1
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion prior to assembly of the Caenorhabditis elegans cuticle. PLoS Genet 2023; 19:e1010944. [PMID: 37721936 PMCID: PMC10538796 DOI: 10.1371/journal.pgen.1010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K. Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John I. Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer R. G. Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Andrew D. Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion during assembly of the Caenorhabditis elegans cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542650. [PMID: 37333289 PMCID: PMC10274747 DOI: 10.1101/2023.06.06.542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - John I Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer R G Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Andrew D Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| |
Collapse
|
3
|
Oldham JM, Allen RJ, Lorenzo-Salazar JM, Molyneaux PL, Ma SF, Joseph C, Kim JS, Guillen-Guio B, Hernández-Beeftink T, Kropski JA, Huang Y, Lee CT, Adegunsoye A, Pugashetti JV, Linderholm AL, Vo V, Strek ME, Jou J, Muñoz-Barrera A, Rubio-Rodriguez LA, Hubbard R, Hirani N, Whyte MKB, Hart S, Nicholson AG, Lancaster L, Parfrey H, Rassl D, Wallace W, Valenzi E, Zhang Y, Mychaleckyj J, Stockwell A, Kaminski N, Wolters PJ, Molina-Molina M, Banovich NE, Fahy WA, Martinez FJ, Hall IP, Tobin MD, Maher TM, Blackwell TS, Yaspan BL, Jenkins RG, Flores C, Wain LV, Noth I. PCSK6 and Survival in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:1515-1524. [PMID: 36780644 PMCID: PMC10263132 DOI: 10.1164/rccm.202205-0845oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.
Collapse
Affiliation(s)
- Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Richard J. Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jose M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine and
| | | | - John S. Kim
- Division of Pulmonary and Critical Care Medicine and
| | - Beatriz Guillen-Guio
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Jonathan A. Kropski
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine and
| | - Cathryn T. Lee
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Janelle Vu Pugashetti
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Angela L. Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Vivian Vo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Mary E. Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Jonathan Jou
- Department of Surgery, College of Medicine, University of Illinois, Peoria, Illinois
| | - Adrian Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodriguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Richard Hubbard
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Nik Hirani
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Hart
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - Andrew G. Nicholson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lisa Lancaster
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Helen Parfrey
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Doris Rassl
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, United Kingdom
| | - William Wallace
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Josyf Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Paul J. Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, Instituto de Investigación Biomédica de Bellvitge, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - William A. Fahy
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | | | - Ian P. Hall
- Division of Respiratory Medicine and
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California; and
| | - Timothy S. Blackwell
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
4
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
5
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Proprotein Convertase Subtilisin/Kexin 6 in Cardiovascular Biology and Disease. Int J Mol Sci 2022; 23:ijms232113429. [DOI: 10.3390/ijms232113429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertase subtilisin/kexin 6 (PCSK6) is a secreted serine protease expressed in most major organs, where it cleaves a wide range of growth factors, signaling molecules, peptide hormones, proteolytic enzymes, and adhesion proteins. Studies in Pcsk6-deficient mice have demonstrated the importance of Pcsk6 in embryonic development, body axis specification, ovarian function, and extracellular matrix remodeling in articular cartilage. In the cardiovascular system, PCSK6 acts as a key modulator in heart formation, lipoprotein metabolism, body fluid homeostasis, cardiac repair, and vascular remodeling. To date, dysregulated PCSK6 expression or function has been implicated in major cardiovascular diseases, including atrial septal defects, hypertension, atherosclerosis, myocardial infarction, and cardiac aging. In this review, we describe biochemical characteristics and posttranslational modifications of PCSK6. Moreover, we discuss the role of PCSK6 and related molecular mechanisms in cardiovascular biology and disease.
Collapse
|
7
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:8068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
9
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Hisamatsu Y, Murata H, Tsubokura H, Hashimoto Y, Kitada M, Tanaka S, Okada H. Matrix Metalloproteinases in Human Decidualized Endometrial Stromal Cells. Curr Issues Mol Biol 2021; 43:2111-2123. [PMID: 34940120 PMCID: PMC8929033 DOI: 10.3390/cimb43030146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization.
Collapse
Affiliation(s)
- Yoji Hisamatsu
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiromi Murata
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
- Correspondence: (S.T.); (H.O.)
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
- Correspondence: (S.T.); (H.O.)
| |
Collapse
|
11
|
Parvaz N, Jalali Z. Molecular evolution of PCSK family: Analysis of natural selection rate and gene loss. PLoS One 2021; 16:e0259085. [PMID: 34710160 PMCID: PMC8553125 DOI: 10.1371/journal.pone.0259085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertases subtilisin kexins are serine endoproteases, playing critical roles in the biological functions, including lipid, glucose, and bile acid metabolism, as well as cell proliferation, migration, and metastasis. Experimental studies have demonstrated the physiological functions of PCSKs and their association with diseases; however, studies on the evolutionary history and diversification of these proteins are missing. In the present research, a bioinformatics study was conducted on the molecular evolution of several PCSKs family members and gene loss events across placental mammalian. In order to detect evolutionary constraints and positive selection, the CodeML program of the PAML package was used. The results showed the positive selection to occur in PCSK1, PCSK3, PCSK5, and PCSK7. A decelerated rate of evolution was observed in PCSK7, PCSK3, and MBTPS1 in Carnivores compared to the rest of phylogeny, and an accelerated evolution of PCSK1, PCSK7, and MBTPS1 in Muridae family of rodents was found. Additionally, our results indicated pcsk9 gene loss in 12 species comprising Carnivores and bats (Chiroptera). Future studies are required to evaluate the functional relevance and selective evolutionary advantages associated with these modifications in PCSK proteins during evolution.
Collapse
Affiliation(s)
- Najmeh Parvaz
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- * E-mail:
| |
Collapse
|
12
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Fradet L, Temmar R, Couture F, Belzile M, Fortier PH, Day R. Evaluation of PACE4 isoforms as biomarkers in thyroid cancer. J Otolaryngol Head Neck Surg 2018; 47:63. [PMID: 30340539 PMCID: PMC6194618 DOI: 10.1186/s40463-018-0311-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023] Open
Abstract
Background To date, no single molecular marker has been demonstrated as clinically useful in differentiating malignant from benign thyroid nodules when a fine needle aspiration falls in the “unknown significance” categories of the Bethesda Classification. PACE4, a member of the proprotein convertase family of enzymes, has been shown to play a major role in the pathogenesis of prostate cancer, through the formation of an oncogenic isoform named PACE4-altCT. PACE4 isoforms have also been suggested to play a role in other cancers, including thyroid cancer, but have never been investigated in a detailed manner. Our objective is to compare the histochemical distribution of the two major PACE4 isoforms in benign and malignant thyroid nodules, in order to determine their potential usefulness as discriminatory biomarkers. Methods Thyroid tissues of patients who underwent thyroidectomy were classified according to final pathology. Corresponding tissue sections were immunostained, using two previously validated antibodies raised against the C-terminal end of the two PACE4 isoforms, namely the full-length PACE4 protein (PACE4-FL) and its alternative isoform (PACE4-altCT). Nodules were compared with adjacent normal parenchyma and immunostaining was rated as “low” or “high” by a head and neck pathologist. Results Non-lesional thyroid parenchyma did not express PACE4-FL (p = 0.002). As a group, malignant (n = 17) nodules expressed PACE4-FL significantly more than benign (n = 24) nodules (percentage of high immunostaining: 52.9% vs 4.2%; p = 0.001). Reciprocally, there was a statistically lower expression of PACE4-altCT in malignant nodules than in adjacent non-lesional parenchyma (p = 0.014). The specificity of a high PACE4-FL immunostaining in determining malignancy was 95.8% (95% CI, 78.9% to 99.9%). Conclusion This study supports the previously described relationship between PACE4-FL and PACE4-altCT through alternative splicing. It also suggests that PACE4-FL is a promising biomarker for thyroid malignancy. Its high specific expression for malignancy could make it an interesting “rule in” test for thyroid cancer. Further prospective, quantitative studies are currently being designed to address how measurements of PACE4 isoforms could be used in a clinical setting. Trial registration This study does not report the results of a health care intervention on human participants. It was nonetheless registered on ClinicalTrials.gov under reference number NCT03160482. Electronic supplementary material The online version of this article (10.1186/s40463-018-0311-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurent Fradet
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, Université de Sherbrooke, CIUSSS de l'Estrie - CHUS, Hôpital Hôtel-Dieu de Sherbrooke, 580 Bowen S, Sherbrooke, QC, J1G 2E8, Canada.
| | - Rabia Temmar
- Department of Pathology, Faculty of Medicine, Université de Sherbrooke, CIUSSS de l'Estrie - CHUS, Hôpital Hôtel-Dieu de Sherbrooke, 580 Bowen S, Sherbrooke, QC, J1G 2E8, Canada
| | - Frédéric Couture
- Divison of Urology, Departemnt of Surgery, Faculty of Medicine, Université de Sherbrooke, Institut de pharmacologie de Sherbrooke, 3001 12th Ave N, Sherbrooke, QC, J1H 5N4, Canada
| | - Mathieu Belzile
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, Université de Sherbrooke, CIUSSS de l'Estrie - CHUS, Hôpital Hôtel-Dieu de Sherbrooke, 580 Bowen S, Sherbrooke, QC, J1G 2E8, Canada
| | - Pierre-Hugues Fortier
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, Université de Sherbrooke, CIUSSS de l'Estrie - CHUS, Hôpital Hôtel-Dieu de Sherbrooke, 580 Bowen S, Sherbrooke, QC, J1G 2E8, Canada
| | - Robert Day
- Divison of Urology, Departemnt of Surgery, Faculty of Medicine, Université de Sherbrooke, Institut de pharmacologie de Sherbrooke, 3001 12th Ave N, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
16
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
17
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
18
|
Hoac B, Susan-Resiga D, Essalmani R, Marcinkiweicz E, Seidah NG, McKee MD. Osteopontin as a novel substrate for the proprotein convertase 5/6 (PCSK5) in bone. Bone 2018; 107:45-55. [PMID: 29126984 DOI: 10.1016/j.bone.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
Seven proprotein convertases cleave the basic amino acid consensus sequence K/R-Xn-K/R↓ (where n=0, 2, 4 or 6 variable amino acids) to activate precursor proteins. Despite similarities in substrate specificity, basic amino acid-specific proprotein convertases have a distinct tissue distribution allowing for enzymatic actions on tissue-resident substrates. Proprotein convertase 5/6 (PC5/6) has two splice variants - soluble PC5/6A and membrane-bound PC5/6B - and is expressed during mouse development in many tissues including bone and tooth, but little is known about the substrates for PC5/6 therein. Osteopontin (OPN) is an abundant bone extracellular matrix protein with roles in mineralization, cell adhesion and cell migration, and it has putative consensus sequence sites for cleavage by PC5/6, which may modify its function in bone. Since PC5/6-knockout mouse embryos show developmental abnormalities, and reduced overall mineralization, we designed this study to determine whether OPN is a substrate of PC5/6. In silico analysis of OPN protein sequences identified four potential PC5/6 consensus cleavage sites in human OPN, and three sites - including a noncanonical sequence - in mouse OPN. Ex vivo co-transfections with human OPN revealed complete OPN cleavage reducing full-length OPN (~70kDa) to an N-terminal fragment migrating at ~50kDa and two C-terminal fragments at ~18kDa and ~16kDa. Direct cleavage of OPN by PC5/6A - the predominant isoform expressed in human osteoblast cells - was confirmed by cell-free enzyme-substrate assays and by mass spectrometry. The latter was also used to investigate potential cleavage sites. Co-transfections of PC5/6 and mouse OPN showed partial cleavage of OPN into a C-terminal OPN fragment migrating at ~30kDa and an N-terminal fragment migrating at ~29kDa. Micro-computed tomography of PC5/6-knockout embryos at E18.5 confirmed a reduction in mineralized bone, and in situ hybridization performed on cryo-sections of normal mouse bone using Pcsk5 and Opn anti-sense and control-sense cRNA probes indicated the co-localization of the expression of these genes in bone cells. This mRNA expression profile was supported by semi-quantitative RT-PCR using osteoblast primary cultures, and cultured MC3T3-E1 osteoblast and MLO-Y4 osteocyte cell lines. Immunoblotting for OPN from mouse bone extracts showed altered OPN processing in PC5/6-knockout mice compared to wildtype mice. OPN fragments migrated at ~25kDa and ~16kDa in wildtype bone and were not present in PC5/6-deficient bone. In conclusion, this study demonstrates that Pcsk5 is expressed in bone-forming cells, and that OPN is a novel substrate for PC5/6. Cleavage of OPN by PC5/6 may modify the function of OPN in bone and/or modulate other enzymatic cleavages of OPN, leading to alterations in the bone phenotype.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Edwige Marcinkiweicz
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Affiliated with the University of Montreal, Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Chen S, Wang H, Li H, Zhang Y, Wu Q. Functional analysis of corin protein domains required for PCSK6-mediated activation. Int J Biochem Cell Biol 2017; 94:31-39. [PMID: 29180304 DOI: 10.1016/j.biocel.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for normal blood pressure and cardiac function. Corin is a transmembrane serine protease that activates ANP. Recently, we identified proprotein convertase subtilisin/kexin-6 (PCSK6), also called PACE4, as the long-sought corin activator. Both corin and PCSK6 are expressed in cardiomyocytes, but corin activation occurs only on the cell surface. It remains unknown if cell membrane association is needed for PCSK6 to activate corin. Here we expressed corin deletion mutants in HEK293 cells to analyze the domain structures required for PCSK6-mediated activation. Our results show that soluble corin lacking the transmembrane domain was activated by PCSK6 in the conditioned medium but not intracellularly. Recombinant PCSK6 also activated the soluble corin under cell-free conditions. Moreover, PCSK6-mediated corin activation was not enhanced by cell membrane fractions. These results indicate that cell membrane association is unnecessary for PCSK6 to activate corin. Experiments with monensin that blocks PCSK6 secretion and immunostaining indicated that the soluble corin and PCSK6 were secreted via different intracellular pathways, which may explain the lack of corin activation inside the cell. We also found that the protein domains in the corin pro-peptide region were dispensable for PCSK6-mediated activation and that addition of heparan sulfate and chondroitin sulfate or treatment with heparinase or chondroitinase did not alter corin activation by PCSK6 in HEK293 cells. Together, our results provide important insights into the molecular and cellular mechanisms underlying PCSK6-mediated corin activation that is critical for cardiovascular homeostasis.
Collapse
Affiliation(s)
- Shenghan Chen
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China; The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Hao Wang
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Heng Li
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Yue Zhang
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA; The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Guillemot J, Seidah NG. PACE4 (PCSK6): another proprotein convertase link to iron homeostasis? Haematologica 2016; 100:e377. [PMID: 26341526 DOI: 10.3324/haematol.2015.127175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Johann Guillemot
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), affiliated to the University of Montreal, Montreal, Quebec, H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), affiliated to the University of Montreal, Montreal, Quebec, H2W 1R7, Canada
| |
Collapse
|
21
|
Lee SN, Lee DH, Lee MG, Yoon JH. Proprotein convertase 5/6a is associated with bone morphogenetic protein-2-induced squamous cell differentiation. Am J Respir Cell Mol Biol 2015; 52:749-61. [PMID: 25350918 DOI: 10.1165/rcmb.2014-0029oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Squamous metaplasia in airway epithelium is a pathological process arising from abnormal remodeling/repair responses to injury. Proteolytic maturation of many growth and differentiation factors involved in tissue remodeling is controlled by proprotein convertases (PCs). However, the role of these convertases in airway remodeling remains poorly understood. Using a retinoic acid deficiency-induced squamous metaplasia model of cultured human nasal epithelial cells (HNECs), we observed a significant increase in the expression of PC5/6A, a PC member, and bone morphogenetic protein-2 (BMP-2), a candidate substrate for PC5/6A. Specific lentiviral short hairpin RNA-mediated PC5/6A knockdown decreased BMP-2 expression and maturation, decreased expression of squamous cell markers, and increased expression of ciliated cell markers. Decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK), a PC inhibitor, and LDN-193189, a BMP receptor inhibitor, suppressed squamous differentiation, promoted mucociliary differentiation, and down-regulated the BMP-2/Smad1/5/8/p38 signaling pathways. Dec-RVKR-CMK also decreased expression of PC5/6A, but not furin, another PC member, suggesting the involvement of PC5/6A in squamous differentiation of HNECs. Overexpression of PC5/6A and BMP-2 in the human nasal epithelial cell line RPMI-2650 demonstrated that PC5/6A can activate BMP-2. Under retinoic acid-sufficient culture conditions for mucociliary differentiation of HNECs, short-term expression of PC5/6A by the adenovirus system and addition of exogenous BMP-2 induced squamous differentiation. Furthermore, PC5/6A and BMP-2 were highly expressed in metaplastic squamous epithelium of human nasal polyps. Taken together, PC5/6A is involved in squamous differentiation of HNECs, possibly through up-regulation of the BMP-2/pSmad1/5/8/p38 signaling pathway, pointing to a potential therapeutic target for the prevention of chronic airway diseases that exhibit squamous metaplasia.
Collapse
Affiliation(s)
- Sang-Nam Lee
- 1 Research Center for Human Natural Defense System
| | | | | | | |
Collapse
|
22
|
Couture F, Levesque C, Dumulon-Perreault V, Ait-Mohand S, D'Anjou F, Day R, Guérin B. PACE4-based molecular targeting of prostate cancer using an engineered ⁶⁴Cu-radiolabeled peptide inhibitor. Neoplasia 2015; 16:634-43. [PMID: 25220591 PMCID: PMC4235008 DOI: 10.1016/j.neo.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
The potential of PACE4 as a pharmacological target in prostate cancer has been demonstrated as this proprotein convertase is strongly overexpressed in human prostate cancer tissues and its inhibition, using molecular or pharmacological approaches, results in reduced cell proliferation and tumor progression in mouse tumor xenograft models. We developed a PACE4 high-affinity peptide inhibitor, namely, the multi-leucine (ML), and sought to determine whether this peptide could be exploited for the targeting of prostate cancer for diagnostic or molecular imaging purposes. We conjugated a bifunctional chelator 1,4,7-triazacyclononane-1,4,7- triacetic acid (NOTA) to the ML peptide for copper-64 ((64)Cu) labeling and positron emission tomography (PET)- based prostate cancer detection. Enzyme kinetic assays against recombinant PACE4 showed that the NOTA-modified ML peptide displays identical inhibitory properties compared to the unmodified peptide. In vivo biodistribution of the (64)Cu/NOTA-ML peptide evaluated in athymic nude mice bearing xenografts of two human prostate carcinoma cell lines showed a rapid and high uptake in PACE4-expressing LNCaP tumor at an early time point and in PACE4-rich organs. Co-injection of unlabeled peptide confirmed that tumor uptake was target-specific. PACE4-negative tumors displayed no tracer uptake 15 minutes after injection, while the kidneys, demonstrated high uptake due to rapid renal clearance of the peptide. The present study supports the feasibility of using a (64)Cu/NOTA-ML peptide for PACE4-targeted prostate cancer detection and PACE4 status determination by PET imaging but also provides evidence that ML inhibitor-based drugs would readily reach tumor sites under in vivo conditions for pharmacological intervention or targeted radiation therapy.
Collapse
Affiliation(s)
- Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christine Levesque
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Dumulon-Perreault
- Centre de Recherche Clinique Étienne-Le Bel, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Samia Ait-Mohand
- Centre de Recherche Clinique Étienne-Le Bel, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François D'Anjou
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Brigitte Guérin
- Centre de Recherche Clinique Étienne-Le Bel, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
23
|
Kara I, Poggi M, Bonardo B, Govers R, Landrier JF, Tian S, Leibiger I, Day R, Creemers JWM, Peiretti F. The paired basic amino acid-cleaving enzyme 4 (PACE4) is involved in the maturation of insulin receptor isoform B: an opportunity to reduce the specific insulin receptor-dependent effects of insulin-like growth factor 2 (IGF2). J Biol Chem 2014; 290:2812-21. [PMID: 25527501 DOI: 10.1074/jbc.m114.592543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gaining the full activity of the insulin receptor (IR) requires the proteolytic cleavage of its proform by intra-Golgi furin-like activity. In mammalian cells, IR is expressed as two isoforms (IRB and IRA) that are responsible for insulin action. However, only IRA transmits the growth-promoting and mitogenic effects of insulin-like growth factor 2. Here we demonstrate that the two IR isoforms are similarly cleaved by furin, but when this furin-dependent maturation is inefficient, IR proforms move to the cell surface where the proprotein convertase PACE4 selectively supports IRB maturation. Therefore, in situations of impaired furin activity, the proteolytic maturation of IRB is greater than that of IRA, and accordingly, the amount of phosphorylated IRB is also greater than that of IRA. We highlight the ability of a particular proprotein convertase inhibitor to effectively reduce the maturation of IRA and its associated mitogenic signaling without altering the signals emanating from IRB. In conclusion, the selective PACE4-dependent maturation of IRB occurs when furin activity is reduced; accordingly, the pharmacological inhibition of furin reduces IRA maturation and its mitogenic potential without altering the insulin effects.
Collapse
Affiliation(s)
- Imène Kara
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Marjorie Poggi
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Bernadette Bonardo
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Roland Govers
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Jean-François Landrier
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Sun Tian
- Nuolan Net, 1098 Amsterdam, The Netherlands
| | - Ingo Leibiger
- the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Robert Day
- the Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada, and
| | - John W M Creemers
- the Laboratory of Biochemical Neuroendocrinology Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Peiretti
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France,
| |
Collapse
|
24
|
Sathyamurthy M, Kim CL, Bang YL, Kim YS, Jang JW, Lee GM. Characterization and expression of proprotein convertases in CHO cells: Efficient proteolytic maturation of human bone morphogenetic protein-7. Biotechnol Bioeng 2014; 112:560-8. [DOI: 10.1002/bit.25458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Madhavi Sathyamurthy
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Che Lin Kim
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - You Lim Bang
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
25
|
Constam DB. Regulation of TGFβ and related signals by precursor processing. Semin Cell Dev Biol 2014; 32:85-97. [PMID: 24508081 DOI: 10.1016/j.semcdb.2014.01.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Secreted cytokines of the TGFβ family are found in all multicellular organisms and implicated in regulating fundamental cell behaviors such as proliferation, differentiation, migration and survival. Signal transduction involves complexes of specific type I and II receptor kinases that induce the nuclear translocation of Smad transcription factors to regulate target genes. Ligands of the BMP and Nodal subgroups act at a distance to specify distinct cell fates in a concentration-dependent manner. These signaling gradients are shaped by multiple factors, including proteases of the proprotein convertase (PC) family that hydrolyze one or several peptide bonds between an N-terminal prodomain and the C-terminal domain that forms the mature ligand. This review summarizes information on the proteolytic processing of TGFβ and related precursors, and its spatiotemporal regulation by PCs during development and various diseases, including cancer. Available evidence suggests that the unmasking of receptor binding epitopes of TGFβ is only one (and in some cases a non-essential) function of precursor processing. Future studies should consider the impact of proteolytic maturation on protein localization, trafficking and turnover in cells and in the extracellular space.
Collapse
Affiliation(s)
- Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
26
|
Zymogen activation of neurotrypsin and neurotrypsin-dependent agrin cleavage on the cell surface are enhanced by glycosaminoglycans. Biochem J 2013; 453:83-100. [PMID: 23560819 DOI: 10.1042/bj20130166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The serine peptidase neurotrypsin is stored in presynaptic nerve endings and secreted in an inactive zymogenic form by synaptic activity. After activation, which requires activity of postsynaptic NMDA (N-methyl-D-aspartate) receptors, neurotrypsin cleaves the heparan sulfate proteoglycan agrin at active synapses. The resulting C-terminal 22-kDa fragment of agrin induces dendritic filopodia, which are considered to be precursors of new synapses. In the present study, we investigated the role of GAGs (glycosaminoglycans) in the activation of neurotrypsin and neurotrypsin-dependent agrin cleavage. We found binding of neurotrypsin to the GAG side chains of agrin, which in turn enhanced the activation of neurotrypsin by proprotein convertases and resulted in enhanced agrin cleavage. A similar enhancement of neurotrypsin binding to agrin, neurotrypsin activation and agrin cleavage was induced by the four-amino-acid insert at the y splice site of agrin, which is crucial for the formation of a heparin-binding site. Non-agrin GAGs also contributed to binding and activation of neurotrypsin and, thereby, to agrin cleavage, albeit to a lesser extent. Binding of neurotrypsin to cell-surface glycans locally restricts its conversion from zymogen into active peptidase. This provides the molecular foundation for the local action of neurotrypsin at or in the vicinity of its site of synaptic secretion. By its local action at synapses with correlated pre- and post-synaptic activity, the neurotrypsin-agrin system fulfils the requirements for a mechanism serving experience-dependent modification of activated synapses, which is essential for adaptive structural reorganizations of neuronal circuits in the developing and/or adult brain.
Collapse
|
27
|
Luna Saavedra YG, Zhang J, Seidah NG. PCSK9 prosegment chimera as novel inhibitors of LDLR degradation. PLoS One 2013; 8:e72113. [PMID: 23951290 PMCID: PMC3741231 DOI: 10.1371/journal.pone.0072113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 12/23/2022] Open
Abstract
The proprotein convertase PCSK9, a target for the treatment of hypercholesterolemia, is a negative regulator of the LDL receptor (LDLR) leading to its degradation in endosomes/lysosomes and up-regulation of plasma LDL-cholesterol levels. The proprotein convertases, a family of nine secretory serine proteases, are first synthesized as inactive zymogens. Except for PCSK9, all other convertases are activated following the autocatalytic excision of their inhibitory N-terminal prosegment. PCSK9 is unique since the mature enzyme exhibits a cleaved prosegment complexed with the catalytic subunit and has no protease activity towards other substrates. Similar to other convertases, we hypothesized that the in trans presence of the PCSK9 prosegment would interfere with PCSK9's activity on the LDLR. Since the prosegment cannot be secreted alone, we engineered a chimeric protein using the Fc-region of human IgG1 fused to the PCSK9 prosegment. The expression of such Fcpro-fusion protein in HEK293 and HepG2 cells resulted in a secreted protein that binds PCSK9 and markedly inhibits its activity on the LDLR. This was observed by either intracellular co-expression of PCSK9 and Fcpro or by an extracellular in vitro co-incubation of Fcpro with PCSK9. Structure-function studies revealed that the inhibitory function of Fcpro does not require the acidic N-terminal stretch (residues 31–58) nor the C-terminal Gln152 of the prosegment. Fcpro likely interacts with the prosegment and/or catalytic subunit of the prosegment≡PCSK9 complex thereby allosterically modulating its function. Our data suggest a novel strategic approach for the design and isolation of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Yascara Grisel Luna Saavedra
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Jianbing Zhang
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
28
|
Opposite roles of furin and PC5A in N-cadherin processing. Neoplasia 2013; 14:880-92. [PMID: 23097623 DOI: 10.1593/neo.121250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022] Open
Abstract
We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD) in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs) only the levels of Furin and PC5A are modulated, being inversely (Furin) or directly (PC5A) correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR↓DW(161), mouse nomenclature) reveals a second putative PC-processing site (RIRSDR↓DK(189)) located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp(161). This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343) or high levels of PC5A and negligible Furin levels (U251). Cellular analyses revealed that Furin is the best activating convertase releasing an ~17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ~20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR↓DK(189) renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression.
Collapse
|
29
|
Levesque C, Fugère M, Kwiatkowska A, Couture F, Desjardins R, Routhier S, Moussette P, Prahl A, Lammek B, Appel JR, Houghten RA, D'Anjou F, Dory YL, Neugebauer W, Day R. The Multi-Leu peptide inhibitor discriminates between PACE4 and furin and exhibits antiproliferative effects on prostate cancer cells. J Med Chem 2012; 55:10501-11. [PMID: 23126600 PMCID: PMC3523546 DOI: 10.1021/jm3011178] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The proprotein convertases (PCs) play an important role
in protein precursor activation
through processing at paired basic residues. However, significant
substrate cleavage redundancy has been reported between PCs. The question
remains whether specific PC inhibitors can be designed. This study
describes the identification of the sequence LLLLRVKR, named Multi-Leu
(ML)-peptide, that displayed a 20-fold selectivity on PACE4 over furin,
two enzymes with similar structural characteristics. We have previously
demonstrated that PACE4 plays an important role in prostate cancer
and could be a druggable target. The present study demonstrates that
the ML-peptide significantly reduced the proliferation of DU145 and
LNCaP prostate cancer-derived cell lines and induced G0/G1 cell cycle arrest. However, the ML-peptide must enter
the cell to inhibit proliferation. It is concluded that peptide-based
inhibitors can yield specific PC inhibitors and that the ML-peptide
is an important lead compound that could potentially have applications
in prostate cancer.
Collapse
Affiliation(s)
- Christine Levesque
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Seidah NG, Poirier S, Denis M, Parker R, Miao B, Mapelli C, Prat A, Wassef H, Davignon J, Hajjar KA, Mayer G. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One 2012; 7:e41865. [PMID: 22848640 PMCID: PMC3407131 DOI: 10.1371/journal.pone.0041865] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/26/2012] [Indexed: 12/29/2022] Open
Abstract
Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2) as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/-) mice revealed: i) a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii) a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/-) tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Steve Poirier
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Maxime Denis
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Rex Parker
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Bowman Miao
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Claudio Mapelli
- Bristol-Myers Squibb Pharmaceutical R & D, Princeton, New Jersey, United States of America
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Hanny Wassef
- Hyperlipidemia and Atherosclerosis, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Jean Davignon
- Hyperlipidemia and Atherosclerosis, Clinical Research Institute of Montreal, Affiliated to the Université de Montréal, Montréal, Québec, Canada
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York, United States of America
| | - Gaétan Mayer
- Laboratory of Molecular Cell Biology, Montreal Heart Institute, Département de Médecine and Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
31
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
32
|
Abstract
The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989-1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).
Collapse
Affiliation(s)
- Nabil G Seidah
- Biochemical Neuroendocrinology Laboratory, Clinical Research Institute of Montreal, Montreal, QC, Canada H2W 1R7.
| |
Collapse
|
33
|
Mesnard D, Donnison M, Fuerer C, Pfeffer PL, Constam DB. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev 2011; 25:1871-80. [PMID: 21896659 DOI: 10.1101/gad.16738711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fate of pluripotent cells in early mouse embryos is controlled by graded Nodal signals that are activated by the endoproteases Furin and Pace4. Soluble forms of Furin and Pace4 cleave proNodal in vitro and after secretion in transfected cells, but direct evidence for paracrine activity in vivo is elusive. Here, we show that Furin and Pace4 are released by the extraembryonic microenvironment, and that they cleave a membrane-bound reporter substrate in adjacent epiblast cells and activate Nodal to maintain pluripotency. Secreted Pace4 and Furin also stimulated mesoderm formation, whereas endoderm was only induced by Pace4, correlating with a difference in the spatiotemporal distribution of these proteolytic activities. Our analysis of paracrine Furin and Pace4 activities and their in vivo functions significantly advances our understanding of how the epiblast is patterned by its microenvironment. Adding cell-cell communication to the pleiotropic portfolio of these proteases provides a new framework to study proprotein processing also in other relevant contexts.
Collapse
Affiliation(s)
- Daniel Mesnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Couture F, D'Anjou F, Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol Concepts 2011; 2:421-438. [PMID: 22308173 DOI: 10.1515/bmc.2011.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is increasing interest in the therapeutic targeting of proteases for the treatment of important diseases. Additionally new protein-based therapeutic strategies have the potential to widen the available treatments against these pathologies. In the last decade, accumulated evidence has confirmed that the family of proteases known as proprotein convertases (PCs) are potential targets for viral infections, osteoarthritis, cancer and cardiovascular disease, among others. Nevertheless, there are still many unanswered questions about the relevance of targeting PCs in a therapeutic context, especially regarding the anticipated secondary effects of treatment, considering the observed embryonic lethality of some PC knockout mice. In this review, the benefits of PCs as pharmacological targets will be discussed, with focus on concepts and strategies, as well as on the state of advancement of actual and future inhibitors.
Collapse
Affiliation(s)
- Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | | | | |
Collapse
|
35
|
Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, Day R, Szumska D, Constam D, Bhattacharya S, Prat A, Seidah NG. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem 2011; 286:22785-94. [PMID: 21550985 PMCID: PMC3123046 DOI: 10.1074/jbc.m111.233577] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/12/2011] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.
Collapse
Affiliation(s)
- Delia Susan-Resiga
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Rachid Essalmani
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Josée Hamelin
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Marie-Claude Asselin
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Suzanne Benjannet
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Ann Chamberland
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Robert Day
- the Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Dorota Szumska
- the Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and
| | - Daniel Constam
- the Swiss Federal Institute of Technology Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, CH-1015 Lausanne, Switzerland
| | - Shoumo Bhattacharya
- the Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and
| | - Annik Prat
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G. Seidah
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| |
Collapse
|
36
|
Sun X, Essalmani R, Susan-Resiga D, Prat A, Seidah NG. Latent transforming growth factor beta-binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J Biol Chem 2011; 286:29063-29073. [PMID: 21700711 DOI: 10.1074/jbc.m111.242479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.
Collapse
Affiliation(s)
- Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| |
Collapse
|
37
|
Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J Mol Med (Berl) 2011; 89:1103-11. [DOI: 10.1007/s00109-011-0776-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
|
38
|
Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, Jin W. Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem 2011; 286:15747-56. [PMID: 21398697 DOI: 10.1074/jbc.m110.217638] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) has been associated with a variety of diseases. It is known as an endogenous inhibitor of lipoprotein lipase (LPL), and it modulates lipid deposition and energy homeostasis. ANGPTL4 is cleaved by unidentified protease(s), and the biological importance of this cleavage event is not fully understood with respect to its inhibitory effect on LPL activity. Here, we show that ANGPTL4 appears on the cell surface as the full-length form, where it can be released by heparin treatment in culture and in vivo. ANGPTL4 protein is then proteolytically cleaved into several forms by proprotein convertases (PCs). Several PCs, including furin, PC5/6, paired basic amino acid-cleaving enzyme 4, and PC7, are able to cleave human ANGPTL4 at a consensus site. PC-specific inhibitors block the processing of ANGPTL4. Blockage of ANGPTL4 cleavage reduces its inhibitory effects on LPL activity and decreases its ability to raise plasma triglyceride levels. In summary, the cleavage of ANGPTL4 by these PCs modulates its inhibitory effect on LPL activity.
Collapse
Affiliation(s)
- Xia Lei
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
40
|
Mujoomdar ML, Hogan LM, Parlow AF, Nachtigal MW. Pcsk6 mutant mice exhibit progressive loss of ovarian function, altered gene expression, and formation of ovarian pathology. Reproduction 2010; 141:343-55. [PMID: 21183657 DOI: 10.1530/rep-10-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioactivation of precursor proteins by members of the proprotein convertase (PC) family is essential for normal reproduction. The Pcsk6 gene is a member of the PC family that is expressed in numerous ovarian cell types including granulosa cells and oocytes. We hypothesized that loss of PCSK6 would produce adverse effects in the mouse ovary. Mice incapable of expressing PCSK6 (Pcsk6(tm1Rob)) were obtained, and reproductive parameters (serum hormones, whelping interval, estrus cyclicity, and fertility) were compared to Pcsk6(+/+) mice. While Pcsk6(tm1Rob) female mice are fertile, they manifest reduced reproductive capacity at an accelerated rate relative to Pcsk6(+/+) mice. Reproductive senescence is typically reached by 9 months of age and is correlated with loss of estrus cyclicity, elevated serum FSH levels, and gross alterations in ovarian morphology. A wide range of ovarian morphologies were identified encompassing mild, such as an apparent reduction in follicle number, to moderate--ovarian atrophy with a complete absence of follicles--to severe, manifesting as normal ovarian structures replaced by benign ovarian tumors, including tubulostromal adenomas. Targeted gene expression profiling highlighted changes in RNA expression of molecules involved in processes such as steroidogenesis, gonadotropin signaling, transcriptional regulation, autocrine/paracrine signaling, cholesterol handling, and proprotein bioactivation. These results show that PCSK6 activity plays a role in maintaining normal cellular and tissue homeostasis in the ovary.
Collapse
Affiliation(s)
- Michelle L Mujoomdar
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
In mammals, fertilization and preimplantation embryo development occurs in the oviduct. Cross-talk between the developing embryos and the maternal reproductive tract has been described in such a way as to show that the embryos modulate the physiology and gene expression of the oviduct. Different studies have indicated that transforming growth factor beta (TGF-β) can modulate the oviductal microenvironment and act as an autocrine/paracrine factor on embryo development. LEFTY2, a novel member of the TGF-β superfamily is involved in the negative regulation of other cytokines in this family such as nodal, activin, BMPs, TGF-β1 and Vg1. In previous studies, we have reported that LEFTY2 is differentially expressed in the rat oviduct during pregnancy. In this study, we describe the temporal pattern of LEFTY2 in pregnant and non-pregnant rat oviduct by western blotting, which showed higher levels of LEFTY2 on day 4 of pregnancy, a time at which the embryos are ending their journey along the oviduct. The cellular location of LEFTY2 was assessed by immunohistochemistry, which showed immunolabelling in the cytoplasm and at the apical surface of the oviductal epithelial cells. The oviductal fluid also presented a 26 kDa band, which corresponds to the biologically active form of this protein, at the preimplantation period of pregnancy, indicating LEFTY2 secretion to the lumen. As LEFTY2 is expressed at a high level just before the embryos pass to the uterus, its biological effect might be relevant and significant for the preimplantation stage of embryo development in the oviduct. The fact that embryos do not express LEFTY2 at this stage of development supports this hypothesis.
Collapse
|
42
|
Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, Seidah NG, Prat A. In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem 2010; 286:4257-63. [PMID: 21147780 DOI: 10.1074/jbc.m110.192104] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The proprotein convertase PCSK9 plays a key role in cholesterol homeostasis by binding the LDL receptor and targeting it toward degradation. PCSK9 is strongly expressed in the liver and is found in human and mouse plasma as mature (∼ 62 kDa) and inactivated (∼ 55 kDa) forms. Ex vivo data showed that human PCSK9 is inactivated by cleavage at Arg(218)↓ by the overexpressed convertases furin and PC5/6A. Analysis of the plasma of human heterozygotes for R218S and F216L mutations revealed a ∼ 50% reduction in the levels of the ∼ 55-kDa form. To identify the convertase(s) responsible for cleavage at Arg(218) in vivo, we inactivated the genes of furin and/or PC5/6 specifically in hepatocytes. The PCSK9-inactivated form was strongly reduced in mice lacking furin in hepatocytes (Fur-hKO) and only slightly reduced in PC5/6-hKO plasma. In agreement with a key role of furin in regulating PCSK9 activity in vivo, we observed an overall 26% drop in the LDL receptor protein levels of Fur-hKO livers, likely due to the compound effects of a 35% increase in PCSK9 mRNA levels and the loss of PCSK9 cleavage, suggesting a higher activity of PCSK9 in these mice. Overexpression of PCSK9 in primary hepatocytes obtained from these mice revealed that only full-length, membrane-bound, but not soluble, furin is the cognate convertase. We conclude that in hepatocytes furin regulates PCSK9 mRNA levels and is the key in vivo-inactivating protease of circulating PCSK9.
Collapse
Affiliation(s)
- Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Proprotein convertase inhibition results in decreased skin cell proliferation, tumorigenesis, and metastasis. Neoplasia 2010; 12:516-26. [PMID: 20651981 DOI: 10.1593/neo.92030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/18/2022] Open
Abstract
PACE4 is a proprotein convertase (PC) responsible for cleaving and activating proteins that contribute to enhance tumor progression. PACE4 overexpression significantly increased the susceptibility to carcinogenesis, leading to enhanced tumor cell proliferation and premature degradation of the basement membrane. In the present study, we sought to evaluate a novel approach to retard skin tumor progression based on the inhibition of PACE4. We used decanoyl-RVKR-chloromethylketone (CMK), a small-molecule PC inhibitor, for in vitro and in vivo experiments. We found that CMK-dependent blockage of PACE4 activity in skin squamous cell carcinoma cell lines resulted in impaired insulin-like growth factor 1 receptor maturation, diminished its intrinsic tyrosine kinase activity, and decreased tumor cell proliferation. Two-stage skin chemical carcinogenesis experiments, together with topical applications of CMK, demonstrated that this PC inhibitor markedly reduced tumor incidence, tumor multiplicity, and metastasis, pointing to a significant delay in tumor progression in wild-type and PACE4 transgenic mice. These results identify PACE4, together with other PCs, as suitable targets to slow down or block tumor progression, suggesting that PC inhibition is a potential approach for therapy for solid tumors.
Collapse
|
44
|
Chitramuthu BP, Baranowski DC, Cadieux B, Rousselet E, Seidah NG, Bennett HP. Molecular cloning and embryonic expression of zebrafish PCSK5 co-orthologues: Functional assessment during lateral line development. Dev Dyn 2010; 239:2933-46. [DOI: 10.1002/dvdy.22426] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
45
|
Mesnard D, Constam DB. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. ACTA ACUST UNITED AC 2010; 191:129-39. [PMID: 20876279 PMCID: PMC2953431 DOI: 10.1083/jcb.201005026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The CLIP biosensor reveals the spatiotemporal activity of the Nodal proprotein convertases Furin and Pace4 during embryonic development. Axis formation and allocation of pluripotent progenitor cells to the germ layers are governed by the TGF-β–related Nodal precursor and its secreted proprotein convertases (PCs) Furin and Pace4. However, when and where Furin and Pace4 first become active have not been determined. To study the distribution of PCs, we developed a novel cell surface–targeted fluorescent biosensor (cell surface–linked indicator of proteolysis [CLIP]). Live imaging of CLIP in wild-type and Furin- and Pace4-deficient embryonic stem cells and embryos revealed that Furin and Pace4 are already active at the blastocyst stage in the inner cell mass and can cleave membrane-bound substrate both cell autonomously and nonautonomously. CLIP was also cleaved in the epiblast of implanted embryos, in part by a novel activity in the uterus that is independent of zygotic Furin and Pace4, suggesting a role for maternal PCs during embryonic development. The unprecedented sensitivity and spatial resolution of CLIP opens exciting new possibilities to elucidate PC functions in vivo.
Collapse
Affiliation(s)
- Daniel Mesnard
- Swiss Federal Institute of Technology Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
46
|
Liu J, Afroza H, Rader DJ, Jin W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J Biol Chem 2010; 285:27561-70. [PMID: 20581395 DOI: 10.1074/jbc.m110.144279] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first and rate-limiting step in chylomicron/very low density lipoprotein clearance at the luminal surface of the capillaries. Angiopoietin-like protein 3 (ANGPTL3) is shown to inhibit LPL activity and plays important roles in modulating lipoprotein metabolism in vivo. However, the mechanism by which it inhibits LPL activity remains poorly understood. Using cell-based analysis of the interaction between ANGPTL3, furin, proprotein convertase subtilisin/kexin type 5 (PCSK5), paired amino acid converting enzyme-4 (PACE4), and LPL, we demonstrated that the cleavage of LPL by proprotein convertases is an inactivation process, similar to that seen for endothelial lipase cleavage. At physiological concentrations and in the presence of cells, ANGPTL3 is a potent inhibitor of LPL. This action is due to the fact that ANGPTL3 can enhance LPL cleavage by endogenous furin and PACE4 but not by PCSK5. This effect is specific to LPL but not endothelial lipase. Both N- and C-terminal domains of LPL are required for ANGPTL3-enhanced cleavage, and the N-terminal domain of ANGPTL3 is sufficient to exert its effect on LPL cleavage. Moreover, ANGPTL3 enhances LPL cleavage in the presence of either heparan sulfate proteoglycans or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). By enhancing LPL cleavage, ANGPTL3 dissociates LPL from the cell surface, inhibiting both the catalytic and noncatalytic functions of LPL. Taken together, our data provide a molecular connection between ANGPTL3, LPL, and proprotein convertases, which may represent a rapid signal communication among different metabolically active tissues to maintain energy homeostasis. These novel findings provide a new paradigm of specific protease-substrate interaction and further improve our knowledge of LPL biology.
Collapse
Affiliation(s)
- Jun Liu
- Translational Medicine and Therapeutics and Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Papillomaviruses represent a medically important virus family. Infection with a high-risk human papillomavirus type is a prerequisite for cervical carcinoma development. Infection by low-risk types may result in the generation of benign skin warts. It was recently found that infectious entry of these viruses is dependent upon a specific proteolytic event that occurs prior to viral endocytosis. Specifically, a proprotein convertase, furin or proprotein convertase 5/6, must cleave the minor capsid protein for infection to proceed. Here, an overview of what is currently known about this process is presented, and what we have learned about the papillomavirus lifecycle from these studies discussed. This work also has implications for further advances in papillomavirus vaccine development.
Collapse
Affiliation(s)
- Patricia M Day
- Laboratory of Cellular Oncology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Zhou Z, Shen T, Zhang BH, Lv XY, Lin HY, Zhu C, Xue LQ, Wang H. The proprotein convertase furin in human trophoblast: Possible role in promoting trophoblast cell migration and invasion. Placenta 2009; 30:929-38. [PMID: 19853298 DOI: 10.1016/j.placenta.2009.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022]
Abstract
Furin, a proprotein convertase (PC), is ubiquitously expressed and implicated in many physiological and pathological processes. This study is aimed to identify the role of furin in human trophoblast invasion and migration. Furin was found to be highly expressed in placental villi of both rhesus monkeys and human beings during early pregnancy. Specifically, furin was found in trophoblast column and trophoblast shell, regions where highly invasive cytotrophoblast cells invade the maternal decidua during human placentation. To determine whether furin plays any role in trophoblast invasion and migration, we employed human extravillous HTR8/SVneo cells in Matrigel invasion and transwell migration assays. Knocking-down furin expression by siRNA significantly inhibited invasion and migration of HTR8/SVneo cells (P<0.01), with corresponding decrease of matrix metalloproteinase-9 (MMP-9) activities. In contrast, over-expression of furin markedly increased cell invasion and migration (P<0.01), accompanied by significant increase of MMP-9 activities. Furthermore, furin siRNA significantly increased the levels of both tissue inhibitors of MMPs (TIMP)-1 and -2. Our results suggest that furin may play an important role in the invasion and migration of human trophoblast cells during early pregnancy.
Collapse
Affiliation(s)
- Z Zhou
- Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun X, Essalmani R, Seidah NG, Prat A. The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model. Mol Cancer 2009; 8:73. [PMID: 19737405 PMCID: PMC2746178 DOI: 10.1186/1476-4598-8-73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/08/2009] [Indexed: 03/26/2023] Open
Abstract
Background The secretory basic amino acid-specific proprotein convertases (PCs) have often been associated with cancer/metastasis. By controlling the cleavage of cancer-associated proteins, PCs play key roles in multiple steps of cancer development. Most analyses of the implication of PCs in cancer/metastasis relied on the use of in vitro overexpression systems or inhibitors that can affect more than one PC. Aside from the role of furin in salivary gland tumorigenesis, no other in vivo genetic model of PC-knockout was reported in relation to cancer development. Results Since PC5/6 is highly expressed in the small intestine, the present study examined its in vivo role in intestinal tumorigenesis. Analysis of human intestinal tumors at various stages showed a systematic down-regulation of PC5/6 expression. Since gene inactivation of PC5/6 leads to lethality at birth, we generated mice lacking PC5/6 in enterocytes and analyzed the impact of the presence or absence of this PC in the mouse ApcMin/+ model that develops numerous adenocarcinomas along the intestinal tract. This resulted in viable mice with almost no expression of PC5/6 in small intestine, but with no overt phenotype. The data showed that by themselves ApcMin/+ tumors express lower levels of PC5/6 mRNA, and that the lack of PC5/6 in enterocytes results in a significantly higher tumor number in the duodenum, with a similar trend in other intestinal segments. Finally, the absence of PC5/6 is also associated with a premature mortality of ApcMin/+ mice. Conclusion Overall, these data suggest that intestinal PC5/6 is protective towards tumorigenesis, especially in mouse duodenum, and possibly in human colon.
Collapse
Affiliation(s)
- Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
50
|
Iatan I, Dastani Z, Do R, Weissglas-Volkov D, Ruel I, Lee JC, Huertas-Vazquez A, Taskinen MR, Prat A, Seidah NG, Pajukanta P, Engert JC, Genest J. Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. ACTA ACUST UNITED AC 2009; 2:467-75. [PMID: 20031622 DOI: 10.1161/circgenetics.109.877811] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A low level of plasma high-density lipoprotein cholesterol (HDL-C) is a risk factor for cardiovascular disease. HDL particles are modulated by a variety of lipases, including endothelial lipase, a phospholipase present on vascular endothelial cells. The proprotein convertase subtilisin/kexin type 5 (PCSK5) gene product is known to directly inactivate endothelial lipase and indirectly cleave and activate angiopoetin-like protein 3, a natural inhibitor of endothelial lipase. We therefore investigated the effect of human PCSK5 genetic variants on plasma HDL-C levels. METHODS AND RESULTS Haplotypes at the PCSK5 locus were examined in 9 multigenerational families that included 60 individuals with HDL-C <10th percentile. Segregation with low HDL-C in 1 family was found. Sequencing of the PCSK5 gene in 12 probands with HDL-C <5th percentile identified 7 novel variants. Using a 2-stage design, we first genotyped these single-nucleotide polymorphisms (SNPs) along with 163 tagSNPs and 12 additional SNPs (n=182 total) in 457 individuals with documented coronary artery disease. We identified 9 SNPs associated with HDL-C (P<0.05), with the strongest results for rs11144782 and rs11144766 (P=0.002 and P=0.005, respectively). The SNP rs11144782 was also associated with very low-density lipoprotein (P=0.039), triglycerides (P=0.049), and total apolipoprotein levels (P=0.022). In stage 2, we replicated the association of rs11144766 with HDL-C (P=0.014) in an independent sample of Finnish low HDL-C families. In a combined analysis of both stages (n=883), region-wide significance of rs11144766 and low HDL-C was observed (unadjusted P=1.86x10(-4) and Bonferroni-adjusted P=0.031). CONCLUSIONS We conclude that variability at the PCSK5 locus influences HDL-C levels, possibly through the inactivation of endothelial lipase activity, and, consequently, atherosclerotic cardiovascular disease risk.
Collapse
Affiliation(s)
- Iulia Iatan
- Department of Biochemistry, Cardiovascular Research Laboratories, Cardiology Division, McGill University Health Centre/Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|