1
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Multifunctionality of F-rich nucleoporins. Biochem Soc Trans 2021; 48:2603-2614. [PMID: 33336681 DOI: 10.1042/bst20200357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023]
Abstract
Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.
Collapse
|
4
|
Kurzawa N, Mateus A, Savitski MM. Rtpca: an R package for differential thermal proximity coaggregation analysis. Bioinformatics 2021; 37:431-433. [PMID: 32717044 PMCID: PMC8058776 DOI: 10.1093/bioinformatics/btaa682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Summary Rtpca is an R package implementing methods for inferring protein–protein interactions (PPIs) based on thermal proteome profiling experiments of a single condition or in a differential setting via an approach called thermal proximity coaggregation. It offers user-friendly tools to explore datasets for their PPI predictive performance and easily integrates with available R packages. Availability and implementation Rtpca is available from Bioconductor (https://bioconductor.org/packages/Rtpca). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nils Kurzawa
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany.,Candidate for Joint PhD Between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Mossaid I, Chatel G, Martinelli V, Vaz M, Fahrenkrog B. Mitotic checkpoint protein Mad1 is required for early Nup153 recruitment to chromatin and nuclear envelope integrity. J Cell Sci 2020; 133:jcs249243. [PMID: 33023979 DOI: 10.1242/jcs.249243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin Nup153 is a multifunctional protein and a known binding partner of mitotic checkpoint protein Mad1 (also known as MAD1L1). The functional relevance of their interaction has remained elusive. Here, we have further dissected the interface and functional interplay of Nup153 and Mad1. Using in situ proximity ligation assays, we found that the presence of a nuclear envelope (NE) is a prerequisite for the Nup153-Mad1 association. Time-lapse microscopy revealed that depletion of Mad1 delayed recruitment of Nup153 to anaphase chromatin, which was often accompanied by a prolongation of anaphase. Furthermore, as seen by electron microscopic and three-dimensional structured illumination investigations, Nup153 and Mad1 depletion led to alterations in NE architecture, characterised by a change of membrane curvature at nuclear pore complexes (NPCs) and an expansion of the spacing between inner and outer nuclear membranes. Nup153 depletion, but not Mad1 depletion, caused defects in interphase NPC assembly, with partial displacement of cytoplasmic nucleoporins and a reduction in NPC density. Taken together, our results suggest that Nup153 has separable roles in NE and NPC formation: in post-mitotic NE re-formation in concert with Mad1 and in interphase NPC assembly, independent of Mad1.
Collapse
Affiliation(s)
- Ikram Mossaid
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Guillaume Chatel
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Marcela Vaz
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| |
Collapse
|
6
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
7
|
Bisht J, LeValley P, Noren B, McBride R, Kharkar P, Kloxin A, Gatlin J, Oakey J. Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. LAB ON A CHIP 2019; 19:3499-3511. [PMID: 31544194 PMCID: PMC7819639 DOI: 10.1039/c9lc00569b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-free Xenopus egg extract is a widely used and biochemically tractable model system that allows recapitulation and elucidation of fundamental cellular processes. Recently, the introduction of microfluidic extract manipulation has enabled compartmentalization of bulk extract and a newfound ability to study organelles on length scales that recapitulate key features of cellular morphology. While the microfluidic confinement of extracts has produced a compelling platform for the in vitro study of cell processes at physiologically-relevant length scales, it also imposes experimental limitations by restricting dynamic control over extract properties. Here, we introduce photodegradable polyethylene glycol (PEG) hydrogels as a vehicle to passively and selectively manipulate extract composition through the release of proteins encapsulated within the hydrogel matrix. Photopatterned PEG hydrogels, passive to both extract and encapsulated proteins, serve as protein depots within microfluidic channels, which are subsequently flooded with extract. Illumination by ultraviolet light (UV) degrades the hydrogel structures and releases encapsulated protein. We show that an engineered fluorescent protein with a nuclear localization signal (GST-GFP-NLS) retains its ability to localize within nearby nuclei following UV-induced release from hydrogel structures. When diffusion is considered, the kinetics of nuclear accumulation are similar to those in experiments utilizing conventional, bulk fluid handling. Similarly, the release of recombinant cyclin B Δ90, a mutant form of the master cell cycle regulator cyclin B which lacks the canonical destruction box, was able to induce the expected cell cycle transition from interphase to mitosis. This transition was confirmed by the observation of nuclear envelope breakdown (NEBD), a phenomenological hallmark of mitosis, and the induction of mitosis-specific biochemical markers. This approach to extract manipulation presents a versatile and customizable route to regulating the spatial and temporal dynamics of cellular events in microfluidically confined cell-free extracts.
Collapse
Affiliation(s)
- Jitender Bisht
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Paige LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Benjamin Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Prathamesh Kharkar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
8
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
9
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Functional implication of the common evolutionary origin of nuclear pore complex and endomembrane management systems. Semin Cell Dev Biol 2017; 68:10-17. [PMID: 28473267 DOI: 10.1016/j.semcdb.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
Abstract
Nuclear pore complexes (NPCs) are the sole gateway between the cytoplasm and the nucleus serving both as stringent permeability barrier and active transporters between the two compartments of eukaryotic cells. Complete mechanistic understanding of how these two functions are implemented within one and the same transport machine has not been attained to date. Based on several lines of structural evidence, a hypothesis was proposed postulating that NPCs shares common evolutionary origin with other intracellular systems responsible for active management of endomembranes. In this review we attempt to summarize the evidence supporting this hypothesis. The structural data obtained so far is evaluated and supplemented with the analysis of the functional evidence. Based on this analysis, a model is proposed which integrates the knowledge from the field of NPC function with that obtained from other endomembrane management systems in an attempt to shed new light on the mechanism of the NPC active transport.
Collapse
|
11
|
Drozdz MM, Vaux DJ. Shared mechanisms in physiological and pathological nucleoplasmic reticulum formation. Nucleus 2017; 8:34-45. [PMID: 27797635 PMCID: PMC5287099 DOI: 10.1080/19491034.2016.1252893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The mammalian nuclear envelope (NE) can develop complex dynamic membrane-bounded invaginations in response to both physiological and pathological stimuli. Since the formation of these nucleoplasmic reticulum (NR) structures can occur during interphase, without mitotic NE breakdown and reassembly, some other mechanism must drive their development. Here we consider models for deformation of the interphase NE, together with the evidence for their potential roles in NR formation.
Collapse
Affiliation(s)
| | - David John Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Sahoo MR, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav SK, Singh A, Magre I, Deshmukh P, Dhanvijay S, Sahoo PK, Ramtirtha Y, Madhusudhan MS, Gayathri P, Seshadri V, Joseph J. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 2016; 18:241-263. [PMID: 28039207 DOI: 10.15252/embr.201642386] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/13/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNA (miRNA)-guided mRNA repression, mediated by the miRNA-induced silencing complex (miRISC), is an important component of post-transcriptional gene silencing. However, how miRISC identifies the target mRNA in vivo is not well understood. Here, we show that the nucleoporin Nup358 plays an important role in this process. Nup358 localizes to the nuclear pore complex and to the cytoplasmic annulate lamellae (AL), and these structures dynamically associate with two mRNP granules: processing bodies (P bodies) and stress granules (SGs). Nup358 depletion disrupts P bodies and concomitantly impairs the miRNA pathway. Furthermore, Nup358 interacts with AGO and GW182 proteins and promotes the association of target mRNA with miRISC A well-characterized SUMO-interacting motif (SIM) in Nup358 is sufficient for Nup358 to directly bind to AGO proteins. Moreover, AGO and PIWI proteins interact with SIMs derived from other SUMO-binding proteins. Our study indicates that Nup358-AGO interaction is important for miRNA-mediated gene silencing and identifies SIM as a new interacting motif for the AGO family of proteins. The findings also support a model wherein the coupling of miRISC with the target mRNA could occur at AL, specialized domains within the ER, and at the nuclear envelope.
Collapse
Affiliation(s)
- Manas Ranjan Sahoo
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Swati Gaikwad
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Maitreyi Ashok
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Mary Helen
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Prachi Deshmukh
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Supriya Dhanvijay
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | | | - Yogendra Ramtirtha
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Pananghat Gayathri
- Division of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Vasudevan Seshadri
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| |
Collapse
|
13
|
Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, Huebner A, Griffis ER. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 2015; 26:3424-38. [PMID: 26246606 PMCID: PMC4591688 DOI: 10.1091/mbc.e15-02-0113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
The nucleoporin ALADIN, which is mutated in patients with triple A syndrome, is necessary for proper spindle formation. Without ALADIN, active Aurora A moves away from centrosomes. The relocalization of active Aurora A leads to a redistribution of specific spindle assembly factors that make spindles less stable and slows their formation. The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.
Collapse
Affiliation(s)
- Sara Carvalhal
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Susana Abreu Ribeiro
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Miguel Arocena
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Katrin Koehler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Angela Huebner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
14
|
Abstract
Nuclear pore complexes (NPCs) are composed of several copies of ∼30 different proteins called nucleoporins (Nups). NPCs penetrate the nuclear envelope (NE) and regulate the nucleocytoplasmic trafficking of macromolecules. Beyond this vital role, NPC components influence genome functions in a transport-independent manner. Nups play an evolutionarily conserved role in gene expression regulation that, in metazoans, extends into the nuclear interior. Additionally, in proliferative cells, Nups play a crucial role in genome integrity maintenance and mitotic progression. Here we discuss genome-related functions of Nups and their impact on essential DNA metabolism processes such as transcription, chromosome duplication, and segregation.
Collapse
|
15
|
Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1-EGFP expression of interspecies cloned embryos in dog. ZYGOTE 2014; 23:758-70. [PMID: 25314965 DOI: 10.1017/s0967199414000410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult canine fibroblasts stably transfected with either cytomegalovirus (CMV) or POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) were used to investigate if pre-treatment of these donor cells with two epigenetic drugs [trichostatin A (TSA), or S-adenosylhomocysteine (SAH)] can improve the efficiency of interspecies somatic cell nuclear transfer (iSCNT). Fluorescence-activated cell sorting (FACS), analyses revealed that TSA, but not SAH, treatment of both transgenic and non-transgenic fibroblasts significantly increased acetylation levels compared with untreated relatives. The expression levels of Bcl2 and P53 were significantly affected in TSA-treated cells compared with untreated cells, whereas SAH treatment had no significant effect on cell apoptosis. Irrespective of epigenetic modification, dog/bovine iSCNT embryos had overall similar rates of cleavage and development to 8-16-cell and morula stages in non-transgenic groups. For transgenic reconstructed embryos, however, TSA and SAH could significantly improve development to 8-16-cell and morula stages compared with control. Even though, irrespective of cell transgenesis and epigenetic modification, none of the iSCNT embryos developed to the blastocyst stage. The iSCNT embryos carrying CMV-EGFP expressed EGFP at all developmental stages (2-cell, 4-cell, 8-16-cell, and morula) without mosaicism, while no POU5F1-EGFP signal was observed in any stage of developing iSCNT embryos irrespective of TSA/SAH epigenetic modifications. These results indicated that bovine oocytes partially remodel canine fibroblasts and that TSA and SAH have marginal beneficial effects on this process.
Collapse
|
16
|
Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis 2013; 4:e854. [PMID: 24113188 PMCID: PMC3824679 DOI: 10.1038/cddis.2013.370] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 01/03/2023]
Abstract
Chromosomal missegregation is a common feature of many human tumors. Recent studies have indicated a link between nucleoporin RanBP2/Nup358 and chromosomal segregation during mitosis; however, the molecular details have yet to be fully established. Observed through live cell imaging and flow cytometry, here we show that RNA interference-mediated knockdown of RanBP2 induced G2/M phase arrest, metaphase catastrophe and mitotic cell death. Furthermore, RanBP2 down-modulation disrupted importin/karyopherin β1 as well as the expression and localization of the Ran GTPase activating protein 1. We found that N-terminal of RanBP2 interacted with the N-terminal of importin β1. Moreover, at least a portion of RanBP2 partially localizes at the centrosome during mitosis. Notably, we also found that GTPase Ran is also involved in the regulation of RanBP2-importin β1 interaction. Overall, our results suggest that mitotic arrest and the following cell death were caused by depletion of RanBP2. Our findings point to a crucial role for RanBP2 in proper mitotic progression and faithful chromosomal segregation.
Collapse
|
17
|
Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013; 5:2483-511. [PMID: 24103892 PMCID: PMC3814599 DOI: 10.3390/v5102483] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023] Open
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein.
Collapse
|
18
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lussi YC, Shumaker DK, Shimi T, Fahrenkrog B. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1. Nucleus 2012; 1:71-84. [PMID: 21327106 DOI: 10.4161/nucl.1.1.10244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/29/2009] [Accepted: 10/07/2009] [Indexed: 01/10/2023] Open
Abstract
The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit.
Collapse
Affiliation(s)
- Yvonne C Lussi
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, Asgari V, Tanhaei S, Abbasi H, Jafarpour F, Ostadhosseini S, Karamali F, Karbaliaie K, Baharvand H, Nasr-Esfahani MH. Enucleated ovine oocyte supports human somatic cells reprogramming back to the embryonic stage. Cell Reprogram 2012; 14:155-63. [PMID: 22384929 DOI: 10.1089/cell.2011.0061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased possibility of universality of ooplasmic reprogramming factors resulted in a parallel increased interest to use interspecies somatic cell nuclear transfer (iSCNT) to address basic questions of developmental biology and to improve the feasibility of cell therapy. In this study, the interactions between human somatic cells and ovine oocytes were investigated. Nuclear remodeling events were first observed 3 h post-iSCNT as nuclear swelling, chromosome condensation, and spindle formation. A time-dependent decrease in maturation promoting activity of inactivated reconstructs coincided with increased aberrations in chromosome and spindle organization of the newly developed embryos. The sequence and duration of nuclear remodeling events were irrespective of donor cell type used. Although the majority of the reconstituted embryos arrested before embryonic genome activation (8-16-cell) stage, less than 5% of them could progress beyond transcription-requiring developmental stage and formed blastocyst-like structures with distinct inner cell mass and trophectoderm at days 7 and 8 post-SCNT. Importantly, real-time assessment of three developmentally important genes (Oct4, Sox2, and Nanog) indicated their upregulation in iSCNT blastocysts. Blastocyst-derived outgrowths had alkaline phosphatase activity that was lost upon passage. Collectively, this study introduced ovine oocyte as a credible cytoplast for remodeling and reprogramming of human somatic cells back to the embryonic stage and provided a platform for further studies to unravel possible differences exist between reprogramming ability of oocytes of different mammalian species.
Collapse
Affiliation(s)
- S Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gloerich M, Vliem MJ, Prummel E, Meijer LAT, Rensen MGA, Rehmann H, Bos JL. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. ACTA ACUST UNITED AC 2011; 193:1009-20. [PMID: 21670213 PMCID: PMC3115801 DOI: 10.1083/jcb.201011126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Direct interaction between the catalytic domain of Epac1 and the nuclear pore component RanBP2 blocks Epac1 catalytic activity and downstream cAMP signaling. Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Acute necrotizing encephalopathy (ANE) presents with fulminant encephalopathy and characteristic brain lesions following viral infection. The rarity and unpredictability of the disorder have significantly impaired its study. Growing recognition of ANE and the discovery of causative missense mutations in the nuclear pore gene RANBP2 give promising steps toward unraveling this disease. This review summarizes recent advances of clinical and scientific understanding of ANE. RECENT FINDINGS Inflammatory factors participate in the pathogenesis of ANE, but the lack of difference between influenza and noninfluenza ANE focuses attention on the abnormal host response as causative. Early treatment with steroids provides the best outcome for patients who do not have brainstem lesions. Missense mutations in RANBP2 cause the majority of familial and recurrent ANE cases, but other single-gene causes of ANE are possible for familial, recurrent, and sporadic cases. SUMMARY Early recognition and systematic evaluation of ANE are necessary. Modeling ANE as a genetic disorder may provide the most immediate gains in the understanding and treatment of ANE and related disorders.
Collapse
|
23
|
Characterization of Bioactive Cell Penetrating Peptides from Human Cytochrome c: Protein Mimicry and the Development of a Novel Apoptogenic Agent. ACTA ACUST UNITED AC 2010; 17:735-44. [DOI: 10.1016/j.chembiol.2010.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/29/2010] [Accepted: 05/19/2010] [Indexed: 11/18/2022]
|
24
|
The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett 2010; 584:3013-20. [PMID: 20561986 DOI: 10.1016/j.febslet.2010.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
Nucleoporin 153 (Nup153), a component of the nuclear pore complex (NPC), has been implicated in the interaction of the NPC with the nuclear lamina. Here we show that depletion of Nup153 by RNAi results in alteration of the organization of the nuclear lamina and the nuclear lamin-binding protein Sun1. More striking, Nup153 depletion induces a dramatic cytoskeletal rearrangement that impairs cell migration in human breast carcinoma cells. Our results point to a very prominent role of Nup153 in connection to cell motility that could be exploited in order to develop novel anti-cancer therapy.
Collapse
|
25
|
Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 2010; 29:1659-73. [PMID: 20407419 PMCID: PMC2876962 DOI: 10.1038/emboj.2010.54] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/09/2010] [Indexed: 12/21/2022] Open
Abstract
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution.
Collapse
Affiliation(s)
- Sandra Krull
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Julia Dörries
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Björn Boysen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Sonja Reidenbach
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Lars Magnius
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Helene Norder
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Johan Thyberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker C Cordes
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 2010; 3:ra2. [PMID: 20068230 DOI: 10.1126/scisignal.2000526] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Like phosphorylation, the addition of O-linked beta-N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous, reversible process that modifies serine and threonine residues on nuclear and cytoplasmic proteins. Overexpression of the enzyme that adds O-GlcNAc to target proteins, O-GlcNAc transferase (OGT), perturbs cytokinesis and promotes polyploidy, but the molecular targets of OGT that are important for its cell cycle functions are unknown. Here, we identify 141 previously unknown O-GlcNAc sites on proteins that function in spindle assembly and cytokinesis. Many of these O-GlcNAcylation sites are either identical to known phosphorylation sites or in close proximity to them. Furthermore, we found that O-GlcNAcylation altered the phosphorylation of key proteins associated with the mitotic spindle and midbody. Forced overexpression of OGT increased the inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. The increased phosphorylation of CDK1 is explained by increased activation of its upstream kinase, MYT1, and by a concomitant reduction in the transcript for the CDK1 phosphatase, CDC25C. OGT overexpression also caused a reduction in both messenger RNA expression and protein abundance of Polo-like kinase 1, which is upstream of both MYT1 and CDC25C. The data not only illustrate the crosstalk between O-GlcNAcylation and phosphorylation of proteins that are regulators of crucial signaling pathways but also uncover a mechanism for the role of O-GlcNAcylation in regulation of cell division.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
De Souza CP, Osmani SA. Double duty for nuclear proteins--the price of more open forms of mitosis. Trends Genet 2009; 25:545-54. [PMID: 19879010 DOI: 10.1016/j.tig.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/10/2009] [Accepted: 10/10/2009] [Indexed: 12/28/2022]
Abstract
During cell division, eukaryotic cells pass on their genetic material to the next generation by undergoing mitosis, which segregates their chromosomes. During mitosis, the nuclear envelope, nuclear pore complexes and nucleolus must also be segregated. Cells achieve this in a range of different forms of mitosis, from closed, in which these nuclear structures remain intact, to open, in which these nuclear structures are disassembled. In between lies a smorgasbord of intermediate forms of mitosis, displaying varying degrees of nuclear disassembly. Gathering evidence is revealing links between the extent of nuclear disassembly and the evolution of new roles for nuclear proteins during mitosis. We propose that proteins with such double duties help coordinate reassembly of the nucleus with chromosomal segregation.
Collapse
Affiliation(s)
- Colin P De Souza
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
28
|
López-Laso E, Mateos-González M, Pérez-Navero J, Camino-León R, Briones P, Neilson D. Encefalopatía aguda necrosante familiar o recurrente desencadenada por infecciones. An Pediatr (Barc) 2009; 71:235-9. [DOI: 10.1016/j.anpedi.2009.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022] Open
|
29
|
Fernandez-Martinez J, Rout MP. Nuclear pore complex biogenesis. Curr Opin Cell Biol 2009; 21:603-12. [PMID: 19524430 PMCID: PMC2749478 DOI: 10.1016/j.ceb.2009.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 01/12/2023]
Abstract
Nuclear pore complexes (NPCs) are the sole mediators of transport between the nucleus and the cytoplasm. NPCs have a life cycle: they assemble, disassemble, turnover, and age. The molecular mechanisms governing these different vital steps are beginning to emerge, suggesting key roles for the core structural scaffold of the NPC and auxiliary factors in the assembly of this large macromolecular complex, and connections between NPC maintenance, NPC turnover, and aging of the cell.
Collapse
|
30
|
Mackay DR, Elgort SW, Ullman KS. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol Biol Cell 2009; 20:1652-60. [PMID: 19158386 DOI: 10.1091/mbc.e08-08-0883] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accurate inheritance of genomic content during cell division is dependent on synchronized changes in cellular organization and chromosome dynamics. Elucidating how these events are coordinated is necessary for a complete understanding of cell proliferation. Previous in vitro studies have suggested that the nuclear pore protein Nup153 is a good candidate for participating in mitotic coordination. To decipher whether this is the case in mammalian somatic cells, we reduced the levels of Nup153 in HeLa cells and monitored consequences on cell growth. Reduction of Nup153 resulted in a delay during the late stages of mitosis accompanied by an increase in unresolved midbodies. Depletion of Nup153 to an even lower threshold led to a pronounced defect early in mitosis and an accumulation of cells with multilobed nuclei. Although global nucleocytoplasmic transport was not significantly altered under these depletion conditions, the FG-rich region of Nup153 was required to rescue defects in late mitosis. Thus, this motif may play a specialized role as cells exit mitosis. Rescue of the multilobed nuclei phenotype, in contrast, was independent of the FG-domain, revealing two separable roles for Nup153 in the execution of mitosis.
Collapse
Affiliation(s)
- Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
31
|
Neilson DE, Adams MD, Orr CMD, Schelling DK, Eiben RM, Kerr DS, Anderson J, Bassuk AG, Bye AM, Childs AM, Clarke A, Crow YJ, Di Rocco M, Dohna-Schwake C, Dueckers G, Fasano AE, Gika AD, Gionnis D, Gorman MP, Grattan-Smith PJ, Hackenberg A, Kuster A, Lentschig MG, Lopez-Laso E, Marco EJ, Mastroyianni S, Perrier J, Schmitt-Mechelke T, Servidei S, Skardoutsou A, Uldall P, van der Knaap MS, Goglin KC, Tefft DL, Aubin C, de Jager P, Hafler D, Warman ML. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet 2009; 84:44-51. [PMID: 19118815 DOI: 10.1016/j.ajhg.2008.12.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 12/12/2008] [Indexed: 01/05/2023] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a rapidly progressive encephalopathy that can occur in otherwise healthy children after common viral infections such as influenza and parainfluenza. Most ANE is sporadic and nonrecurrent (isolated ANE). However, we identified a 7 Mb interval containing a susceptibility locus (ANE1) in a family segregating recurrent ANE as an incompletely penetrant, autosomal-dominant trait. We now report that all affected individuals and obligate carriers in this family are heterozygous for a missense mutation (c.1880C-->T, p.Thr585Met) in the gene encoding the nuclear pore protein Ran Binding Protein 2 (RANBP2). To determine whether this mutation is the susceptibility allele, we screened controls and other patients with ANE who are unrelated to the index family. Patients from 9 of 15 additional kindreds with familial or recurrent ANE had the identical mutation. It arose de novo in two families and independently in several other families. Two other patients with familial ANE had different RANBP2 missense mutations that altered conserved residues. None of the three RANBP2 missense mutations were found in 19 patients with isolated ANE or in unaffected controls. We conclude that missense mutations in RANBP2 are susceptibility alleles for familial and recurrent cases of ANE.
Collapse
Affiliation(s)
- Derek E Neilson
- Department of Genetics, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR. The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 2008; 16:1116-25. [PMID: 18611384 DOI: 10.1016/j.str.2008.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/14/2008] [Accepted: 03/22/2008] [Indexed: 10/21/2022]
Abstract
Nucleoporin (Nup) 153 is a highly mobile, multifunctional, and essential nuclear pore protein. It contains four zinc finger motifs that are thought to be crucial for the regulation of transport-receptor/cargo interactions via their binding to the small guanine nucleotide binding protein, Ran. We found this interaction to be independent of the phoshorylation state of the nucleotide. Ran binds with the highest affinity to the second zinc finger motif of Nup153 (Nup153ZnF2). Here we present the crystal structure of this complex, revealing a new type of Ran-Ran interaction partner interface together with the solution structure of Nup153ZnF2. According to our complex structure, Nup153ZnF2 binding to Ran excludes the formation of a Ran-importin-beta complex. This finding suggests a local Nup153-mediated Ran reservoir at the nucleoplasmic distal ring of the nuclear pore, where nucleotide exchange may take place in a ternary Nup153-Ran-RCC1 complex, so that import complexes are efficiently terminated.
Collapse
Affiliation(s)
- Nils Schrader
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Rasala BA, Ramos C, Harel A, Forbes DJ. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol Biol Cell 2008; 19:3982-96. [PMID: 18596237 PMCID: PMC2526682 DOI: 10.1091/mbc.e08-01-0012] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/21/2008] [Accepted: 06/19/2008] [Indexed: 11/11/2022] Open
Abstract
Assembly of the nuclear pore, gateway to the genome, from its component subunits is a complex process. In higher eukaryotes, nuclear pore assembly begins with the binding of ELYS/MEL-28 to chromatin and recruitment of the large critical Nup107-160 pore subunit. The choreography of steps that follow is largely speculative. Here, we set out to molecularly define early steps in nuclear pore assembly, beginning with chromatin binding. Point mutation analysis indicates that pore assembly is exquisitely sensitive to the change of only two amino acids in the AT-hook motif of ELYS. The dependence on AT-rich chromatin for ELYS binding is borne out by the use of two DNA-binding antibiotics. AT-binding Distamycin A largely blocks nuclear pore assembly, whereas GC-binding Chromomycin A(3) does not. Next, we find that recruitment of vesicles containing the key integral membrane pore proteins POM121 and NDC1 to the forming nucleus is dependent on chromatin-bound ELYS/Nup107-160 complex, whereas recruitment of gp210 vesicles is not. Indeed, we reveal an interaction between the cytoplasmic domain of POM121 and the Nup107-160 complex. Our data thus suggest an order for nuclear pore assembly of 1) AT-rich chromatin sites, 2) ELYS, 3) the Nup107-160 complex, and 4) POM121- and NDC1-containing membrane vesicles and/or sheets, followed by (5) assembly of the bulk of the remaining soluble pore subunits.
Collapse
Affiliation(s)
- Beth A. Rasala
- *Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347; and
| | - Corinne Ramos
- *Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347; and
| | - Amnon Harel
- *Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347; and
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Douglass J. Forbes
- *Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347; and
| |
Collapse
|
34
|
Lim RY, Ullman KS, Fahrenkrog B. Biology and biophysics of the nuclear pore complex and its components. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:299-342. [PMID: 18544502 PMCID: PMC4366138 DOI: 10.1016/s1937-6448(08)00632-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleocytoplasmic exchange of proteins and ribonucleoprotein particles occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope (NE). Significant progress has been made during the past few years in obtaining better structural resolution of the three-dimensional architecture of NPC with the help of cryo-electron tomography and atomic structures of domains from nuclear pore proteins (nucleoporins). Biophysical and imaging approaches have helped elucidate how nucleoporins act as a selective barrier in nucleocytoplasmic transport. Nucleoporins act not only in trafficking of macromolecules but also in proper microtubule attachment to kinetochores, in the regulation of gene expression and signaling events associated with, for example, innate and adaptive immunity, development and neurodegenerative disorders. Recent research has also been focused on the dynamic processes of NPC assembly and disassembly that occur with each cell cycle. Here we review emerging results aimed at understanding the molecular arrangement of the NPC and how it is achieved, defining the roles of individual nucleoporins both at the NPC and at other sites within the cell, and finally deciphering how the NPC serves as both a barrier and a conduit of active transport.
Collapse
Affiliation(s)
- Roderick Y.H. Lim
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Katharine S. Ullman
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Birthe Fahrenkrog
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. ACTA ACUST UNITED AC 2007; 178:595-610. [PMID: 17698605 PMCID: PMC2064467 DOI: 10.1083/jcb.200703002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During prophase, vertebrate cells disassemble their nuclear envelope (NE) in the process of NE breakdown (NEBD). We have established an in vitro assay that uses mitotic Xenopus laevis egg extracts and semipermeabilized somatic cells bearing a green fluorescent protein–tagged NE marker to study the molecular requirements underlying the dynamic changes of the NE during NEBD by live microscopy. We applied our in vitro system to analyze the role of the Ran guanosine triphosphatase (GTPase) system in NEBD. Our study shows that high levels of RanGTP affect the dynamics of late steps of NEBD in vitro. Also, inhibition of RanGTP production by RanT24N blocks the dynamic rupture of nuclei, suggesting that the local generation of RanGTP around chromatin may serve as a spatial cue in NEBD. Furthermore, the microtubule-depolymerizing drug nocodazole interferes with late steps of nuclear disassembly in vitro. High resolution live cell imaging reveals that microtubules are involved in the completion of NEBD in vivo by facilitating the efficient removal of membranes from chromatin.
Collapse
|
36
|
Kiseleva E, Morozova KN, Voeltz GK, Allen TD, Goldberg MW. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Struct Biol 2007; 160:224-35. [PMID: 17889556 PMCID: PMC2048824 DOI: 10.1016/j.jsb.2007.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/10/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Reticulon 4a (Rtn4a) is a membrane protein that shapes tubules of the endoplasmic reticulum (ER). The ER is attached to the nuclear envelope (NE) during interphase and has a role in post mitotic/meiotic NE reassembly. We speculated that Rtn4a has a role in NE dynamics. Using immuno-electron microscopy we found that Rtn4a is located at junctions between membranes in the cytoplasm, and between cytoplasmic membranes and the outer nuclear membrane in growing Xenopus oocyte nuclei. We found that during NE assembly in Xenopus egg extracts, Rtn4a localises to the edges of membranes that are flattening onto the chromatin. These results demonstrate that Rtn4a locates to regions of high membrane curvature in the ER and the assembling NE. Previously it was shown that incubation of egg extracts with antibodies against Rtn4a caused ER to form into large vesicles instead of tubules. To test whether Rtn4a contributes to NE assembly, we added the same Rtn4a antibody to nuclear assembly reactions. Chromatin was enclosed by membranes containing nuclear pore complexes, but nuclei did not grow. Instead large sacs of ER membranes attached to, but did not integrate into the NE. It is possible therefore that Rtn4a may have a role in NE assembly.
Collapse
Affiliation(s)
- Elena Kiseleva
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Ksenia N. Morozova
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Terrence D. Allen
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
- Corresponding author. Fax: +44 0 191 334 1201.
| |
Collapse
|
37
|
Higa MM, Alam SL, Sundquist WI, Ullman KS. Molecular characterization of the Ran-binding zinc finger domain of Nup153. J Biol Chem 2007; 282:17090-100. [PMID: 17426026 DOI: 10.1074/jbc.m702715200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex is the gateway for selective traffic between the nucleus and cytoplasm. To learn how building blocks of the pore can create specific docking sites for transport receptors and regulatory factors, we have studied a zinc finger module present in multiple copies within the nuclear pores of higher eukaryotes. All four zinc fingers of human Nup153 were found to bind the small GTPase Ran with dissociation constants ranging between 5 and 40 mum. In addition a fragment of Nup153 encompassing the four tandem zinc fingers was found to bind Ran with similar affinity. NMR structural studies revealed that a representative Nup153 zinc finger adopts the same zinc ribbon structure as the previously characterized Npl4 NZF module. Ran binding was mediated by a three-amino acid motif (Leu(13)/Val(14)/Asn(25)) located within the two zinc coordination loops. Nup153 ZnFs bound GDP and GTP forms of Ran with similar affinities, indicating that this interaction is not influenced by a nucleotide-dependent conformational switch. Taken together, these studies elucidate the Ran-binding interface on Nup153 and, more broadly, provide insight into the versatility of this zinc finger binding module.
Collapse
Affiliation(s)
- Meda M Higa
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
38
|
Cotter L, Allen TD, Kiseleva E, Goldberg MW. Nuclear membrane disassembly and rupture. J Mol Biol 2007; 369:683-95. [PMID: 17467734 DOI: 10.1016/j.jmb.2007.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/18/2022]
Abstract
The nuclear envelope consists of two membranes traversed by nuclear pore complexes. The outer membrane is continuous with the endoplasmic reticulum. At mitosis nuclear pore complexes are dismantled and membranes disperse. The mechanism of dispersal is controversial: one view is that membranes feed into the endoplasmic reticulum, another is that they vesiculate. Using Xenopus egg extracts, nuclei have been assembled and then induced to breakdown by addition of metaphase extract. Field emission scanning electron microscopy was used to study disassembly. Strikingly, endoplasmic reticulum-like membrane tubules form from the nuclear surface after the addition of metaphase extracts, but vesicles were also observed. Microtubule inhibitors slowed but did not prevent membrane removal, whereas Brefeldin A, which inhibits vesicle formation, stops membrane disassembly, suggesting that vesiculation is necessary. Structures that looked like coated buds were observed and buds were labelled for beta-COP. We show that nuclear pore complexes are dismantled and the pore closed prior to membrane rupturing, suggesting that rupturing is an active process rather than a result of enlargement of nuclear pores.
Collapse
Affiliation(s)
- Laura Cotter
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
39
|
Prunuske AJ, Ullman KS. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18:108-16. [PMID: 16364623 PMCID: PMC4339063 DOI: 10.1016/j.ceb.2005.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/01/2005] [Indexed: 02/06/2023]
Abstract
The membrane system that encloses genomic DNA is referred to as the nuclear envelope. However, with emerging roles in signaling and gene expression, these membranes clearly serve as more than just a physical barrier separating the nucleus and cytoplasm. Recent progress in our understanding of nuclear envelope architecture and composition has also revealed an intriguing connection between constituents of the nuclear envelope and human disease, providing further impetus to decipher this cellular structure and the dramatic remodeling process it undergoes with each cell division.
Collapse
Affiliation(s)
- Amy J Prunuske
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|