1
|
Dexamethasone-Mediated Upregulation of Calreticulin Inhibits Primary Human Glioblastoma Dispersal Ex Vivo. Int J Mol Sci 2018; 19:ijms19020572. [PMID: 29443896 PMCID: PMC5855794 DOI: 10.3390/ijms19020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Dispersal of Glioblastoma (GBM) renders localized therapy ineffective and is a major cause of recurrence. Previous studies have demonstrated that Dexamethasone (Dex), a drug currently used to treat brain tumor-related edema, can also significantly reduce dispersal of human primary GBM cells from neurospheres. It does so by triggering α5 integrin activity, leading to restoration of fibronectin matrix assembly (FNMA), increased neurosphere cohesion, and reduction of neurosphere dispersal velocity (DV). How Dex specifically activates α5 integrin in these GBM lines is unknown. Several chaperone proteins are known to activate integrins, including calreticulin (CALR). We explore the role of CALR as a potential mediator of Dex-dependent induction of α5 integrin activity in primary human GBM cells. We use CALR knock-down and knock-in strategies to explore the effects on FNMA, aggregate compaction, and dispersal velocity in vitro, as well as dispersal ex vivo on extirpated mouse retina and brain slices. We show that Dex increases CALR expression and that siRNA knockdown suppresses Dex-mediated FNMA. Overexpression of CALR in GBM cells activates FNMA, increases compaction, and decreases DV in vitro and on explants of mouse retina and brain slices. Our results define a novel interaction between Dex, CALR, and FNMA as inhibitors of GBM dispersal.
Collapse
|
2
|
Gao S, Shen J, Hornicek F, Duan Z. Three-dimensional (3D) culture in sarcoma research and the clinical significance. Biofabrication 2017; 9:032003. [DOI: 10.1088/1758-5090/aa7fdb] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol 2017; 232:2679-2697. [PMID: 27791270 DOI: 10.1002/jcp.25664] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Abstract
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
4
|
Liau B, Jackman CP, Li Y, Bursac N. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Sci Rep 2017; 7:42290. [PMID: 28181589 PMCID: PMC5299411 DOI: 10.1038/srep42290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium. The functional improvements in mESC-CM + fetal CF patches were associated with differences in structural remodeling and increased expression of proteins involved in cardiac function. To determine role of paracrine signaling, we cultured pure mESC-CMs within miniature tissue "micro-patches" supplemented with media conditioned by adult or fetal CFs. Fetal CF-conditioned media distinctly enhanced CM spreading and contractile activity, which was shown by pathway inhibitor experiments and Western blot analysis to be mediated via MEK-ERK signaling. In mESC-CM monolayers, CF-conditioned media did not alter CM spreading or MEK-ERK activation. Collectively, our studies show that 3D co-culture of mESC-CMs with embryonic CFs is superior to co-culture with adult CFs for in vitro generation of functional myocardium. Ensuring consistent developmental stages of cardiomyocytes and supporting non-myocytes may be a critical factor for promoting functional maturation of engineered cardiac tissues.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Yanzhen Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 2016; 163:94-108. [PMID: 27063403 DOI: 10.1016/j.pharmthera.2016.03.013] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer cells propagated in three-dimensional (3D) culture systems exhibit physiologically relevant cell-cell and cell-matrix interactions, gene expression and signaling pathway profiles, heterogeneity and structural complexity that reflect in vivo tumors. In recent years, development of various 3D models has improved the study of host-tumor interaction and use of high-throughput screening platforms for anti-cancer drug discovery and development. This review attempts to summarize the various 3D culture systems, with an emphasis on the most well characterized and widely applied model - multicellular tumor spheroids. This review also highlights the various techniques to generate tumor spheroids, methods to characterize them, and its applicability in cancer research.
Collapse
Affiliation(s)
- Sritama Nath
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Gayathri R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Duke Cancer Institute, Women's Cancer Program, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
6
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
7
|
Brennan JR, Hocking DC. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly. Acta Biomater 2016; 32:198-209. [PMID: 26712598 PMCID: PMC4754160 DOI: 10.1016/j.actbio.2015.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/24/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022]
Abstract
The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. STATEMENT OF SIGNIFICANCE Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to organize cells into modular building blocks for artificial tissue fabrication. Fibronectin is an ECM protein that plays a key role in tissue formation during embryonic development. Additionally, the cell-mediated process of converting soluble fibronectin into insoluble, ECM-associated fibrils has been shown to initiate cellular self-assembly in vitro. In this study, we examine the relationship between the strength of cell-substrate adhesions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Our results indicate that substrate composition and density play cooperative roles with cell-mediated fibronectin matrix assembly to control the transition of cells from 2D monolayers into 3D multicellular aggregates. Results of this study provide a quantitative approach to build predictive models of cellular self-assembly, as well as a simple cell-culture platform to produce biomimetic units for modular tissue engineering.
Collapse
Affiliation(s)
- James R Brennan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Denise C Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
8
|
Goc A, Sabbineni H, Abdalla M, Somanath PR. p70 S6-kinase mediates the cooperation between Akt1 and Mek1 pathways in fibroblast-mediated extracellular matrix remodeling. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:1626-35. [PMID: 25843685 PMCID: PMC4428983 DOI: 10.1016/j.bbamcr.2015.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2015] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Previous studies have demonstrated both synergistic and opposing effects of Akt and Mek1/2 in various cell functions and disease states. Furthermore, Akt has been reported to inhibit and activate cRaf/Mek pathway, suggesting that their mutual interaction and cooperation may be cell type, stimuli and/or context specific. While PI3-kinase/Akt and cRaf/Mek pathways have been implicated in the regulation of extracellular matrix (ECM) remodeling, mutual interactions between these two pathways and their specific contributions to the events leading to ECM synthesis and assembly is not clear. We investigated the specific role of Akt1 and Mek1 in ECM synthesis and assembly by NIH 3T3 fibroblasts and how these effects were reconciled to mediate overall ECM remodeling. Our study identified that cooperation between Akt1 and Mek1 is necessary to mediate ECM synthesis. Whereas Akt1 activation resulted in Mek1 activation as evidenced by increased ERK1/2 phosphorylation, Mek1 inhibition using U0126 or DN-Mek1 resulted in enhanced Akt1 phosphorylation. Interestingly, both Akt1 and Mek1 activities were needed for the synthesis and assembly of ECM. The effect of Akt1 and Mek1 on ECM synthesis was reconciled through the activation of p70 S6-kinase via phosphorylation at T421/S424 and S411, respectively. Furthermore, Akt1 and Mek1 cooperated in mediating ECM assembly via activation of integrin β1. Together, we show for the first time that Akt1 and Mek1 pathways cooperate in the regulation of ECM remodeling by the fibroblasts.
Collapse
Affiliation(s)
- Anna Goc
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Maha Abdalla
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
9
|
Liu T, Chien CC, Parkinson L, Thierry B. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8090-7. [PMID: 24773458 DOI: 10.1021/am500367h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel approach based on advanced micromachining is demonstrated to fabricate concave microwell arrays for the formation of high quality multicellular tumor spheroids. Microfabricated molds were prepared using a state-of-the-art CNC machining center, containing arrays of 3D convex micropillars with size ranging from 150 μm to 600 μm. Microscopic imaging of the micropillars machined on the mold showed smooth, curved microfeatures of a dramatic 3D shape. Agarose microwells could be easily replicated from the metallic molds. EMT-6 tumor cells seeded in the primary macrowell sedimented efficiently to the bottom of the concave microwells and formed multicellular spheroids within 48 h. Dense and homogeneous multicellular spheroids were obtained after 10 days of culture, confirming the suitability of the proposed approach. To facilitate long term spheroid culture and reliable on-chip drug assay, polydimethylsiloxane microwells were also replicated from the metallic molds. A solvent swelling method was adapted and optimized to Pluronic F127 towards physically entrapping the block copolymer molecules within the polydimethylsiloxane network and in turn to improve long term cell-binding resistance. Homogeneous multicellular spheroids were efficiently formed in the concave microwells and on-chip drug assays could be reliably carried out using curcumin as a model anti-cancer drug. Advanced micromachining provides an excellent technological solution to the fabrication of high quality concave microwells.
Collapse
Affiliation(s)
- Tianqing Liu
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia
| | | | | | | |
Collapse
|
10
|
Hsia HC, Nair MR, Corbett SA. The fate of internalized α5 integrin is regulated by matrix-capable fibronectin. J Surg Res 2014; 191:268-279. [PMID: 25062814 DOI: 10.1016/j.jss.2014.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Assembly of fibronectin matrices is associated with integrin receptor turnover and is an important determinant of tissue remodeling. Although it is well established that fibronectin is the primary ligand for α5β1 receptor, the relationship between fibronectin matrix assembly and the fate of internalized α5 integrin remains poorly characterized. MATERIALS AND METHODS To evaluate the effect of fibronectin matrix on the fate of internalized α5 integrin, fibronectin-null Chinese hamster ovary and mouse embryo fibroblast cells were used to track the fate of α5 after exposure to exogenous fibronectin. RESULTS In the absence of matrix-capable fibronectin dimer, levels of internalized α5 decreased rapidly over time. This correlated with a decline in total cellular α5 and was associated with the ubiquitination of α5 integrin. In contrast, internalized and total cellular α5 protein levels were maintained when matrix-capable fibronectin was present in the extracellular space. Further, we show that ubiquitination and degradation of internalized α5 integrin in the absence of fibronectin require the presence of two specific lysine residues in the α5 cytoplasmic tail. CONCLUSIONS Our data demonstrate that α5 integrin turnover is dependent on fibronectin matrix assembly, where the absence of matrix-capable fibronectin in the extracellular space targets the internalized receptor for rapid degradation. These findings have important implications for understanding tissue-remodeling processes found in wound repair and tumor invasion.
Collapse
Affiliation(s)
- Henry C Hsia
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| | - Mohan R Nair
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| | - Siobhan A Corbett
- Department of Surgery, Robert Wood Johnson Medical School, New Brunswick, NJ 08903
| |
Collapse
|
11
|
Lai Y, Chen J, Zhang T, Gu D, Zhang C, Li Z, Lin S, Fu X, Schultze-Mosgau S. Effect of 3D microgroove surface topography on plasma and cellular fibronectin of human gingival fibroblasts. J Dent 2013; 41:1109-21. [PMID: 23948393 DOI: 10.1016/j.jdent.2013.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Fibronectin (FN), an extracellular matrix (ECM) glycoprotein, is a key factor in the compatibility of dental implant materials. Our objective was to determine the optimal dimensions of microgrooves in the transmucosal part of a dental implant, for optimal absorption of plasma FN and expression of cellular FN by human gingival fibroblasts (HGFs). METHODS Microgroove titanium surfaces were fabricated by photolithography with parallel grooves: 15μm, 30μm, or 60μm in width and 5μm or 10μm in depth. Smooth titanium surfaces were used as controls. Surface hydrophilicity, plasma FN adsorption and cellular FN expression by HGFs were measured for both microgroove and control samples. RESULTS We found that narrower and deeper microgrooves amplified surface hydrophobicity. A 15-μm wide microgroove was the most hydrophobic surface and a 60-μm wide microgroove was the most hydrophilic. The latter had more expression of cellular FN than any other surface, but less absorption of plasma FN than 15-μm wide microgrooves. Variation in microgroove depth did not appear to effect FN absorption or expression unless the groove was narrow (∼15 or 30μm). In those instances, the shallower depths resulted in greater expression of cellular FN. CONCLUSIONS Our microgrooves improved expression of cellular FN, which functionally compensated for plasma FN. A microgroove width of 60μm and depth of 5 or 10μm appears to be optimal for the transmucosal part of the dental implant.
Collapse
Affiliation(s)
- Yingzhen Lai
- School of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakaoka R, Hirano Y, Mooney DJ, Tsuchiya T, Matsuoka A. Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. J Artif Organs 2013; 16:284-93. [PMID: 23512309 DOI: 10.1007/s10047-013-0703-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/04/2013] [Indexed: 02/02/2023]
Abstract
Alginate is a polysaccharide that can be crosslinked by divalent cations, such as calcium ions, to form a gel. Chemical modification is typically used to improve its cell adhesive properties for tissue engineering applications. In this study, alginates were modified with peptides containing RGD (arginine-glycine-aspartic acid) or PHSRN (proline-histidine-serine-arginine-asparagine) sequences from fibronectin to study possible additive and synergistic effects on adherent cells. Alginates modified with each peptide were mixed at different ratios to form gels containing various concentrations and spacing between the RGD and PHSRN sequences. When normal human osteoblasts (NHOsts) were cultured on or in the gels, the ratio of RGD to PHSRN was found to influence cell behaviors, especially differentiation. NHOsts cultured on gels composed of RGD- and PHSRN-modified alginates showed enhanced differentiation when the gels contained >33 % RGD-alginate, suggesting the relative distribution of the peptides and the presentation to cells are important parameters in this regulation. NHOsts cultured in gels containing both RGD- and PHSRN-alginates also demonstrated a similar enhancement tendency of calcium deposition that was dependent on the peptide ratio in the gel. However, calcium deposition was greater when cells were cultured in the gels, as compared to on the gels. These results suggest that modifying this biomaterial to more closely mimic the chemistry of natural cell adhesive proteins, (e.g., fibronectin) may be useful in developing scaffolds for bone tissue engineering and provide three-dimensional cell culture systems which more closely mimic the environment of the human body.
Collapse
Affiliation(s)
- Ryusuke Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan,
| | | | | | | | | |
Collapse
|
13
|
Hayes SD, Liu H, MacDonald E, Sanderson CM, Coulson JM, Clague MJ, Urbé S. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem 2012; 287:43007-18. [PMID: 23105109 PMCID: PMC3522295 DOI: 10.1074/jbc.m112.386938] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The opposing regulators of ubiquitylation status, E3 ligases and deubiquitylases, are often found to be associated in complexes. Here we report on a novel interaction between the E3 ligase BRAP (also referred to as IMP), a negative regulator of the MAPK scaffold protein KSR, and two closely related deubiquitylases, USP15 and USP4. We map the interaction to the N-terminal DUSP-UBL domain of USP15 and the coiled coil region of BRAP. USP15 as well as USP4 oppose the autoubiquitylation of BRAP, whereas BRAP promotes the ubiquitylation of USP15. Importantly, USP15 but not USP4 depletion destabilizes BRAP by promoting its proteasomal degradation, and BRAP-protein levels can be rescued by reintroducing catalytically active but not inactive mutant USP15. Unexpectedly, USP15 depletion results in a decrease in amplitude of MAPK signaling in response to EGF and PDGF. We provide evidence for a model in which the dominant effect of prolonged USP15 depletion upon signal amplitude is due to a decrease in CRAF levels while allowing for the possibility that USP15 may also function to dampen MAPK signaling through direct stabilization of a negative regulator, the E3 ligase BRAP.
Collapse
Affiliation(s)
- Sebastian D Hayes
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Lin S, Mequanint K. The role of Ras-ERK-IL-1β signaling pathway in upregulation of elastin expression by human coronary artery smooth muscle cells cultured in 3D scaffolds. Biomaterials 2012; 33:7047-56. [PMID: 22796164 DOI: 10.1016/j.biomaterials.2012.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/22/2012] [Indexed: 12/27/2022]
Abstract
Incorporation of endogenous elastin, a key structural component of the vascular extracellular matrix (ECM), is an important requirement for engineered vascular tissues. In addition to providing elastic recoil of the tissue, elastin influences cell function and promotes cell signaling by interacting with specific cell surface receptors. Although progress has been made in understanding the mechanisms of in vivo elastin expression and incorporation into fibers, it is notably absent from engineered vessels. Recently we showed that the three-dimensional (3D) scaffold topography was able to upregulate elastin synthesis by human coronary artery smooth muscle cells (HCASMC). The present study was undertaken to explore the molecular mechanisms responsible for 3D scaffold-induced elastin gene transcription. Here, we show several lines of evidence that signal transduction pathway leading to elastin gene expression by HCASMC cultured in synthetic 3D scaffolds to be strikingly different from two-dimensional (2D) surfaces. In 3D scaffolds, α5β1 integrin engagement by HCASMC was significantly reduced and the putative focal adhesion kinase (FAK) was poorly phosphorylated concomitant with FAK and protein tyrosine kinase Pyk2 downregulation. FAK-associated adhesion proteins vinculin and paxillin were also significantly downregulated by the 3D scaffold topography. Furthermore, contrary to 2D cultures, HCASMC cultured on 3D scaffolds had no Rho activation suggesting pliability of the elastomeric synthetic scaffold. Elastin expression in 3D cultures followed Ras-ERK1/2 signal transduction pathway and was further dependent on endogenously expressed interleukin-1β (IL-1β). Blocking of ERK1/2 activation using a pharmacologic inhibitor reduced both elastin and IL-1β gene expressions in 3D cultures. Transient transfection of IL-1β using siRNA, however, did not affect ERK1/2 activation but downregulated elastin gene expression suggesting that endogenous IL-1β acts downstream from ERK1/2. Taken together, results of the present study provide evidence that endogenous IL-1β play a role in elastin gene upregulation and, that this upregulation is mediated by the Ras-ERK1/2 pathway in 3D cultures.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
15
|
Jia D, Entersz I, Butler C, Foty RA. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells. BMC Cancer 2012; 12:94. [PMID: 22433434 PMCID: PMC3359283 DOI: 10.1186/1471-2407-12-94] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion--a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin--the principle mediator of fibronectin matrix assembly (FNMA)--as an invasion suppressor of prostate cancer cells. METHODS Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. RESULTS We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. CONCLUSIONS We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.
Collapse
Affiliation(s)
- Dongxuan Jia
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, 125 Paterson Street, CAB 7319, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
16
|
Sabari J, Lax D, Connors D, Brotman I, Mindrebo E, Butler C, Entersz I, Jia D, Foty RA. Fibronectin matrix assembly suppresses dispersal of glioblastoma cells. PLoS One 2011; 6:e24810. [PMID: 21980357 PMCID: PMC3184095 DOI: 10.1371/journal.pone.0024810] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5β1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal.
Collapse
Affiliation(s)
- Joshua Sabari
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Daniel Lax
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Daniel Connors
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ian Brotman
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Eric Mindrebo
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Christine Butler
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ildiko Entersz
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Dongxuan Jia
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ramsey A. Foty
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Buts JP, Dekeyser N. Raf: a key regulatory kinase for transduction of mitogenic and metabolic signals of the probiotic Saccharomyces boulardii. Clin Res Hepatol Gastroenterol 2011; 35:596-7. [PMID: 21652278 DOI: 10.1016/j.clinre.2011.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 02/04/2023]
|
18
|
Butler CM, Foty RA. Measurement of aggregate cohesion by tissue surface tensiometry. J Vis Exp 2011:2739. [PMID: 21505411 DOI: 10.3791/2739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rigorous measurement of intercellular binding energy can only be made using methods grounded in thermodynamic principles in systems at equilibrium. We have developed tissue surface tensiometry (TST) specifically to measure the surface free energy of interaction between cells. The biophysical concepts underlying TST have been previously described in detail. The method is based on the observation that mutually cohesive cells, if maintained in shaking culture, will spontaneously assemble into clusters. Over time, these clusters will round up to form spheres. This rounding-up behavior mimics the behavior characteristic of liquid systems. Intercellular binding energy is measured by compressing spherical aggregates between parallel plates in a custom-designed tissue surface tensiometer. The same mathematical equation used to measure the surface tension of a liquid droplet is used to measure surface tension of 3D tissue-like spherical aggregates. The cellular equivalent of liquid surface tension is intercellular binding energy, or more generally, tissue cohesivity. Previous studies from our laboratory have shown that tissue surface tension (1) predicts how two groups of embryonic cells will interact with one another, (2) can strongly influence the ability of tissues to interact with biomaterials, (3) can be altered not only through direct manipulation of cadherin-based intercellular cohesion, but also by manipulation of key ECM molecules such as FN and 4) correlates with invasive potential of lung cancer, fibrosarcoma, brain tumor and prostate tumor cell lines. In this article we will describe the apparatus, detail the steps required to generate spheroids, to load the spheroids into the tensiometer chamber, to initiate aggregate compression, and to analyze and validate the tissue surface tension measurements generated.
Collapse
|
19
|
Caicedo-Carvajal CE, Shinbrot T, Foty RA. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates. PLoS One 2010; 5:e11830. [PMID: 20686611 PMCID: PMC2912296 DOI: 10.1371/journal.pone.0011830] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin alpha5beta1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin alpha5beta1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. METHODOLOGY/PRINCIPAL FINDINGS We generated a series of cell lines varying in alpha5beta1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin alpha5beta1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as alpha5beta1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high alpha5beta1 levels. We also show that differential expression of alpha5beta1 integrin can promote phase-separation between cells. CONCLUSIONS/SIGNIFICANCE The interplay between alpha5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos E. Caicedo-Carvajal
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Troy Shinbrot
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ramsey A. Foty
- Department of Surgery, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Schwarz MA, Zheng H, Legan S, Foty RA. Lung self-assembly is modulated by tissue surface tensions. Am J Respir Cell Mol Biol 2010; 44:682-91. [PMID: 20616358 DOI: 10.1165/rcmb.2009-0309oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To identify cell-intrinsic properties that facilitate interaction between epithelial endodermal and mesenchymal mesodermal cells during lung morphogenesis, we developed a model of lung self-assembly that mimics fetal lung formation in structure, polarity, vasculature, and extracellular matrix expression. Three-dimensional pulmonary bodies (PBs) spontaneously self-assemble from single-cell suspensions and exhibit liquid-like properties that allow measurements of compaction rate and cohesion, and that may help to specify cellular self-organization. We hypothesized that changes in one or more of these parameters could potentially explain the lung hypoplasia associated with abnormal lung development. We examined the impact of endothelial/monocyte-activating polypeptide (EMAP) II in PBs, because EMAPII is highly expressed in lung hypoplasia. EMAPII significantly increased compaction rate and decreased overall cohesion of PBs composed of both epithelial and mesenchymal cells. Moreover, the effects of EMAPII on compaction and cohesion act exclusively through the mesenchymal cell population by interfering with fibronectin matrix assembly. We also show that EMAPII alters epithelial cell polarity and surfactant protein C expression. Our findings demonstrate, for the first time, that PBs possess liquid-like properties that can help to guide the self-assembly of fetal lungs, and that EMAPII expression can influence both mesenchymal and epithelial cells but through different molecular mechanisms.
Collapse
|
21
|
Nemosis, a novel way of fibroblast activation, in inflammation and cancer. Exp Cell Res 2009; 315:1633-8. [DOI: 10.1016/j.yexcr.2009.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 11/24/2022]
|
22
|
Abstract
Although used in academic research for several decades, 3D culture models have long been regarded expensive, cumbersome and unnecessary in drug development processes. Technical advances, coupled with recent observations showing that gene expression in 3D is much closer to clinical expression profiles than those seen in 2D, have renewed attention and generated hope in the feasibility of maturing organotypic 3D systems to therapy test platforms with greater power to predict clinical efficacies. Here we describe a standardized setup for reproducible, easy-handling culture, treatment and routine analysis of multicellular spheroids, the classical 3D culture system resembling many aspects of the pathophysiological situation in human tumor tissue. We discuss essential conceptual and practical considerations for an adequate establishment and use of spheroid-based drug screening platforms and also provide a list of human carcinoma cell lines, partly on the basis of the NCI-DTP 60-cell line screen, that produce treatable spheroids under identical culture conditions. In contrast to many other settings with which to achieve similar results, the protocol is particularly useful to be integrated into standardized large-scale drug test routines as it requires a minimum number of defined spheroids and a limited amount of drug. The estimated time to run the complete screening protocol described herein--including spheroid initiation, drug treatment and determination of the analytical end points (spheroid integrity, and cell survival through the acid phosphatase assay)--is about 170 h. Monitoring of spheroid growth kinetics to determine growth delay and regrowth, respectively, after drug treatment requires long-term culturing (> or =14 d).
Collapse
|
23
|
Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 2008; 121:255-64. [PMID: 18216330 DOI: 10.1242/jcs.006064] [Citation(s) in RCA: 684] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Far from being a static structure, the ECM is constantly undergoing remodeling--i.e. assembly and degradation--particularly during the normal processes of development, differentiation and wound repair. When misregulated, this can contribute to disease. ECM assembly is regulated by the 3D environment and the cellular tension that is transmitted through integrins. Degradation is controlled by complex proteolytic cascades, and misregulation of these results in ECM damage that is a common component of many diseases. Tissue engineering strives to replace damaged tissues with stem cells seeded on synthetic structures designed to mimic the ECM and thus restore the normal control of cell function. Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche. For tissue-engineering strategies to be successful, the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.
Collapse
Affiliation(s)
- William P Daley
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
24
|
Quiros RM, Valianou M, Kwon Y, Brown KM, Godwin AK, Cukierman E. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol 2008; 110:99-109. [PMID: 18448156 DOI: 10.1016/j.ygyno.2008.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/07/2008] [Accepted: 03/14/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Due to a lack of experimental systems, little is known about ovarian stroma. Here, we introduce an in vivo-like 3-D system of mesenchymal stromal progression during ovarian tumorigenesis to support the study of stroma permissiveness in human ovarian neoplasias. METHODS To sort 3-D cultures into 'normal,' 'primed' and 'activated' stromagenic stages, 29 fibroblastic cell lines from 5 ovarian tumor samples (tumor ovarian fibroblasts, TOFs) and 14 cell lines from normal prophylactic oophorectomy samples (normal ovarian fibroblasts, NOFs) were harvested and characterized for their morphological, biochemical and 3-D culture features. RESULTS Under 2-D conditions, cells displayed three distinct morphologies: spread, spindle, and intermediate. We found that spread and spindle cells have similar levels of alpha-SMA, a desmoplastic marker, and consistent ratios of pFAKY(397)/totalFAK. In 3-D intermediate cultures, alpha-SMA levels were virtually undetectable while pFAKY(397)/totalFAK ratios were low. In addition, we used confocal microscopy to assess in vivo-like extracellular matrix topography, nuclei morphology and alpha-SMA features in the 3-D cultures. We found that all NOFs presented 'normal' characteristics, while TOFs presented both 'primed' and 'activated' features. Moreover, immunohistochemistry analyses confirmed that the 3-D matrix-dependent characteristics are reminiscent of those observed in in vivo stromal counterparts. CONCLUSIONS We conclude that primary human ovarian fibroblasts maintain in vivo-like (staged) stromal characteristics in a 3-D matrix-dependent manner. Therefore, our stromal 3-D system offers a tool that can enhance the understanding of both stromal progression and stroma-induced ovarian tumorigenesis. In the future, this system could also be used to develop ovarian stroma-targeted therapies.
Collapse
Affiliation(s)
- Roderick M Quiros
- Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | |
Collapse
|
25
|
Takezawa T, Takeuchi T, Nitani A, Takayama Y, Kino-Oka M, Taya M, Enosawa S. Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. J Biotechnol 2007; 131:76-83. [PMID: 17624459 DOI: 10.1016/j.jbiotec.2007.05.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
We previously succeeded in converting a soft and turbid disk of type-I collagen gel into a strong and transparent vitrigel membrane utilizing a concept for the vitrification of heat-denatured proteins and have demonstrated its protein-permeability and advantage as a scaffold for reconstructing crosstalk models between two different cell types. In this study, we observed the nano-structure of the type-I collagen vitrigel membrane and verified its utility for paracrine assays in vitro and drug delivery systems in vivo. Scanning electron microscopic observation revealed that the vitrigel membrane was a dense network architecture of typical type-I collagen fibrils. In the crosstalk model between PC-12 pheochromocytoma cells and L929 fibroblasts, nerve growth factor (NGF) secreted from L929 cells passed through the collagen vitrigel membrane and induced the neurite outgrowth of PC-12 cells by its paracrine effect. Also, the collagen vitrigel membrane containing vascular endothelial growth factor (VEGF) showed sustained-release of VEGF in vitro and its subcutaneous transplantation into a rat resulted in remarkable angiogenesis. These data suggest that the collagen vitrigel membrane is useful for paracrine assays in vitro and drug delivery systems in vivo.
Collapse
Affiliation(s)
- Toshiaki Takezawa
- Laboratory of Animal Cell Biology (currently, Transgenic Animal Research Center), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Smith AM, Shelton RM, Perrie Y, Harris JJ. An Initial Evaluation of Gellan Gum as a Material for Tissue Engineering Applications. J Biomater Appl 2007; 22:241-54. [PMID: 17494964 DOI: 10.1177/0885328207076522] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha-modified minimum essential medium (αMEM) has been found to cross-link a 1% gellan gum solution, resulting in the formation of a self-supporting hydrogel in 1:1 and 5:1 ratios of polysaccharide: αMEM. Rheological data from temperature sweeps confirm that in addition to orders of magnitude differences in G' between 1% gellan and 1% gellan with αMEM, there is also a 20°C increase in the temperature at which the onset of gelation takes place when αMEM is present. Frequency sweeps confirm the formation of a true gel; mechanical spectra for mixtures of gellan and αMEM clearly demonstrate G' to be independent of frequency. It is possible to immobilize cells within a three-dimensional (3D) gellan matrix that remain viable for up to 21 days in culture by adding a suspension of rat bone marrow cells (rBMC) in αMEM to 1% gellan solution. This extremely simple approach to cell immobilization within 3D constructs, made possible by the fact that gellan solutions cross-link in the presence of millimolar concentrations of cations, poses a very low risk to a cell population immobilized within a gellan matrix and thus indicates the potential of gellan for use as a tissue engineering scaffold.
Collapse
Affiliation(s)
- Alan M Smith
- Biomaterials Unit, School of Dentistry, University of Birmingham St Chad's Queensway, Birmingham, UK
| | | | | | | |
Collapse
|