1
|
Milano SN, Bayer LV, Ko JJ, Casella CE, Bratu DP. The role of ER exit sites in maintaining P-body organization and integrity during Drosophila melanogaster oogenesis. EMBO Rep 2025; 26:494-520. [PMID: 39653851 PMCID: PMC11772875 DOI: 10.1038/s44319-024-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers. Employing a combination of live and super-resolution imaging, we find that P-bodies associated with ER exit sites are larger and less mobile than cytoplasmic P-bodies, indicating that they constitute a distinct class of P-bodies. Moreover, we demonstrate that altering the composition of ER exit sites has differential effects on core P-body proteins (Me31B, Cup, and Trailer Hitch), suggesting a potential role for ER exit sites in P-body organization. Furthermore, we show that in the absence of ER exit sites, P-body integrity is compromised and the stability and translational repression efficiency of the maternal mRNA, oskar, are reduced. Together, our data highlights the crucial role of ER exit sites in governing P-body organization.
Collapse
Affiliation(s)
- Samantha N Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Livia V Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Julie J Ko
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Caroline E Casella
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Diana P Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA.
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
3
|
Milano SN, Bayer LV, Ko JJ, Casella CE, Bratu DP. The role of ER exit sites in maintaining P-body organization and transmitting ER stress response during Drosophila melanogaster oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601952. [PMID: 39005311 PMCID: PMC11245038 DOI: 10.1101/2024.07.03.601952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers. Employing a combination of live and super-resolution imaging, we found that P-bodies associated with ER exit sites are larger and less mobile than cytoplasmic P-bodies, indicating that they constitute a distinct class of P-bodies which are more mature than their cytoplasmic counterparts. Moreover, we demonstrate that altering the composition of ER exit sites has differential effects on core P-body proteins (Me31B, Cup, and Trailer Hitch) suggesting a potential role for ER exit sites in P-body organization. We further show that in the absence of ER exit sites, P-body integrity is compromised and the stability and translational repression efficiency of the maternal mRNA, oskar, are reduced. Finally, we show that ER stress is communicated to P-bodies via ER exit sites, highlighting the pivotal role of ER exit sites as a bridge between membrane-bound and membrane-less organelles in ER stress response. Together, our data unveils the significance of ER exit sites not only in governing P-body organization, but also in facilitating inter-organellar communication during stress, potentially bearing implications for a variety of disease pathologies.
Collapse
Affiliation(s)
- Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, NY, 10016 USA
| | - Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Julie J. Ko
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Caroline E. Casella
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, NY, 10016 USA
| |
Collapse
|
4
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
5
|
Cardona AH, Ecsedi S, Khier M, Yi Z, Bahri A, Ouertani A, Valero F, Labrosse M, Rouquet S, Robert S, Loubat A, Adekunle D, Hubstenberger A. Self-demixing of mRNA copies buffers mRNA:mRNA and mRNA:regulator stoichiometries. Cell 2023; 186:4310-4324.e23. [PMID: 37703874 DOI: 10.1016/j.cell.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.
Collapse
Affiliation(s)
| | - Szilvia Ecsedi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Mokrane Khier
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Zhou Yi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Alia Bahri
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Amira Ouertani
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Florian Valero
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | - Sami Rouquet
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Stéphane Robert
- Université Aix Marseille, Inserm, INRAE, C2VN, 13005 Marseille, France
| | - Agnès Loubat
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | | |
Collapse
|
6
|
Garg M, Roy D, Rajyaguru PI. Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119327. [PMID: 35901970 DOI: 10.1016/j.bbamcr.2022.119327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Clathrin, made up of the heavy- and light-chains, constitutes one of the most abundant proteins involved in intracellular protein trafficking and endocytosis. YPR129W, which encodes RGG-motif containing translation repressor was identified as a part of the multi-gene construct (SCD6) that suppressed clathrin deficiency. However, the contribution of YPR129W alone in suppressing clathrin deficiency has not been documented. This study identifies YPR129W as a necessary and sufficient gene in a multi-gene construct SCD6 that suppresses clathrin deficiency. Importantly, we also identify cytoplasmic RGG-motif protein encoding gene PSP2 as another novel suppressor of clathrin deficiency. Detailed domain analysis of the two suppressors reveals that the RGG-motif of both Scd6 and Psp2 is important for suppressing clathrin deficiency. Interestingly, the endocytosis function of clathrin heavy chain assayed by internalization of GFP-Snc1 and α-factor secretion activity are not complemented by either Scd6 or Psp2. We further observe that inhibition of TORC1 compromises the suppression activity of both SCD6 and PSP2 to different extent, suggesting that two suppressors are differentially regulated. Scd6 granules increased based on its RGG-motif upon Chc1 depletion. Strikingly, Psp2 overexpression increased the abundance of ubiquitin-conjugated proteins in Chc1 depleted cells in its RGG-motif dependent manner and also decreased the accumulation of GFP-Atg8 foci. Overall based on our results using SCD6 and PSP2, we identify a novel role of RGG-motif containing proteins in suppressing clathrin deficiency. Since both the suppressors are RNA-binding proteins, this study opens an exciting avenue for exploring the connection between clathrin function and post-transcriptional gene control processes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Debadrita Roy
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India.
| |
Collapse
|
7
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
8
|
Sundby AE, Molnar RI, Claycomb JM. Connecting the Dots: Linking Caenorhabditis elegans Small RNA Pathways and Germ Granules. Trends Cell Biol 2021; 31:387-401. [PMID: 33526340 DOI: 10.1016/j.tcb.2020.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Germ granules are non-membrane bound, phase-separated organelles, composed of RNAs and proteins. Germ granules are present only within the germ cells of animals, including model systems such as Caenorhabditis elegans, Drosophila, mice, and zebrafish, where they play critical roles in specifying the germ lineage, the inheritance of epigenetic information, and post-transcriptional gene regulation. Across species, conserved germ granule proteins reflect these essential functions. A significant proportion of proteins that localize to germ granules are components of RNA metabolism and small RNA (sRNA) gene regulatory pathways. Here we synthesize our current knowledge of the roles that germ granules and their components play in sRNA pathway functions, transgenerational inheritance, and fertility in the C. elegans germline.
Collapse
Affiliation(s)
- Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruxandra I Molnar
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Nguyen LTS, Robinson DN. The Unusual Suspects in Cytokinesis: Fitting the Pieces Together. Front Cell Dev Biol 2020; 8:441. [PMID: 32626704 PMCID: PMC7314909 DOI: 10.3389/fcell.2020.00441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
Cytokinesis is the step of the cell cycle in which the cell must faithfully separate the chromosomes and cytoplasm, yielding two daughter cells. The assembly and contraction of the contractile network is spatially and temporally coupled with the formation of the mitotic spindle to ensure the successful completion of cytokinesis. While decades of studies have elucidated the components of this machinery, the so-called usual suspects, and their functions, many lines of evidence are pointing to other unexpected proteins and sub-cellular systems as also being involved in cytokinesis. These we term the unusual suspects. In this review, we introduce recent discoveries on some of these new unusual suspects and begin to consider how these subcellular systems snap together to help complete the puzzle of cytokinesis.
Collapse
Affiliation(s)
- Ly T. S. Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States
| |
Collapse
|
10
|
Tang NH, Kim KW, Xu S, Blazie SM, Yee BA, Yeo GW, Jin Y, Chisholm AD. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics. Curr Biol 2020; 30:865-876.e7. [PMID: 31983639 DOI: 10.1016/j.cub.2019.12.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
mRNA decay factors regulate mRNA turnover by recruiting non-translating mRNAs and targeting them for translational repression and mRNA degradation. How mRNA decay pathways regulate cellular function in vivo with specificity is poorly understood. Here, we show that C. elegans mRNA decay factors, including the translational repressors CAR-1/LSM14 and CGH-1/DDX6, and the decapping enzymes DCAP-1/DCP1, function in neurons to differentially regulate axon development, maintenance, and regrowth following injury. In neuronal cell bodies, CAR-1 fully colocalizes with CGH-1 and partially colocalizes with DCAP-1, suggesting that mRNA decay components form at least two types of cytoplasmic granules. Following axon injury in adult neurons, loss of CAR-1 or CGH-1 results in increased axon regrowth and growth cone formation, whereas loss of DCAP-1 or DCAP-2 results in reduced regrowth. To determine how CAR-1 inhibits regrowth, we analyzed mRNAs bound to pan-neuronally expressed GFP::CAR-1 using a crosslinking and immunoprecipitation-based approach. Among the putative mRNA targets of CAR-1, we characterized the roles of micu-1, a regulator of the mitochondrial calcium uniporter MCU-1, in axon injury. We show that loss of car-1 results increased MICU-1 protein levels, and that enhanced axon regrowth in car-1 mutants is dependent on micu-1 and mcu-1. Moreover, axon injury induces transient calcium influx into axonal mitochondria, dependent on MCU-1. In car-1 loss-of-function mutants and in micu-1 overexpressing animals, the axonal mitochondrial calcium influx is more sustained, which likely underlies enhanced axon regrowth. Our data uncover a novel pathway that controls axon regrowth through axonal mitochondrial calcium uptake.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Suhong Xu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Blazie
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
De Graeve F, Debreuve E, Rahmoun S, Ecsedi S, Bahri A, Hubstenberger A, Descombes X, Besse F. Detecting and quantifying stress granules in tissues of multicellular organisms with the Obj.MPP analysis tool. Traffic 2019; 20:697-711. [PMID: 31314165 DOI: 10.1111/tra.12678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts. Although genetically tractable multicellular organisms have been key in identifying modifiers of RNP aggregate toxicity, in vivo analysis of SG properties and regulation has lagged behind, largely due to the difficulty of detecting SG from images of intact tissues. Here, we describe the object detector software Obj.MPP and show how it overcomes the limits of classical object analyzers to extract the properties of SGs from wide-field and confocal images of Caenorhabditis elegans and Drosophila tissues, respectively. We demonstrate that Obj.MPP enables the identification of genes modulating the assembly of endogenous and pathological SGs, and thus that it will be useful in the context of future genetic screens and in vivo studies.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Eric Debreuve
- Université Côte d'Azur, CNRS, INRIA, I3S, Sophia-Antipolis, France
| | - Somia Rahmoun
- Université Coôte d'Azur, INRIA, CNRS, I3S, Sophia-Antipolis, France
| | - Szilvia Ecsedi
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Alia Bahri
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Arnaud Hubstenberger
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Xavier Descombes
- Université Coôte d'Azur, INRIA, CNRS, I3S, Sophia-Antipolis, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
12
|
del Castillo U, Gnazzo MM, Turpin CGS, Nguyen KCQ, Semaya E, Lam Y, de Cruz MA, Bembenek JN, Hall DH, Riggs B, Gelfand VI, Skop AR. Conserved role for Ataxin-2 in mediating endoplasmic reticulum dynamics. Traffic 2019; 20:436-447. [PMID: 30989774 PMCID: PMC6553494 DOI: 10.1111/tra.12647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
Ataxin-2, a conserved RNA-binding protein, is implicated in the late-onset neurodegenerative disease Spinocerebellar ataxia type-2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo-like axons within the Purkinje neurons of the cerebellum. Torpedo-like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin-2 in mediating ER function in SCA2 is unclear. We utilized the Caenorhabditis elegans and Drosophila homologs of Ataxin-2 (ATX-2 and DAtx2, respectively) to determine the role of Ataxin-2 in ER function and dynamics in embryos and neurons. Loss of ATX-2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX-2 and DAtx2 reside in puncta adjacent to the ER in both C. elegans and Drosophila embryos. Lastly, depletion of DAtx2 in cultured Drosophila neurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin-2 plays an evolutionary conserved role in ER dynamics and morphology in C. elegans and Drosophila embryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.
Collapse
Affiliation(s)
- Urko del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611
| | - Megan M. Gnazzo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Christopher G. Sorensen Turpin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee 37996
| | - Ken C. Q. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx New York, NY 10461
| | - Emily Semaya
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx New York, NY 10461
| | - Yuwan Lam
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Matthew A. de Cruz
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Joshua N. Bembenek
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee 37996
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx New York, NY 10461
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Vladimir I. Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611
| | - Ahna R. Skop
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
13
|
Langerak S, Trombley A, Patterson JR, Leroux D, Couch A, Wood MP, Schisa JA. Remodeling of the endoplasmic reticulum in Caenorhabditis elegans oocytes is regulated by CGH-1. Genesis 2018; 57:e23267. [PMID: 30489010 DOI: 10.1002/dvg.23267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/12/2022]
Abstract
A key aspect of development in all metazoans is remodeling at the cellular level. During the development of gametes, remodeling occurs throughout the germ line. When Caenorhabditis elegans hermaphrodites become depleted of sperm after 4 days of adulthood, significant cellular remodeling occurs within the meiotically-arrested oocytes, including the formation of ribonucleoprotein granules. Since major remodeling of the endoplasmic reticulum (ER) occurs in early embryos, we investigated the extent of ER remodeling in meiotically-arrested oocytes. We found, using a combination of fluorescence reporters and transmission electron microscopy, that the ER in arrested oocytes accumulates in patches and sheets that are enriched at the cortex. Our findings suggest this remodeling is not due to simple displacement by large amounts of yolk that accumulate in arrested oocytes, and instead may be genetically regulated. We further identified the Ddx6 RNA helicase, CGH-1, as a key regulator of ER in the germ line. In cgh-1(tn691) oocytes, we detected cortical ER patches as well as aberrant granules of the RNA-binding proteins, PAB-1, MEX-3, and CGH-1. Taken together, our results suggest the possibility that the spatial organization of RNA binding proteins may regulate the translation of mRNAs associated with the ER that in turn, controls the organization of the ER in the adult germ line.
Collapse
Affiliation(s)
- Shaughna Langerak
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Alicia Trombley
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Joseph R Patterson
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Devon Leroux
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Alexandra Couch
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Megan P Wood
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| |
Collapse
|
14
|
Moll L, Roitenberg N, Bejerano-Sagie M, Boocholez H, Carvalhal Marques F, Volovik Y, Elami T, Siddiqui AA, Grushko D, Biram A, Lampert B, Achache H, Ravid T, Tzur YB, Cohen E. The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in Caenorhabditis elegans. eLife 2018; 7:38635. [PMID: 30403374 PMCID: PMC6277199 DOI: 10.7554/elife.38635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/02/2022] Open
Abstract
Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here, we utilized the nematode Caenorhabditis elegans to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor glp-1. Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging. Aging may seem inescapable, but there are many factors, from diet to genetic mutations, that can affect this process. In fact, scientists have started to uncover the mechanisms that control and influence this slow decline. For example, in the small worm Caenorhabditis elegans, removing the germs cells – which give rise to eggs – extends the lifespan. Similarly, interfering with the activity of the Insulin/IGF-1 signaling (IIS) pathway leads to a longer life for the animals. However, it is unclear whether these two mechanisms work together, or if they operate in parallel. To explore this, Moll, Roitenberg et al. first looked at how the IIS pathway regulates a type of protein modification known as SUMOylation in C. elegans. Reducing the activity of the IIS pathway slowed down aging in the worms. It also decreased the levels of SUMOylation of certain proteins, including CAR-1, which is found in the structures that produce germ cells. Further experiments showed that stopping the SUMOylation of CAR-1 extended the lifespan of the animals. In fact, replacing the protein with a mutated version of CAR-1 that cannot accept the SUMO element makes the worms live longer and resist a toxic protein that causes Alzheimer’s disease in humans. These results therefore show that, in C. elegans, the IIS pathway and a mechanism that involves CAR-1 in germ cells work together to determine the pace of aging. Further studies are now needed to dissect how the IIS pathway influences SUMOylation, and whether the findings hold true in mammals.
Collapse
Affiliation(s)
- Lorna Moll
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Noa Roitenberg
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yuli Volovik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Tayir Elami
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Danielle Grushko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Adi Biram
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bar Lampert
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hana Achache
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tommer Ravid
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
15
|
Davies T, Kim HX, Romano Spica N, Lesea-Pringle BJ, Dumont J, Shirasu-Hiza M, Canman JC. Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. eLife 2018; 7:36204. [PMID: 30028292 PMCID: PMC6054530 DOI: 10.7554/elife.36204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cytokinesis, the physical division of one cell into two, is powered by constriction of an actomyosin contractile ring. It has long been assumed that all animal cells divide by a similar molecular mechanism, but growing evidence suggests that cytokinetic regulation in individual cell types has more variation than previously realized. In the four-cell Caenorhabditis elegans embryo, each blastomere has a distinct cell fate, specified by conserved pathways. Using fast-acting temperature-sensitive mutants and acute drug treatment, we identified cell-type-specific variation in the cytokinetic requirement for a robust forminCYK-1-dependent filamentous-actin (F-actin) cytoskeleton. In one cell (P2), this cytokinetic variation is cell-intrinsically regulated, whereas in another cell (EMS) this variation is cell-extrinsically regulated, dependent on both SrcSRC-1 signaling and direct contact with its neighbor cell, P2. Thus, both cell-intrinsic and -extrinsic mechanisms control cytokinetic variation in individual cell types and can protect against division failure when the contractile ring is weakened. The successful division of one cell into two is essential for all organisms to live, grow and reproduce. For an animal cell, the nucleus – the compartment containing the genetic material – must divide before the surrounding material. The rest of the cell, called the cytoplasm, physically separates later in a process known as cytokinesis. Cytokinesis in animal cells is driven by the formation of a ring in the middle of the dividing cell. The ring is composed of myosin motor proteins and filaments made of a protein called actin. The movements of the motor proteins along the filaments cause the ring to contract and tighten. This pulls the cell membrane inward and physically pinches the cell into two. For a long time, the mechanism of cytokinesis was assumed to be same across different types of animal cell, but later evidence suggested otherwise. For example, in liver, heat and bone cells, cytokinesis naturally fails during development to create cells with two or more nuclei. If a similar ‘failure’ happened in other cell types, it could lead to diseases such as cancers or blood disorders. This raised the question: what are the molecular mechanisms that allow cytokinesis to happen differently in different cell types? Davies et al. investigated this question using embryos of the worm Caenorhabditis elegans at a stage in their development when they consist of just four cells. The proteins forming the contractile ring in this worm are the same as those in humans. However, in the worm, the contractile ring can easily be damaged using chemical inhibitors or by mutating the genes that encode its proteins. Davies et al. show that when the contractile ring was damaged, two of the four cells in the worm embryo still divided successfully. This result indicates the existence of new mechanisms to divide the cytoplasm that allow division even with a weak contractile ring. In a further experiment, the embryos were dissected to isolate each of the four cells. Davies et al. saw that one of the two dividing cells could still divide on its own, while the other cell could not. This shows that this new method of cytokinesis is regulated both by factors inherent to the dividing cell and by external signals from other cells. Moreover, one of these extrinsic signals was found to be a signaling protein that had previously been implicated in human cancers. Future work will determine if these variations in cytokinesis between the different cell types found in the worm apply to humans too; and, more importantly from a therapeutic standpoint, if these new mechanisms exist in human cancers.
Collapse
Affiliation(s)
- Tim Davies
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Han X Kim
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Natalia Romano Spica
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Benjamin J Lesea-Pringle
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| |
Collapse
|
16
|
Roy D, Rajyaguru PI. Suppressor of clathrin deficiency (Scd6)-An emerging RGG-motif translation repressor. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1479. [DOI: 10.1002/wrna.1479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Debadrita Roy
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | | |
Collapse
|
17
|
Borbolis F, Flessa CM, Roumelioti F, Diallinas G, Stravopodis DJ, Syntichaki P. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression. Open Biol 2017; 7:160313. [PMID: 28250105 PMCID: PMC5376704 DOI: 10.1098/rsob.160313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- School of Medicine, University of Athens, Athens, Greece
| | - George Diallinas
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | | | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
| |
Collapse
|
18
|
Umegawachi T, Yoshida H, Koshida H, Yamada M, Ohkawa Y, Sato T, Suyama M, Krause HM, Yamaguchi M. Control of tissue size and development by a regulatory element in the yorkie 3'UTR. Am J Cancer Res 2017; 7:673-687. [PMID: 28401020 PMCID: PMC5385651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 06/07/2023] Open
Abstract
Regulation of the Hippo pathway via phosphorylation of Yorkie (Yki), the Drosophila homolog of human Yes-associated protein 1, is conserved from Drosophila to humans. Overexpression of a non-phosphorylatable form of Yki induces severe overgrowth in adult fly eyes. Here, we show that yki mRNA associates with microsomal fractions and forms foci that partially colocalize to processing bodies in the vicinity of endoplasmic reticulum. This localization is dependent on a stem-loop (SL) structure in the 3' untranslated region of yki. Surprisingly, expression of SL deleted yki in eye imaginal discs also results in severe overgrowth phenotypes. When the structure of the SL is disrupted, Yki protein levels increase without a significant effect on RNA levels. When the SL is completely removed, protein levels drastically increase, but in this case, due to increased RNA stability. In the latter case, we show that the increased RNA accumulation is due to removal of a putative miR-8 seed sequence in the SL. These data demonstrate the function of two novel regulatory mechanisms, both controlled by the yki SL element, that are essential for proper Hippo pathway mediated growth regulation.
Collapse
Affiliation(s)
- Takanari Umegawachi
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiromu Koshida
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Momoko Yamada
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu UniversityFukuoka 812-8582, Japan
| | - Henry M Krause
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario M5G 1L6, Canada
- Department of Molecular Genetics, University of TorontoToronto, Ontario M5G 1L6, Canada
- Donnelly Centre, University of TorontoToronto, Ontario M5G 1L6, Canada
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of TechnologyMatsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
19
|
Cup regulates oskar mRNA stability during oogenesis. Dev Biol 2017; 421:77-85. [DOI: 10.1016/j.ydbio.2016.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
|
20
|
Stubenvoll MD, Medley JC, Irwin M, Song MH. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics. PLoS Genet 2016; 12:e1006370. [PMID: 27689799 PMCID: PMC5045193 DOI: 10.1371/journal.pgen.1006370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.
Collapse
Affiliation(s)
- Michael D. Stubenvoll
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Miranda Irwin
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
21
|
Gnazzo MM, Uhlemann EME, Villarreal AR, Shirayama M, Dominguez EG, Skop AR. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4. Mol Biol Cell 2016; 27:3052-3064. [PMID: 27559134 PMCID: PMC5063614 DOI: 10.1091/mbc.e16-04-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Cell division is regulated by the conserved RNA-binding protein, ATX-2/Ataxin-2, which facilitates the targeting of ZEN-4 to the spindle midzone by mediating PAR-5. The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5–GFP, and ultimately a reduction of ZEN-4–GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.
Collapse
Affiliation(s)
- Megan M Gnazzo
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Eva-Maria E Uhlemann
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex R Villarreal
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute, and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eddie G Dominguez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
22
|
RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line. G3-GENES GENOMES GENETICS 2016; 6:2643-54. [PMID: 27317775 PMCID: PMC4978917 DOI: 10.1534/g3.116.031559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.
Collapse
|
23
|
Chen JX, Cipriani PG, Mecenas D, Polanowska J, Piano F, Gunsalus KC, Selbach M. In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics. Mol Cell Proteomics 2016; 15:1642-57. [PMID: 26912668 PMCID: PMC4858945 DOI: 10.1074/mcp.m115.053975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/24/2016] [Indexed: 01/20/2023] Open
Abstract
Studying protein interactions in whole organisms is fundamental to understanding development. Here, we combine in vivo expressed GFP-tagged proteins with quantitative proteomics to identify protein-protein interactions of selected key proteins involved in early C. elegans embryogenesis. Co-affinity purification of interaction partners for eight bait proteins resulted in a pilot in vivo interaction map of proteins with a focus on early development. Our network reflects known biology and is highly enriched in functionally relevant interactions. To demonstrate the utility of the map, we looked for new regulators of P granule dynamics and found that GEI-12, a novel binding partner of the DYRK family kinase MBK-2, is a key regulator of P granule formation and germline maintenance. Our data corroborate a recently proposed model in which the phosphorylation state of GEI-12 controls P granule dynamics. In addition, we find that GEI-12 also induces granule formation in mammalian cells, suggesting a common regulatory mechanism in worms and humans. Our results show that in vivo interaction proteomics provides unique insights into animal development.
Collapse
Affiliation(s)
- Jia-Xuan Chen
- From the ‡Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany; §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Patricia G Cipriani
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Desirea Mecenas
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Jolanta Polanowska
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ‖INSERM, U1104, 13288 Marseille, France
| | - Fabio Piano
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates;
| | - Matthias Selbach
- From the ‡Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany; **Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
24
|
Cornes E, Porta-De-La-Riva M, Aristizábal-Corrales D, Brokate-Llanos AM, García-Rodríguez FJ, Ertl I, Díaz M, Fontrodona L, Reis K, Johnsen R, Baillie D, Muñoz MJ, Sarov M, Dupuy D, Cerón J. Cytoplasmic LSM-1 protein regulates stress responses through the insulin/IGF-1 signaling pathway in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2015; 21:1544-53. [PMID: 26150554 PMCID: PMC4536316 DOI: 10.1261/rna.052324.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/06/2015] [Indexed: 05/04/2023]
Abstract
Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance.
Collapse
Affiliation(s)
- Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain Université Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Montserrat Porta-De-La-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Ana María Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC - UPO - Junta de Andalucía, Sevilla 41013, Spain
| | - Francisco Javier García-Rodríguez
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Mònica Díaz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona 08035, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Kadri Reis
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Robert Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Manuel J Muñoz
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC - UPO - Junta de Andalucía, Sevilla 41013, Spain
| | - Mihail Sarov
- TransgeneOmics Unit, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Denis Dupuy
- Université Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
25
|
Spiró Z, Thyagarajan K, De Simone A, Träger S, Afshar K, Gönczy P. Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos. Development 2014; 141:2712-23. [PMID: 24961801 DOI: 10.1242/dev.107508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of centrosome and spindle positioning is crucial for spatial cell division control. The one-cell Caenorhabditis elegans embryo has proven attractive for dissecting the mechanisms underlying centrosome and spindle positioning in a metazoan organism. Previous work revealed that these processes rely on an evolutionarily conserved force generator complex located at the cell cortex. This complex anchors the motor protein dynein, thus allowing cortical pulling forces to be exerted on astral microtubules emanating from microtubule organizing centers (MTOCs). Here, we report that the clathrin heavy chain CHC-1 negatively regulates pulling forces acting on centrosomes during interphase and on spindle poles during mitosis in one-cell C. elegans embryos. We establish a similar role for the cytokinesis/apoptosis/RNA-binding protein CAR-1 and uncover that CAR-1 is needed to maintain proper levels of CHC-1. We demonstrate that CHC-1 is necessary for normal organization of the cortical acto-myosin network and for full cortical tension. Furthermore, we establish that the centrosome positioning phenotype of embryos depleted of CHC-1 is alleviated by stabilizing the acto-myosin network. Conversely, we demonstrate that slight perturbations of the acto-myosin network in otherwise wild-type embryos results in excess centrosome movements resembling those in chc-1(RNAi) embryos. We developed a 2D computational model to simulate cortical rigidity-dependent pulling forces, which recapitulates the experimental data and further demonstrates that excess centrosome movements are produced at medium cortical rigidity values. Overall, our findings lead us to propose that clathrin plays a critical role in centrosome positioning by promoting acto-myosin cortical tension.
Collapse
Affiliation(s)
- Zoltán Spiró
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Kalyani Thyagarajan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Sylvain Träger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Katayoun Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
26
|
Rousakis A, Vlanti A, Borbolis F, Roumelioti F, Kapetanou M, Syntichaki P. Diverse functions of mRNA metabolism factors in stress defense and aging of Caenorhabditis elegans. PLoS One 2014; 9:e103365. [PMID: 25061667 PMCID: PMC4111499 DOI: 10.1371/journal.pone.0103365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023] Open
Abstract
Processing bodies (PBs) and stress granules (SGs) are related, cytoplasmic RNA-protein complexes that contribute to post-transcriptional gene regulation in all eukaryotic cells. Both structures contain translationally repressed mRNAs and several proteins involved in silencing, stabilization or degradation of mRNAs, especially under environmental stress. Here, we monitored the dynamic formation of PBs and SGs, in somatic cells of adult worms, using fluorescently tagged protein markers of each complex. Both complexes were accumulated in response to various stress conditions, but distinct modes of SG formation were induced, depending on the insult. We also observed an age-dependent accumulation of PBs but not of SGs. We further showed that direct alterations in PB-related genes can influence aging and normal stress responses, beyond their developmental role. In addition, disruption of SG-related genes had diverse effects on development, fertility, lifespan and stress resistance of worms. Our work therefore underlines the important roles of mRNA metabolism factors in several vital cellular processes and provides insight into their diverse functions in a multicellular organism.
Collapse
Affiliation(s)
- Aris Rousakis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Medicine, University of Athens, Athens, Greece
| | - Anna Vlanti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
| | - Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Marianna Kapetanou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Department of Biology, School of Science and Engineering, University of Crete, Heraklio, Crete, Greece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- * E-mail:
| |
Collapse
|
27
|
Jambhekar A, Emerman AB, Schweidenback CTH, Blower MD. RNA stimulates Aurora B kinase activity during mitosis. PLoS One 2014; 9:e100748. [PMID: 24968351 PMCID: PMC4072698 DOI: 10.1371/journal.pone.0100748] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation is essential for cell viability. The mitotic spindle is crucial for chromosome segregation, but much remains unknown about factors that regulate spindle assembly. Recent work implicates RNA in promoting proper spindle assembly independently of mRNA translation; however, the mechanism by which RNA performs this function is currently unknown. Here, we show that RNA regulates both the localization and catalytic activity of the mitotic kinase, Aurora-B (AurB), which is present in a ribonucleoprotein (RNP) complex with many mRNAs. Interestingly, AurB kinase activity is reduced in Xenopus egg extracts treated with RNase, and its activity is stimulated in vitro by RNA binding. Spindle assembly defects following RNase-treatment are partially rescued by inhibiting MCAK, a microtubule depolymerase that is inactivated by AurB-dependent phosphorylation. These findings implicate AurB as an important RNA-dependent spindle assembly factor, and demonstrate a translation-independent role for RNA in stimulating AurB.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy B. Emerman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Caterina T. H. Schweidenback
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael D. Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hubstenberger A, Noble SL, Cameron C, Evans TC. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 2014; 27:161-173. [PMID: 24176641 DOI: 10.1016/j.devcel.2013.09.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
Like membranous organelles, large-scale coassembly of macromolecules can organize functions in cells. Ribonucleoproteins (RNPs) can form liquid or solid aggregates, but control and consequences of these RNP states in living, developing tissue are poorly understood. Here, we show that regulated RNP factor interactions drive transitions among diffuse, semiliquid, or solid states to modulate RNP sorting and exchange in the Caenorhabditis elegans oocyte cytoplasm. Translation repressors induce an intrinsic capacity of RNP components to coassemble into either large semiliquids or solid lattices, whereas a conserved RNA helicase prevents polymerization into nondynamic solids. Developmental cues dramatically alter both fluidity and sorting within large RNP assemblies, inducing a transition from RNP segregation in quiescent oocytes to dynamic exchange in the early embryo. Therefore, large-scale organization of gene expression extends to the cytoplasm, where regulation of supramolecular states imparts specific patterns of RNP dynamics.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Ko S, Kawasaki I, Shim YH. PAB-1, a Caenorhabditis elegans poly(A)-binding protein, regulates mRNA metabolism in germline by interacting with CGH-1 and CAR-1. PLoS One 2013; 8:e84798. [PMID: 24367695 PMCID: PMC3868610 DOI: 10.1371/journal.pone.0084798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/19/2013] [Indexed: 11/25/2022] Open
Abstract
Poly(A)-binding proteins are highly conserved among eukaryotes and regulate stability of mRNA and translation. Among C. elegans homologues, pab-1 mutants showed defects in germline mitotic proliferation. Unlike pab-1 mutants, pab-1 RNAi at every larval stage caused arrest of germline development at the following stage, indicating that pab-1 is required for the entire postembryonic germline development. This idea is supported by the observations that the mRNA level of pab-1 increased throughout postembryonic development and its protein expression was germline-enriched. PAB-1 localized to P granules and the cytoplasm in the germline. PAB-1 colocalized with CGH-1 and CAR-1 and affected their localization, suggesting that PAB-1 is a component of processing (P)-bodies that interacts with them. The mRNA and protein levels of representative germline genes, rec-8, GLP-1, rme-2, and msp-152, were decreased after pab-1 RNAi. Although the mRNA level of msp-152 was increased in cgh-1 mutant, it was also significantly reduced by pab-1 RNAi. Our results suggest that PAB-1 positively regulates the mRNA levels of germline genes, which is likely facilitated by the interaction of PAB-1 with other P-body components, CGH-1 and CAR-1.
Collapse
Affiliation(s)
- Sunhee Ko
- Department of Bioscience and Biotechnology, Institute of KU Biotechnology, Konkuk University, Seoul, South Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Institute of KU Biotechnology, Konkuk University, Seoul, South Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Institute of KU Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
30
|
Profiling of the mammalian mitotic spindle proteome reveals an ER protein, OSTD-1, as being necessary for cell division and ER morphology. PLoS One 2013; 8:e77051. [PMID: 24130834 PMCID: PMC3794981 DOI: 10.1371/journal.pone.0077051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Cell division is important for many cellular processes including cell growth, reproduction, wound healing and stem cell renewal. Failures in cell division can often lead to tumors and birth defects. To identify factors necessary for this process, we implemented a comparative profiling strategy of the published mitotic spindle proteome from our laboratory. Of the candidate mammalian proteins, we determined that 77% had orthologs in Caenorhabditis elegans and 18% were associated with human disease. Of the C. elegans candidates (n=146), we determined that 34 genes functioned in embryonic development and 56% of these were predicted to be membrane trafficking proteins. A secondary, visual screen to detect distinct defects in cell division revealed 21 genes that were necessary for cytokinesis. One of these candidates, OSTD-1, an ER resident protein, was further characterized due to the aberrant cleavage furrow placement and failures in division. We determined that OSTD-1 plays a role in maintaining the dynamic morphology of the ER during the cell cycle. In addition, 65% of all ostd-1 RNAi-treated embryos failed to correctly position cleavage furrows, suggesting that proper ER morphology plays a necessary function during animal cell division.
Collapse
|
31
|
Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol 2013; 9:679. [PMID: 23820781 PMCID: PMC3734508 DOI: 10.1038/msb.2013.35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 05/27/2013] [Indexed: 12/20/2022] Open
Abstract
Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants. This revealed a remarkable longevity-specific decrease in proteins involved in mRNA processing and transport, the translational machinery, and protein metabolism. Correspondingly, the daf-2 mutants display lower amounts of mRNA and 20S proteasome activity, despite maintaining total protein levels equal to that observed in wild types. Polyribosome profiling in the daf-2 and daf-16;daf-2 double mutants confirmed a daf-16-dependent reduction in overall translation, a phenotype reminiscent of Dietary Restriction-mediated longevity, which was independent of germline activity. RNA interference (RNAi)-mediated knockdown of proteins identified by our approach resulted in modified C. elegans lifespan confirming the importance of these processes in Insulin/IGF-1-mediated longevity. Together, the results demonstrate a role for the metabolism of proteins in the Insulin/IGF-1-mediated extension of life.
Collapse
|
32
|
Krüger T, Hofweber M, Kramer S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 2013; 24:2098-111. [PMID: 23676662 PMCID: PMC3694794 DOI: 10.1091/mbc.e13-01-0068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes lack many core components of ribonucleoprotein (RNP) granules identified in yeast and humans (e.g., DCP1/2). This study provides evidence for SCD6 being the core RNP granule component in trypanosomes: overexpression induces granules independent of translation, and even when SCD6 is targeted to the nucleus. Granule type and granule number are dependent on the RGG domain. Ribonucleoprotein (RNP) granules are cytoplasmic, microscopically visible structures composed of RNA and protein with proposed functions in mRNA decay and storage. Trypanosomes have several types of RNP granules, but lack most of the granule core components identified in yeast and humans. The exception is SCD6/Rap55, which is essential for processing body (P-body) formation. In this study, we analyzed the role of trypanosome SCD6 in RNP granule formation. Upon overexpression, the majority of SCD6 aggregates to multiple granules enriched at the nuclear periphery that recruit both P-body and stress granule proteins, as well as mRNAs. Granule protein composition depends on granule distance to the nucleus. In contrast to findings in yeast and humans, granule formation does not correlate with translational repression and can also take place in the nucleus after nuclear targeting of SCD6. While the SCD6 Lsm domain alone is both necessary and sufficient for granule induction, the RGG motif determines granule type and number: the absence of an intact RGG motif results in the formation of fewer granules that resemble P-bodies. The differences in granule number remain after nuclear targeting, indicating translation-independent functions of the RGG domain. We propose that, in trypanosomes, a local increase in SCD6 concentration may be sufficient to induce granules by recruiting mRNA. Proteins that bind selectively to the RGG and/or Lsm domain of SCD6 could be responsible for regulating granule type and number.
Collapse
Affiliation(s)
- Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
33
|
Liau WS, Nasri U, Elmatari D, Rothman J, LaMunyon CW. Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans. PLoS One 2013; 8:e57266. [PMID: 23483899 PMCID: PMC3590197 DOI: 10.1371/journal.pone.0057266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 12/05/2022] Open
Abstract
Given limited resources for motility, sperm cell activation must be precisely timed to ensure the greatest likelihood of fertilization. Like those of most species, the sperm of C. elegans become active only after encountering an external signaling molecule. Activation coincides with spermiogenesis, the final step in spermatogenesis, when the spherical spermatid undergoes wholesale reorganization to produce a pseudopod. Here, we describe a gene involved in sperm activation, spe-46. This gene was identified in a suppressor screen of spe-27(it132ts), a sperm-expressed gene whose product functions in the transduction of the spermatid activation signal. While spe-27(it132ts) worms are sterile at 25°C, the spe-46(hc197)I; spe-27(it132ts)IV double mutants regain partial fertility. Single nucleotide polymorphism mapping, whole genome sequencing, and transformation rescue were employed to identify the spe-46 coding sequence. It encodes a protein with seven predicted transmembrane domains but with no other predicted functional domains or homology outside of nematodes. Expression is limited to spermatogenic tissue, and a transcriptional GFP fusion shows expression corresponds with the onset of the pachytene stage of meiosis. The spe-46(hc197) mutation bypasses the need for the activation signal; mutant sperm activate prematurely without an activation signal in males, and mutant males are sterile. In an otherwise wild-type genome, the spe-46(hc197) mutation induces a sperm defective phenotype. In addition to premature activation, spe-46(hc197) sperm exhibit numerous defects including aneuploidy, vacuolization, protruding spikes, and precocious fusion of membranous organelles. Hemizygous worms [spe-46(hc197)/mnDf111] are effectively sterile. Thus, spe-46 appears to be involved in the regulation of spermatid activation during spermiogenesis, with the null phenotype being an absence of functional sperm and hypomorphic phenotypes being premature spermatid activation and numerous sperm cell defects.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Ubaydah Nasri
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Daniel Elmatari
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Jason Rothman
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Craig W. LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
The discovery and analysis of P Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:23-43. [PMID: 23224963 DOI: 10.1007/978-1-4614-5107-5_3] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
36
|
Reed JC, Molter B, Geary CD, McNevin J, McElrath J, Giri S, Klein KC, Lingappa JR. HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly. ACTA ACUST UNITED AC 2012; 198:439-56. [PMID: 22851315 PMCID: PMC3413349 DOI: 10.1083/jcb.201111012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RNA helicase DDX6 promotes HIV-1 assembly in a co-opted cellular complex containing P body proteins and ABCE1. To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)–related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.
Collapse
Affiliation(s)
- Jonathan C Reed
- Department of Global Health, University of Washington, Seattle, WA 98102, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
38
|
Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010. [PMID: 20519435 DOI: 10.1091/mbc.e10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca(2+) mimicked this increase in PB number. Conversely, intracellular Ca(2+)-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca(2+) required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of approximately 40-100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Biozentrum, Growth and Development, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
39
|
Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Mol Biol Cell 2010; 21:2624-38. [PMID: 20519435 PMCID: PMC2912349 DOI: 10.1091/mbc.e10-02-0099] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca(2+) mimicked this increase in PB number. Conversely, intracellular Ca(2+)-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca(2+) required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of approximately 40-100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Biozentrum, Growth and Development, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Abstract
P-bodies (processing bodies) are cytoplasmic foci visible by light microscopy in somatic cells of vertebrate and invertebrate origin as well as in yeast, plants and trypanosomes. At the molecular level, P-bodies are dynamic aggregates of specific mRNAs and proteins that serve a dual function: first, they harbour mRNAs that are translationally silenced, and such mRNA can exit again from P-bodies to re-engage in translation. Secondly, P-bodies recruit mRNAs that are targeted for deadenylation and degradation by the decapping/Xrn1 pathway. Whereas certain proteins are core constituents of P-bodies, others involved in recognizing short-lived mRNAs can only be trapped in P-bodies when mRNA decay is attenuated. This reflects the very transient interactions by which many proteins associate with P-bodies. In the present review, we summarize recent findings on the function, assembly and motility of P-bodies. An updated list of proteins and RNAs that localize to P-bodies will help in keeping track of this fast-growing field.
Collapse
|
41
|
Mair GR, Lasonder E, Garver LS, Franke-Fayard BMD, Carret CK, Wiegant JCAG, Dirks RW, Dimopoulos G, Janse CJ, Waters AP. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 2010; 6:e1000767. [PMID: 20169188 PMCID: PMC2820534 DOI: 10.1371/journal.ppat.1000767] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.
Collapse
Affiliation(s)
- Gunnar R. Mair
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Lisboa, Portugal
| | - Edwin Lasonder
- Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Blandine M. D. Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Céline K. Carret
- Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Lisboa, Portugal
| | - Joop C. A. G. Wiegant
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roeland W. Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew P. Waters
- Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
42
|
Updike D, Strome S. P granule assembly and function in Caenorhabditis elegans germ cells. ACTA ACUST UNITED AC 2009; 31:53-60. [PMID: 19875490 DOI: 10.2164/jandrol.109.008292] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Germ granules are large, non-membrane-bound, ribonucleoprotein (RNP) organelles found in the germ line cytoplasm of most, if not all, animals. The term germ granule is synonymous with the perinuclear nuage in mouse and human germ cells. These large RNPs are complexed with germ line-specific cytoplasmic structures such as the mitochondrial cloud, intermitochondrial cement, and chromatoid bodies. The widespread presence of germ granules across species and the associated germ line defects when germ granules are compromised suggest that germ granules are key determinants of the identity and special properties of germ cells. The nematode Caenorhabditis elegans has been a very fruitful model system for the study of germ granules, wherein they are referred to as P granules. P granules contain a heterogeneous mixture of RNAs and proteins. To date, most of the known germ granule proteins across species, and all of the known P granule components in C elegans, are associated with RNA metabolism, which suggests that a main function of germ granules is posttranscriptional regulation. Here we review P granule structure and localization, P granule composition, the genetic pathway of P granule assembly, and the consequences in the germ line when P granule components are lost. The findings in C elegans have important implications for the germ granule function during postnatal germ cell differentiation in mammals.
Collapse
Affiliation(s)
- Dustin Updike
- Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
43
|
A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 2009; 183:1397-419. [PMID: 19805813 DOI: 10.1534/genetics.109.110171] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.
Collapse
|
44
|
Blagden SP, Gatt MK, Archambault V, Lada K, Ichihara K, Lilley KS, Inoue YH, Glover DM. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol 2009; 334:186-97. [PMID: 19631203 DOI: 10.1016/j.ydbio.2009.07.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/02/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
As the influence of mRNA translation upon cell cycle regulation becomes clearer, we searched for genes that might specify such control in Drosophila. A maternal-effect lethal screen identified mutants in the Drosophila gene for Larp (La-related protein) which displayed maternal-effect lethality and male sterility. A role for La protein has already been implicated in mRNA translation whereas Larp has been proposed to regulate mRNA stability. Here we demonstrate that Larp exists in a physical complex with, and also interacts genetically with, the translation regulator poly(A)-binding protein (PABP). Most mutant alleles of pAbp are embryonic lethal. However hypomorphic pAbp alleles show similar meiotic defects to larp mutants. We find that larp mutant-derived syncytial embryos show a range of mitotic phenotypes, including failure of centrosomes to migrate around the nuclear envelope, detachment of centrosomes from spindle poles, the formation of multipolar spindle arrays and cytokinetic defects. We discuss why the syncytial mitotic cycles and male meiosis should have a particularly sensitive requirement for Larp proteins in regulating not only transcript stability but also potentially the translation of mRNAs.
Collapse
Affiliation(s)
- Sarah P Blagden
- Cancer Research UK Cell Cycle Genetics Group, University of Cambridge, Department of Genetics, Cambridge CB2 3EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakayama Y, Shivas JM, Poole DS, Squirrell JM, Kulkoski JM, Schleede JB, Skop AR. Dynamin participates in the maintenance of anterior polarity in the Caenorhabditis elegans embryo. Dev Cell 2009; 16:889-900. [PMID: 19531359 PMCID: PMC2719978 DOI: 10.1016/j.devcel.2009.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 03/24/2009] [Accepted: 04/21/2009] [Indexed: 01/10/2023]
Abstract
Cell polarity is crucial for the generation of cell diversity. Recent evidence suggests that the actin cytoskeleton plays a key role in establishment of embryonic polarity, yet the mechanisms that maintain polarity cues in particular membrane domains during development remain unclear. Dynamin, a large GTPase, functions in both endocytosis and actin dynamics. Here, the Caenorhabditis elegans dynamin ortholog, DYN-1, maintains anterior polarity cues. DYN-1-GFP foci are enriched in the anterior cortex in a manner dependent on the anterior polarity proteins, PAR-6 and PKC-3. Membrane internalization and actin comet formation are enriched in the anterior, and are dependent on DYN-1. PAR-6-labeled puncta are also internalized from cortical accumulations of DYN-1-GFP. Our results demonstrate a mechanism for the spatial and temporal regulation of endocytosis in the anterior of the embryo, contributing to the precise localization and maintenance of polarity factors within a dynamic plasma membrane.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Jessica M. Shivas
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Daniel S. Poole
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Jayne M. Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Justin B. Schleede
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Ahna R. Skop
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
46
|
Abstract
Sponge bodies, cytoplasmic structures containing post-transcriptional regulatory factors, are distributed throughout the nurse cells and oocytes of the Drosophila ovary and share components with P bodies of yeast and mammalian cells. We show that sponge body composition differs between nurse cells and the oocyte, and that the sponge bodies change composition rapidly after entry into the oocyte. We identify conditions that affect sponge body organization. At one extreme, components are distributed relatively uniformly or in small dispersed bodies. At the other extreme, components are present in large reticulated bodies. Both types of sponge bodies allow normal development, but show substantial differences in distribution of Staufen protein and oskar mRNA, whose localization within the oocyte is essential for axial patterning. Based on these and other results we propose a model for the relationship between P bodies and the various cytoplasmic bodies containing P body proteins in the Drosophila ovary.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular, Cell, and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
47
|
Provenzano PP, Eliceiri KW, Yan L, Ada-Nguema A, Conklin MW, Inman DR, Keely PJ. Nonlinear optical imaging of cellular processes in breast cancer. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:532-48. [PMID: 18986607 PMCID: PMC5575804 DOI: 10.1017/s1431927608080884] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nonlinear optical imaging techniques such as multiphoton and second harmonic generation (SHG) microscopy used in conjunction with novel signal analysis techniques such as spectroscopic and fluorescence excited state lifetime detection have begun to be used widely for biological studies. This is largely due to their promise to noninvasively monitor the intracellular processes of a cell together with the cell's interaction with its microenvironment. Compared to other optical methods these modalities provide superior depth penetration and viability and have the additional advantage in that they are compatible technologies that can be applied simultaneously. Therefore, application of these nonlinear optical approaches to the study of breast cancer holds particular promise as these techniques can be used to image exogeneous fluorophores such as green fluorescent protein as well as intrinsic signals such as SHG from collagen and endogenous fluorescence from nicotinamide adenine dinucleotide or flavin adenine dinucleotide. In this article the application of multiphoton excitation, SHG, and fluorescence lifetime imaging microscopy to relevant issues regarding the tumor-stromal interaction, cellular metabolism, and cell signaling in breast cancer is described. Furthermore, the ability to record and monitor the intrinsic fluorescence and SHG signals provides a unique tool for researchers to understand key events in cancer progression in its natural context.
Collapse
Affiliation(s)
- Paolo P. Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- Corresponding author.
| | - Long Yan
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
| | - Aude Ada-Nguema
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
| | - Matthew W. Conklin
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - David R. Inman
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Patricia J. Keely
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| |
Collapse
|
48
|
Rancati G, Pavelka N, Fleharty B, Noll A, Allen R, Walton K, Perera A, Staehling-Hampton K, Seidel CW, Li R. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008; 135:879-93. [PMID: 19041751 PMCID: PMC2776776 DOI: 10.1016/j.cell.2008.09.039] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 07/08/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.
Collapse
Affiliation(s)
- Giulia Rancati
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Norman Pavelka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Brian Fleharty
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Aaron Noll
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Rhonda Allen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Kendra Walton
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Karen Staehling-Hampton
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Chris W. Seidel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Rong Li
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| |
Collapse
|
49
|
Abstract
RNAs are exported from the nucleus to the cytoplasm, where they undergo translation and produce proteins needed for the cellular life cycle. Some mRNAs are targeted by different RNA decay mechanisms and thereby undergo degradation. The 5'-->3' degradation machinery localizes to cytoplasmic complexes termed P bodies (PBs). They function in RNA turnover, translational repression, RNA-mediated silencing, and RNA storage. A quantitative live-cell imaging approach to study the dynamic aspects of PB trafficking in the cytoplasm revealed that PB movements are rather confined and dependent on an existing microtubule network. Microtubule depolymerization led to a drastic decrease in PB mobility, as well as a release of regulation on PB assembly and a dramatic increase in PB numbers. The different aspects of PB trafficking and encounters with mRNA molecules in the cytoplasm are discussed.
Collapse
Affiliation(s)
- Adva Aizer
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
50
|
Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes. Mol Cell Biol 2008; 28:6695-708. [PMID: 18765641 DOI: 10.1128/mcb.00759-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal alpha-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes.
Collapse
|