-cadherin mediated junctions such as: Fer, PTP1B, cortactin, calcium, gelsolin, PIP5KIgamma, PIP2, and the Rho family of GTPases. We present an overview on the regulation of N-cadherin-mediated junction formation that highlights recent molecular advances in the field and rationalizes the roles of N-cadherin in connective tissue function.
Collapse
Affiliation(s)
- T Y El Sayegh
- CIHR Group in Matrix Dynamics, University of Toronto, Room 243, Fitzgerald Building, 150 College Street, Toronto, Ont., Canada M5S 3E2.
| | | | | |
Collapse
|
44
|
Sengupta A, McCulloch CA. Functional Interactions of the Extracellular Matrix with Mechanosensitive Channels. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Abstract
Cortactin, an actin filament-binding protein and target of multiple kinases, has emerged as a central element connecting signaling pathways with cytoskeleton restructuring. It is involved in a perplexingly diverse array of cellular processes, including cell motility, invasiveness, synaptogenesis, endocytosis, intercellular contact assembly, and host-pathogen interactions, where the common denominator appears to be a role in the coordination of membrane dynamics with cytoskeletal remodeling. Although in recent years our knowledge about cortactin has increased exponentially, the exact mechanisms underlying its fundamental roles remain to be defined.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Saint Michael's Hospital Research Institute, Department of Surgery, University of Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Mège RM, Gavard J, Lambert M. Regulation of cell–cell junctions by the cytoskeleton. Curr Opin Cell Biol 2006; 18:541-8. [PMID: 16905303 DOI: 10.1016/j.ceb.2006.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/02/2006] [Indexed: 11/29/2022]
Abstract
A major form of animal cell-cell adhesion results from the dynamic association of cadherin molecules, cytosolic catenins and actin microfilaments. Cadherins dynamically regulate the cytoskeleton. In turn, the actin cytoskeleton contributes to cadherin molecule oligomerization at cell contacts and to cell reshaping in response to environmental changes. Over the past two years, this evolutionarily conserved adhesion system has been intensively revisited in both its structural and functional aspects; this is illustrated by the remarkable progress in the determination of physical parameters of cadherin bonds (including force measurement) and the new insights into the role of alpha-catenin and the regulation of actin dynamics at cadherin contacts. Other recent studies uncover the important contribution of acto-myosin, microtubules and cell tension to adherens junction formation, cell differentiation and tissue reshaping/remodeling. An open challenge is now to integrate these new data with the diversity of cadherin adhesive complexes.
Collapse
Affiliation(s)
- René-Marc Mège
- INSERM, U 706, Institut du Fer à Moulin, 75005 Paris, France.
| | | | | |
Collapse
|
47
|
Parsons SA, Greer PA. The Fps/Fes kinase regulates the inflammatory response to endotoxin through down-regulation of TLR4, NF-kappaB activation, and TNF-alpha secretion in macrophages. J Leukoc Biol 2006; 80:1522-8. [PMID: 16959897 DOI: 10.1189/jlb.0506350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fps/Fes and Fer are members of a distinct subfamily of cytoplasmic protein tyrosine kinases that have recently been implicated in the regulation of innate immunity. Previous studies showed that mice lacking Fps/Fes are hypersensitive to systemic LPS challenge, and Fer-deficient mice displayed enhanced recruitment of leukocytes in response to local LPS challenge. This study identifies physiological, cellular, and molecular defects that contribute to the hyperinflammatory phenotype in Fps/Fes null mice. Plasma TNF-alpha levels were elevated in LPS challenged Fps/Fes null mice as compared with wild-type mice and cultured Fps/Fes null peritoneal macrophages treated with LPS showed increased TNF-alpha production. Cultured Fps/Fes null macrophages also displayed prolonged LPS-induced degradation of IkappaB-alpha, increased phosphorylation of the p65 subunit of NF-kappaB, and defective TLR4 internalization, compared with wild-type macrophages. Together, these observations provide a likely mechanistic basis for elevated proinflammatory cytokine secretion by Fps/Fes null macrophages and the increased sensitivity of Fps/Fes null mice to endotoxin. We posit that Fps/Fes modulates the innate immune response of macrophages to LPS, in part, by regulating internalization and down-regulation of the TLR4 receptor complex.
Collapse
Affiliation(s)
- Sean A Parsons
- Division of Cancer Biology and Genetics, Botterell Hall, Room A309, Queens University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
48
|
Alemà S, Salvatore AM. p120 catenin and phosphorylation: Mechanisms and traits of an unresolved issue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:47-58. [PMID: 16904204 DOI: 10.1016/j.bbamcr.2006.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/02/2006] [Accepted: 06/06/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin is a scaffold protein that interacts with cadherin cytoplasmic domain and acts as a crucial component of the signalling that regulates the cycle of adherens junction formation and disassembly. Here, we review the nature of stimuli that modulate p120ctn function and are translated as serine/threonine and tyrosine phosphorylation events at this multisite substrate for a variety of protein kinases. We also highlight recent findings that tentatively link phosphorylation of p120ctn to its role as a signal integrator capable to influence the state of the cadherin adhesive bond, the cytoskeleton and cell motility.
Collapse
Affiliation(s)
- Stefano Alemà
- Istituto di Biologia Cellulare, CNR, 00016 Monterotondo, Italy
| | | |
Collapse
|
49
|
Hill A, McFarlane S, Mulligan K, Gillespie H, Draffin JE, Trimble A, Ouhtit A, Johnston PG, Harkin DP, McCormick D, Waugh DJJ. Cortactin underpins CD44-promoted invasion and adhesion of breast cancer cells to bone marrow endothelial cells. Oncogene 2006; 25:6079-91. [PMID: 16652145 DOI: 10.1038/sj.onc.1209628] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a validated tetracycline (tet)-regulated MCF7-founder (MCF7F) expression system to modulate expression of CD44 standard form (CD44s), we report the functional importance of CD44s and that of a novel transcriptional target of hyaluronan (HA)/CD44s signaling, EMS1/cortactin, in underpinning breast cancer metastasis. In functional experiments, tet-regulated induction of CD44s potentiated the migration and invasion of MCF7F cells through HA-supplemented Matrigel. EMS1/cortactin was identified by expression profiling as a novel transcriptional target of HA/CD44 signaling, an association validated by quantitative PCR and immunoblotting experiments in a range of breast cancer cell lines. The mechanistic basis underpinning CD44-promoted transcription of EMS1/cortactin was shown to be dependent upon a NFkappaB mechanism, since pharmacological inhibition of IkappaKinase-2 or suppression of p65 Rel A expression attenuated CD44-induced increases in cortactin mRNA transcript levels. Overexpression of a c-myc tagged murine cortactin construct in the weakly invasive, CD44-deficient MCF7F and T47D cells potentiated their invasion. Furthermore, the functional importance of cortactin to CD44s-promoted metastasis was demonstrated by selective suppression of cortactin in CD44-expressing MCF7F-B5 and MDA-MB-231 breast cancer cells using RNAi, which was shown to result in attenuated CD44-promoted invasion and CD44-promoted adhesion to bone marrow endothelial cells (BMECs).
Collapse
Affiliation(s)
- A Hill
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Thoumine O, Lambert M, Mège RM, Choquet D. Regulation of N-cadherin dynamics at neuronal contacts by ligand binding and cytoskeletal coupling. Mol Biol Cell 2005; 17:862-75. [PMID: 16319177 PMCID: PMC1356595 DOI: 10.1091/mbc.e05-04-0335] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-cadherin plays a key role in axonal outgrowth and synaptogenesis, but how neurons initiate and remodel N-cadherin-based adhesions remains unclear. We addressed this issue with a semiartificial system consisting of N-cadherin coated microspheres adhering to cultured neurons transfected for N-cadherin-GFP. Using optical tweezers, we show that growth cones are particularly reactive to N-cadherin coated microspheres, which they capture in a few seconds and drag rearward. Such strong coupling requires an intact connection between N-cadherin receptors and catenins. As they move to the basis of growth cones, microspheres slow down while gradually accumulating N-cadherin-GFP, demonstrating a clear delay between bead coupling to the actin flow and receptor recruitment. Using FRAP and photoactivation, N-cadherin receptors at bead-to-cell contacts were found to continuously recycle, consistently with a model of ligand-receptor reaction not limited by membrane diffusion. The use of N-cadherin-GFP receptors truncated or mutated in specific cytoplasmic regions show that N-cadherin turnover is exquisitely regulated by catenin partners. Turnover rates are considerably lower than those obtained previously in single molecule studies, demonstrating an active regulation of cadherin bond kinetics in intact cells. Finally, spontaneous neuronal contacts enriched in N-cadherin exhibited similar turnover rates, suggesting that such dynamics of N-cadherin may represent an intrinsic mechanism underlying the plasticity of neuronal adhesions.
Collapse
Affiliation(s)
- Olivier Thoumine
- CNRS, UMR 5091, Institut Magendie de Neurosciences, Université Bordeaux 2, 33077 Bordeaux, France.
| | | | | | | |
Collapse
|