1
|
Zhang W, Zhang H, He T, Li X, Liu Y, Han H, Wang J. The diverse functions of syntaxin 13 in endosome-mediated membrane fusion. Int J Biol Macromol 2025; 307:141878. [PMID: 40058431 DOI: 10.1016/j.ijbiomac.2025.141878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
SNARE is a crucial membrane fusion factor. It forms SNARE complex that play significant roles in regulating various biological functions. The SNARE protein family, including syntaxin13 (STX13), is highly conserved across various species, from yeast to humans. This review summarizes the molecular mechanisms by which STX13-associated SNARE complexes contribute to diverse endosome-mediated membrane fusions. Furthermore, multiple cofactors are essential for regulating the SNARE complexes-mediated membrane fusion. These include but are not limited to Rab GTPases and their effectors. The interaction of these factors with SNARE proteins constitutes a critical component driving vesicle fusion processes.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Huijie Han
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
2
|
Fang Q, Zhao Y, An D, Lindau M. SNARE complex assembly and disassembly dynamics in response to Ca 2+ current activation in live cells. Biophys J 2025:S0006-3495(25)00217-6. [PMID: 40205739 DOI: 10.1016/j.bpj.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
A SNAP25-based FRET construct named SCORE (SNARE complex reporter) has revealed a transient FRET increase that specifically occurred at fusion sites preceding fusion events by tens of milliseconds and presumably reflects vesicle priming. The FRET increase lasts for a few seconds until it is reversed. In those experiments, the FRET increase was found to be localized to areas <0.5 μm2 at sites of transmitter release as detected amperometrically using electrochemical detector arrays. Due to the localization to such small areas, it was unknown if the reversal of the FRET increase is due to local dispersion of high-FRET SCORE copies leaving the site after fusion and exchange with surrounding low-FRET copies, or if it reflects disassembly of the high-FRET complexes. To resolve this question, we performed whole-cell patch-clamp pulse stimulation experiments, imaging the entire footprint of the cells in total internal reflection fluorescence (TIRF) excitation mode such that diffusional exchange between high-FRET and low-FRET copies does not produce a net FRET change. We show here that pulse stimulation of calcium currents results in FRET ratio transients with a time course very similar to those related to fusion events. By comparing the kinetics of the FRET ratio decay with analytical and numerical diffusion simulation results, we show that the experimentally observed kinetics cannot be explained by diffusional exchange and conclude that the SCORE FRET ratio transients reflect incorporation of SCORE in SNARE complexes followed by SNARE complex disassembly. Experiments using Synaptobrevin 2/Cellubrevin double knockout mouse embryonal chromaffin cells showed no pulse-induced FRET change, indicating that the vSNARE is required for the incorporation of SCORE (or SNAP25 in wild-type cells) in the SNARE complex during priming.
Collapse
Affiliation(s)
- Qinghua Fang
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ying Zhao
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dong An
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida.
| |
Collapse
|
3
|
Sandhu S, Shaefer J. Paradoxical masseteric bulging after botulinum neurotoxin type A injection. BMJ Case Rep 2024; 17:e258568. [PMID: 38749514 DOI: 10.1136/bcr-2023-258568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Paradoxical masseteric bulging refers to an unexpected occurrence of masseter muscle bulging or protrusion following the administration of botulinum toxin injections, contrary to the anticipated muscle weakening effect. It may occur secondary to toxin failing to diffuse through the entire masseter muscle due to the presence of an inferior tendon structure within the superficial masseter that divides it into a superficial and deep belly. We report a clinical case of paradoxical masseteric bulging in a female in her late 40s who developed this adverse effect within a week of her masseter botulinum neurotoxin type A injections. We also describe the masseter two-site injection technique for the management of this complication.
Collapse
Affiliation(s)
- Shaiba Sandhu
- Orofacial Pain, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Oral Medicine Oncology Orofacial Pain, Workman School of Dental Medicine, High Point University, High Point, North Carolina, USA
| | - Jeffry Shaefer
- Orofacial Pain, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Orofacial Pain, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhang J, Hou S, Chi XQ, Shan HF, Li XW, Zhang QJ, Wang JL, Kang CB. Role of SNAP25 on the occurrence and development of eosinophilic gastritis. Medicine (Baltimore) 2023; 102:e34377. [PMID: 37478220 PMCID: PMC10662829 DOI: 10.1097/md.0000000000034377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Eosinophilic gastritis is characterized by gastrointestinal symptoms accompanied by peripheral eosinophilia. This study aims to explore the association between eosinophilic gastritis and Synaptosome Associated Protein 25 (SNAP25), and provide a new direction for the diagnosis and treatment of eosinophilic gastritis. GSE54043 was downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened. The functions of common DEGs were annotated by Database for Annotation, Visualization and Integrated Discovery and Metascape. The protein-protein interaction network of common DEGs was obtained by Search Tool for the Retrieval of Interacting Genes and visualized by Cytoscape. Significant modules were identified from the protein-protein interaction network. A total of 186 patients with eosinophilic gastritis were recruited. The clinical data were recorded and the expression levels of CPE, SST, PCSK2, SNAP25, and SYT4 were detected. Pearson chi-square test and Spearman correlation coefficient were used to analyze the relationship between eosinophilic gastritis and related parameters. Univariate and multivariate Logistic regression were used for further analysis. 353 DEGs were presented. The top 10 genes screened by cytoHubb were shown, and Veen diagram figured out 5 mutual genes. Pearson's chi-square test showed that SNAP25 (P < .001) was significantly associated with eosinophilic gastritis. Spearman correlation coefficient showed a significant correlation between eosinophilic gastritis and SNAP25 (ρ = -0.569, P < .001). Univariate logistic regression analysis showed that SNAP25 (OR = 0.046, 95% CI: 0.018-0.116, P < .001) was significantly associated with eosinophilic gastritis. Multivariate logistic regression analysis showed that SNAP25 (OR = 0.024, 95% CI: 0.007-0.075, P < .001) was significantly associated with eosinophilic gastritis. The low expression of SNAP25 gene in eosinophilic gastritis is associated with a higher risk of eosinophilic gastritis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-qian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hai-feng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-wei Li
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-jun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin-lei Wang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chun-bo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
5
|
The vesicle cluster as a major organizer of synaptic composition in the short-term and long-term. Curr Opin Cell Biol 2021; 71:63-68. [PMID: 33706235 DOI: 10.1016/j.ceb.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
For decades, the synaptic vesicle cluster has been thought of as a storage space for synaptic vesicles, whose obvious function is to provide vesicles for the depolarization-induced release of neurotransmitters; however, reports over the last few years indicate that the synaptic vesicle cluster probably plays a much broader and more fundamental role in synaptic biology. Various experiments suggest that the cluster is able to regulate protein distribution and mobility in the synapse; moreover, it probably regulates cytoskeleton architecture, mediates the selective removal of synaptic components from the bouton, and controls the responses of the presynapse to plasticity. Here we discuss these features of the vesicle cluster and conclude that it serves as a key organizer of synaptic composition and dynamics.
Collapse
|
6
|
Wilhelmi I, Grunwald S, Gimber N, Popp O, Dittmar G, Arumughan A, Wanker EE, Laeger T, Schmoranzer J, Daumke O, Schürmann A. The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic β-cells. Mol Metab 2020; 45:101151. [PMID: 33359402 PMCID: PMC7811047 DOI: 10.1016/j.molmet.2020.101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic β-cells. Methods A β-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. Results The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from β-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from β-cell-specific Arfrp1 knockout mice. Conclusion Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting. β-cell specific deletion of the trans-Golgi residing small GTPase ARFRP1 leads to elevated blood glucose levels in mice. GOPC is a newly identified ARFRP1 dependent scaffolding protein. ARFRP1 and GOPC are required for glucose-stimulated insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Ilka Wilhelmi
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Stephan Grunwald
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Popp
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Anup Arumughan
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Thomas Laeger
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.
| |
Collapse
|
7
|
Winner BM, Bodt SML, McNutt PM. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int J Mol Sci 2020; 21:ijms21228715. [PMID: 33218099 PMCID: PMC7698961 DOI: 10.3390/ijms21228715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.
Collapse
Affiliation(s)
- Brittany M. Winner
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD 21047, USA;
| | - Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
- Correspondence:
| |
Collapse
|
8
|
Morris S, Geoghegan ND, Sadler JBA, Koester AM, Black HL, Laub M, Miller L, Heffernan L, Simpson JC, Mastick CC, Cooper J, Gadegaard N, Bryant NJ, Gould GW. Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ 2020; 8:e8751. [PMID: 32185116 PMCID: PMC7060922 DOI: 10.7717/peerj.8751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA–GLUT4–GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Jessica B A Sadler
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Anna M Koester
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Marco Laub
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Lucy Miller
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Linda Heffernan
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Jon Cooper
- School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Nia J Bryant
- Department of Biology, University of York, York, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
10
|
Amorim MJ. A Comprehensive Review on the Interaction Between the Host GTPase Rab11 and Influenza A Virus. Front Cell Dev Biol 2019; 6:176. [PMID: 30687703 PMCID: PMC6333742 DOI: 10.3389/fcell.2018.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
This year marks the 100th anniversary of one of the deadliest pandemic outbreaks, commonly referred as the Spanish Flu, that was caused by influenza A virus (IAV). Since then, IAV has been in governmental agendas worldwide, and a lot of effort has been put into understanding the pathogen's lifecycle, predict and mitigate the emergence of the strains that provoke yearly epidemics and pandemic events. Despite decades of research and seminal contributions there is still a lot to be investigated. In particular for this review, IAV lifecycle that takes place inside the host cell is not fully understood. Two steps that need clarification include genome transport to budding sites and genome assembly, the latter a complex process challenged by the nature of IAV genome that is divided into eight distinct parts. Assembly of such segmented genome is crucial to form fully infectious viral particles but is also critical for the emergence of viruses with pandemic potential that arise when avian and human IAV strains co-infect a host. The host GTPase Rab11 was separately implicated in both steps, and, interestingly these processes are beginning to emerge as being intimately related. Rab11 was initially proposed to be involved in the budding/release of IAV virions. It was subsequently shown to transport progeny genome, and later proposed to promote assembly of viral genome, but the underlying bridging mechanism the two is far from clear. For simplicity, this Rab11-centric review provides an initial separate account of Rab11 involvement in genome transport and in assembly. IAV genome assembly is a complicated molecular biology process, and therefore earned a dedicated section on how/if the viral genome forms a genomic supramolecular complex. Both topics present intricate challenges, outstanding questions, and unique controversies. At the end of the review, I will explore possible mechanisms intertwining IAV vRNP transport and genome assembly. Importantly, Rab11 has recently emerged as a key factor subverted by evolutionary unrelated viral families (Paramyxo, Bunya, and Orthomyxoviruses, among many others) and bacteria (Salmonella and Shigella) relevant to human health. This review provides a framework to identify common biological principles among the lifecycles of these pathogens.
Collapse
Affiliation(s)
- Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
11
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
12
|
Khatami M, Hosseini SN, Hasannia S. Co-expression of alpha-1 antitrypsin with cytoplasmic domain of v-SNARE inPichia pastoris: Preserving biological activity of alpha-1 antitrypsin. Biotechnol Appl Biochem 2017; 65:181-187. [DOI: 10.1002/bab.1578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Maryam Khatami
- Department of Biochemistry; Faculty of Basic Science; Tarbiat Modares University; Tehran Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Products, Research and Production Complex; Pasteur Institute of Iran; Tehran Iran
| | - Sadegh Hasannia
- Department of Biochemistry; Faculty of Basic Science; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
13
|
Dingjan I, Linders PTA, van den Bekerom L, Baranov MV, Halder P, Ter Beest M, van den Bogaart G. Oxidized phagosomal NOX2 complex is replenished from lysosomes. J Cell Sci 2017; 130:1285-1298. [PMID: 28202687 PMCID: PMC5399780 DOI: 10.1242/jcs.196931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
In dendritic cells, the NADPH oxidase 2 complex (NOX2) is recruited to the phagosomal membrane during antigen uptake. NOX2 produces reactive oxygen species (ROS) in the lumen of the phagosome that kill ingested pathogens, delay antigen breakdown and alter the peptide repertoire for presentation to T cells. How the integral membrane component of NOX2, cytochrome b558 (which comprises CYBB and CYBA), traffics to phagosomes is incompletely understood. In this study, we show in dendritic cells derived from human blood-isolated monocytes that cytochrome b558 is initially recruited to the phagosome from the plasma membrane during phagosome formation. Cytochrome b558 also traffics from a lysosomal pool to phagosomes and this is required to replenish oxidatively damaged NOX2. We identified syntaxin-7, SNAP23 and VAMP8 as the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediating this process. Our data describe a key mechanism of how dendritic cells sustain ROS production after antigen uptake that is required to initiate T cell responses. Highlighted Article: In human dendritic cells, the membrane component of the NADPH oxidase NOX2 complex is initially recruited to phagosomes from the plasma membrane, and oxidized NOX2 complex subunits are replenished from a lysosomal pool.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Luuk van den Bekerom
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Maksim V Baranov
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Partho Halder
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
14
|
Vale-Costa S, Amorim MJ. Clustering of Rab11 vesicles in influenza A virus infected cells creates hotspots containing the 8 viral ribonucleoproteins. Small GTPases 2016; 8:71-77. [PMID: 27337591 PMCID: PMC5464114 DOI: 10.1080/21541248.2016.1199190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- a Cell Biology of Viral Infection Lab , Instituto Gulbenkian de Ciência , Oeiras , Portugal
| | - Maria João Amorim
- a Cell Biology of Viral Infection Lab , Instituto Gulbenkian de Ciência , Oeiras , Portugal
| |
Collapse
|
15
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
16
|
Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TFJ. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell 2016; 27:654-68. [PMID: 26700319 PMCID: PMC4750925 DOI: 10.1091/mbc.e15-07-0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | - Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
17
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
19
|
Bielopolski N, Lam AD, Bar-On D, Sauer M, Stuenkel EL, Ashery U. Differential interaction of tomosyn with syntaxin and SNAP25 depends on domains in the WD40 β-propeller core and determines its inhibitory activity. J Biol Chem 2014; 289:17087-99. [PMID: 24782308 DOI: 10.1074/jbc.m113.515296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal exocytosis depends on efficient formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and is regulated by tomosyn, a SNARE-binding protein. To gain new information about tomosyn's activity, we characterized its mobility and organization on the plasma membrane (PM) in relation to other SNARE proteins and inhibition of exocytosis. By using direct stochastic optical reconstruction microscopy (dSTORM), we found tomosyn to be organized in small clusters adjacent to syntaxin clusters. In addition, we show that tomosyn is present in both syntaxin-tomosyn complexes and syntaxin-SNAP25-tomosyn complexes. Tomosyn mutants that lack residues 537-578 or 897-917 from its β-propeller core diffused faster on the PM and exhibited reduced binding to SNAP25, suggesting that these mutants shift the equilibrium between tomosyn-syntaxin-SNAP25 complexes on the PM to tomosyn-syntaxin complexes. As these deletion mutants impose less inhibition on exocytosis, we suggest that tomosyn inhibition is mediated via tomosyn-syntaxin-SNAP25 complexes and not tomosyn-syntaxin complexes. These findings characterize, for the first time, tomosyn's dynamics at the PM and its relation to its inhibition of exocytosis.
Collapse
Affiliation(s)
- Noa Bielopolski
- From the Department of Neurobiology, Life Sciences Faculty, and
| | - Alice D Lam
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Dana Bar-On
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Markus Sauer
- the Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Edward L Stuenkel
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Uri Ashery
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel,
| |
Collapse
|
20
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
21
|
Climent JM, Kuan TS, Fenollosa P, Martin-del-Rosario F. Botulinum toxin for the treatment of myofascial pain syndromes involving the neck and back: a review from a clinical perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:381459. [PMID: 23533477 PMCID: PMC3590763 DOI: 10.1155/2013/381459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/21/2013] [Indexed: 12/20/2022]
Abstract
Introduction. Botulinum toxin inhibits acetylcholine (ACh) release and probably blocks some nociceptive neurotransmitters. It has been suggested that the development of myofascial trigger points (MTrP) is related to an excess release of ACh to increase the number of sensitized nociceptors. Although the use of botulinum toxin to treat myofascial pain syndrome (MPS) has been investigated in many clinical trials, the results are contradictory. The objective of this paper is to identify sources of variability that could explain these differences in the results. Material and Methods. We performed a content analysis of the clinical trials and systematic reviews of MPS. Results and Discussion. Sources of differences in studies were found in the diagnostic and selection criteria, the muscles injected, the injection technique, the number of trigger points injected, the dosage of botulinum toxin used, treatments for control group, outcome measures, and duration of followup. The contradictory results regarding the efficacy of botulinum toxin A in MPS associated with neck and back pain do not allow this treatment to be recommended or rejected. There is evidence that botulinum toxin could be useful in specific myofascial regions such as piriformis syndrome. It could also be useful in patients with refractory MPS that has not responded to other myofascial injection therapies.
Collapse
Affiliation(s)
- José M. Climent
- Physical and Rehabilitation Medicine Department, Alicante University General Hospital, C/Pintor Baeza s/n, 03010 Alicante, Spain
| | - Ta-Shen Kuan
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | | | - Francisco Martin-del-Rosario
- Physical and Rehabilitation Medicine Department, Gran Canaria Insular Hospital, Avenida Marítima del Sur, 35006 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Chamberlain LH, Lemonidis K, Sanchez-Perez M, Werno MW, Gorleku OA, Greaves J. Palmitoylation and the trafficking of peripheral membrane proteins. Biochem Soc Trans 2013; 41:62-6. [PMID: 23356259 DOI: 10.1042/bst20120243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Palmitoylation, the attachment of palmitate and other fatty acids on to cysteine residues, is a common post-translational modification of both integral and peripheral membrane proteins. Dynamic palmitoylation controls the intracellular distribution of peripheral membrane proteins by regulating membrane-cytosol exchange and/or by modifying the flux of the proteins through vesicular transport systems.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Mast cell function and dysregulation is important in the development and progression of allergic and autoimmune disease. Identifying novel proteins involved in mast cell function and disease progression is the first step in the design of new therapeutic strategies. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of proteins demonstrated to mediate the transport and fusion of secretory vesicles to the membrane in mast cells, leading to the subsequent release of the vesicle cargo through an exocytotic mechanism. The functional role[s] of specific SNARE family member complexes in mast cell degranulation has not been fully elucidated. Here, we review recent and historical data on the expression, formation and localization of various SNARE proteins and their complexes in murine and human mast cells. We summarize the functional data identifying the key SNARE family members that appear to participate in mast cell degranulation. Furthermore, we discuss the utilization of RNA interference (RNAi) methods to validate SNARE function and the use of siRNA as a therapeutic approach to the treatment of inflammatory disease. These studies provide an overview of the specific SNARE proteins and complexes that serve as novel targets for the development of new therapies to treat allergic and autoimmune disease.
Collapse
Affiliation(s)
- Joseph R Woska
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY, USA.
| | | |
Collapse
|
24
|
Greaves J, Chamberlain LH. Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 2011; 124:1351-60. [PMID: 21429935 DOI: 10.1242/jcs.079095] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SNAP25 regulates membrane fusion events at the plasma membrane and in the endosomal system, and a functional pool of the protein is delivered to recycling endosomes (REs) and the trans Golgi network (TGN) through an ARF6-dependent cycling pathway. SNAP25 is a peripheral membrane protein, and palmitoylation of a cluster of four cysteine residues mediates its stable association with the membrane. Here, we report that palmitoylation also determines the precise intracellular distribution of SNAP25, and that mutating single palmitoylation sites enhances the amount of SNAP25 at the RE and TGN. The farnesylated CAAX motif from Hras was ligated onto a SNAP25 mutant truncated immediately distal to the cysteine-rich domain. This construct displayed the same intracellular distribution as full-length SNAP25, and decreasing the number of cysteine residues in this construct increased its association with the RE and TGN, confirming the dominant role of the cysteine-rich domain in directing the intracellular distribution of SNAP25. Marked differences in the localisations of SNAP25-CAAX and Hras constructs, each with two palmitoylation sites, were observed, showing that subtle differences in palmitoylated sequences can have a major impact upon intracellular targeting. We propose that the cysteine-rich domain of SNAP25 is designed to facilitate the dual function of this SNARE protein at the plasma membrane and endosomes, and that dynamic palmitoylation acts as a mechanism to regulate the precise intracellular patterning of SNAP25.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
25
|
Pulido IR, Jahn R, Gerke V. VAMP3 is associated with endothelial weibel-palade bodies and participates in their Ca(2+)-dependent exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1038-44. [PMID: 21094665 DOI: 10.1016/j.bbamcr.2010.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/06/2010] [Indexed: 11/27/2022]
Abstract
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Inés Rojo Pulido
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
26
|
Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 2010; 330:502-5. [PMID: 20847232 DOI: 10.1126/science.1193134] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exocytosis requires formation of SNARE [soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] complexes between vesicle and target membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion-pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third-power relation for fast (synchronous) fusion and a near-linear relation for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, whereas slower release might occur with fewer complexes. Heterogeneity in SNARE-complex number may explain heterogeneity in vesicular release probability.
Collapse
Affiliation(s)
- Ralf Mohrmann
- Department of Membrane Biophysics, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
27
|
Skalski M, Yi Q, Kean MJ, Myers DW, Williams KC, Burtnik A, Coppolino MG. Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol 2010; 11:62. [PMID: 20698987 PMCID: PMC2925818 DOI: 10.1186/1471-2121-11-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/10/2010] [Indexed: 12/26/2022] Open
Abstract
Background Intracellular membrane traffic is an essential component of the membrane remodeling that supports lamellipodium extension during cell adhesion. The membrane trafficking pathways that contribute to cell adhesion have not been fully elucidated, but recent studies have implicated SNARE proteins. Here, the functions of several SNAREs (SNAP23, VAMP3, VAMP4 and syntaxin13) are characterized during the processes of cell spreading and membrane ruffling. Results We report the first description of a SNARE complex, containing SNAP23, syntaxin13 and cellubrevin/VAMP3, that is induced by cell adhesion to an extracellular matrix. Impairing the function of the SNAREs in the complex using inhibitory SNARE domains disrupted the recycling endosome, impeded delivery of integrins to the cell surface, and reduced haptotactic cell migration and spreading. Blocking SNAP23 also inhibited the formation of PMA-stimulated, F-actin-rich membrane ruffles; however, membrane ruffle formation was not significantly altered by inhibition of VAMP3 or syntaxin13. In contrast, membrane ruffling, and not cell spreading, was sensitive to inhibition of two SNAREs within the biosynthetic secretory pathway, GS15 and VAMP4. Consistent with this, formation of a complex containing VAMP4 and SNAP23 was enhanced by treatment of cells with PMA. The results reveal a requirement for the function of a SNAP23-syntaxin13-VAMP3 complex in the formation of lamellipodia during cell adhesion and of a VAMP4-SNAP23-containing complex during PMA-induced membrane ruffling. Conclusions Our findings suggest that different SNARE-mediated trafficking pathways support membrane remodeling during ECM-induced lamellipodium extension and PMA-induced ruffle formation, pointing to important mechanistic differences between these processes.
Collapse
Affiliation(s)
- Michael Skalski
- Department of Molecular and Cellular Biology, University of Guleph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Kean MJ, Williams KC, Skalski M, Myers D, Burtnik A, Foster D, Coppolino MG. VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion. J Cell Sci 2010; 122:4089-98. [PMID: 19910495 DOI: 10.1242/jcs.052761] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular remodeling of the extracellular matrix (ECM), an essential component of many physiological and pathological processes, is dependent on the trafficking and secretion of matrix metalloproteinases (MMPs). Soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic has documented roles in cell-ECM interactions and the present study specifically examines SNARE function in the trafficking of MMPs during ECM degradation. Using the invasive human fibrosarcoma cell line HT-1080, we demonstrate that a plasma membrane SNARE, SNAP23, and an endosomal v-SNARE, VAMP3 (also known as cellubrevin), partly colocalize with MMP2 and MMP9, and that inhibition of these SNAREs using dominant-negative SNARE mutants impaired secretion of the MMPs. Inhibition of VAMP3, SNAP23 or syntaxin-13 using dominant-negative SNARES, RNA interference or tetanus toxin impaired trafficking of membrane type 1 MMP to the cell surface. Consistent with these observations, we found that blocking the function of these SNAREs reduced the ability of HT-1080 cells to degrade a gelatin substrate in situ and impaired invasion of HT-1080 cells in vitro. The results reveal the importance of VAMP3, syntaxin-13 and SNAP23 in the trafficking of MMP during degradation of ECM substrates and subsequent cellular invasion.
Collapse
Affiliation(s)
- Michelle J Kean
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu XQ, Ji SY, Li YC, Fan CH, Cai H, Yang JL, Zhang CP, Chen M, Pan ZF, Hu ZY, Gao F, Liu YX. Acrosome formation-associated factor is involved in fertilization. Fertil Steril 2010; 93:1482-92. [DOI: 10.1016/j.fertnstert.2009.01.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 01/15/2023]
|
30
|
The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2010; 15:115, 204-15. [PMID: 19546860 PMCID: PMC2811213 DOI: 10.1038/mp.2009.58] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have implicated DTNBP1 as a schizophrenia susceptibility gene and its encoded protein, dysbindin, as a potential regulator of synaptic vesicle physiology. In this study, we found that endogenous levels of the dysbindin protein in the mouse brain are developmentally regulated, with higher levels observed during embryonic and early postnatal ages than in young adulthood. We obtained biochemical evidence indicating that the bulk of dysbindin from brain exists as a stable component of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a multi-subunit protein complex involved in intracellular membrane trafficking and organelle biogenesis. Selective biochemical interaction between brain BLOC-1 and a few members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) superfamily of proteins that control membrane fusion, including SNAP-25 and syntaxin 13, was demonstrated. Furthermore, primary hippocampal neurons deficient in BLOC-1 displayed neurite outgrowth defects. Taken together, these observations suggest a novel role for the dysbindin-containing complex, BLOC-1, in neurodevelopment, and provide a framework for considering potential effects of allelic variants in DTNBP1--or in other genes encoding BLOC-1 subunits--in the context of the developmental model of schizophrenia pathogenesis.
Collapse
|
31
|
GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation. FEBS Lett 2009; 584:537-42. [DOI: 10.1016/j.febslet.2009.11.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023]
|
32
|
Distribution of the SNAP25 and SNAP23 synaptosomal-associated protein isoforms in rat cerebellar cortex. Neuroscience 2009; 164:1084-96. [PMID: 19735702 DOI: 10.1016/j.neuroscience.2009.08.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
Synaptosome-associated protein of 25 kDa (SNAP25) is a component of the fusion complex that mediates synaptic vesicle exocytosis, regulates calcium dynamics and neuronal plasticity. Despite its crucial role in vesicle release, SNAP25 is not distributed homogenously within the brain. It seems to be virtually absent in mature inhibitory terminals and is observed in a subtype of excitatory neurons defined by the expression of vesicular glutamate transporter 1 (VGluT1). Since a complementary distribution of VGluT1 and VGluT2 in excitatory synapses is correlated with different probabilities of release (Pr), we evaluated whether SNAP25 localization is associated with specific synaptic properties. In the cerebellum, climbing fiber (CF) and parallel fiber (PF) inputs, which impinge onto the same Purkinje cell (PC), have very different functional properties. In the cerebellum of adult rats, using confocal and electron microscopy, we observed that VGluT2-positive CFs, characterized by a high Pr, only weakly express SNAP25, while VGluT1-positive PFs that show a low Pr abundantly express SNAP25. Moreover, SNAP25 was less profuse in the VGluT2-positive rosettes of mossy fibers (MFs) and was almost absent in inhibitory terminals. We extended our analysis to the SNAP23 homolog; this is expressed at different levels in both gamma-aminobutyric acid-containing terminals (GABAergic) and glutamatergic terminals of the cerebellar cortex. In conclusion, the preferential localization of SNAP25 in specific synaptic boutons suggests a correlation between SNAP25 and the Pr. This evidence supports the hypothesis that SNAP25 has a modulatory role in shaping synaptic responses.
Collapse
|
33
|
Bethani I, Werner A, Kadian C, Geumann U, Jahn R, Rizzoli SO. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 2009; 10:1543-59. [PMID: 19624487 DOI: 10.1111/j.1600-0854.2009.00959.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically approximately 10%) were sufficient for a substantial amount of SNARE-SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Akbar MA, Ray S, Krämer H. The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles. Mol Biol Cell 2009; 20:1705-14. [PMID: 19158398 PMCID: PMC2655250 DOI: 10.1091/mbc.e08-03-0282] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 11/25/2008] [Accepted: 01/09/2009] [Indexed: 01/18/2023] Open
Abstract
The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes.
Collapse
Affiliation(s)
| | - Sanchali Ray
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Helmut Krämer
- Departments of *Neuroscience and
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
35
|
Lee JD, Huang PC, Lin YC, Kao LS, Huang CC, Kao FJ, Lin CC, Yang DM. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:507-18. [PMID: 18986604 DOI: 10.1017/s1431927608080628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The high sensitivity and spatial resolution enabled by two-photon excitation fluorescence lifetime imaging microscopy/fluorescence resonance energy transfer (2PE-FLIM/FRET) provide an effective approach that reveals protein-protein interactions in a single cell during stimulated exocytosis. Enhanced green fluorescence protein (EGFP)-labeled synaptosomal associated protein of 25 kDa (SNAP25A) and red fluorescence protein (mRFP)-labeled Rabphillin 3A (RPH3A) were co-expressed in PC12 cells as the FRET donor and acceptor, respectively. The FLIM images of EGFP-SNAP25A suggested that SNAP25A/RPH3A interaction was increased during exocytosis. In addition, the multidimensional (three-dimensional with time) nature of the 2PE-FLIM image datasets can also resolve the protein interactions in the z direction, and we have compared several image analysis methods to extract more accurate and detailed information from the FLIM images. Fluorescence lifetime was fitted by using one and two component analysis. The lifetime FRET efficiency was calculated by the peak lifetime (taupeak) and the left side of the half-peak width (tau1/2), respectively. The results show that FRET efficiency increased at cell surface, which suggests that SNAP25A/RPH3A interactions take place at cell surface during stimulated exocytosis. In summary, we have demonstrated that the 2PE-FLIM/FRET technique is a powerful tool to reveal dynamic SNAP25A/RPH3A interactions in single neuroendocrine cells.
Collapse
Affiliation(s)
- Jiung-De Lee
- Department of Medical Research and Education, Taipei Veterans General Hospital, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Eric A Johnson
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
37
|
Lee JD, Chang YF, Kao FJ, Kao LS, Lin CC, Lu AC, Shyu BC, Chiou SH, Yang DM. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Microsc Res Tech 2008; 71:26-34. [PMID: 17886343 DOI: 10.1002/jemt.20521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exocytosis has been proposed to contain four sequential steps, namely docking, priming, fusion, and recycling, and to be regulated by various proteins-protein interactions. Synaptosomal-associated protein of 25 kDa (SNAP25) has recently been found to bind rabphilin, the Rab3A specific binding protein, in vitro. However, it is still unclear whether SNAP25 and rabphilin interact during exocytosis within cells in vivo. This problem was addressed by the integration of fluorescence resonance energy transfer (FRET) with high sensitivity fluorescence lifetime imaging microscopy (FLIM) to observe this protein-protein interaction. Enhanced green fluorescence protein-labeled SNAP25 (donor) and red fluorescence protein-labeled rabphilin (acceptor) were expressed in neuroendocrine PC12 cells as a FRET pair and ATP stimulation was carried out for various durations. With 10 s stimulation, a 0.17-ns left shift of the lifetime peak was found when compared with donor only. Analysis of the lifetime image further suggested that the lifetime recovered to a similar level as the donor only in a time dependent manner. Four-dimensional (4D) images by FLIM provided useful information indicating that the interaction of SNAP25 and rabphilin occurred particularly within optical sections near cell membrane. Together the results suggest that SNAP25 bound rabphilin loosely at docking step before exocytosis and the binding became tighter at the very start of exocytosis. Finally, these two proteins dissociated after stimulation. To our knowledge, this is the first report to demonstrate the interaction of SNAP25 and rabphilin in situ using the FLIM-FRET technique within neuroendocrine cells.
Collapse
Affiliation(s)
- Jiung-De Lee
- Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Okayama M, Arakawa T, Mizoguchi I, Tajima Y, Takuma T. SNAP-23 is not essential for constitutive exocytosis in HeLa cells. FEBS Lett 2007; 581:4583-8. [PMID: 17825825 DOI: 10.1016/j.febslet.2007.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/09/2007] [Accepted: 08/21/2007] [Indexed: 01/28/2023]
Abstract
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP.
Collapse
Affiliation(s)
- Miki Okayama
- Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | |
Collapse
|
39
|
Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO. The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 2007; 26:3981-92. [PMID: 17717530 PMCID: PMC1994121 DOI: 10.1038/sj.emboj.7601820] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/19/2007] [Indexed: 12/26/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved. Although both sets of SNAREs promiscuously assemble in vitro, there is no functional crosstalk. We now show that they not only colocalize to overlapping microdomains in the membrane of early endosomes of neuroendocrine cells, but also form cis-complexes promiscuously, with the proportion of the different complexes being primarily dependent on mass action. Addition of soluble SNARE molecules onto native membranes revealed preference for cognate SNAREs. Furthermore, we found that SNAREs are laterally segregated at endosome contact sites, with the exocytotic synaptobrevin being depleted. We conclude that specificity in endosome fusion is mediated by the following two synergistically operating mechanisms: (i) preference for the cognate SNARE in 'trans' interactions and (ii) lateral segregation of SNAREs, leading to relative enrichment of the cognate ones at the prospective fusion sites.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- International Max Planck Research School Neurosciences, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thorsten Lang
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulf Geumann
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jochen J Sieber
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany. Tel.: +49 551 201 1635; Fax: +49 551 201 1639; E-mail:
| | - Silvio O Rizzoli
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
40
|
Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 2007; 8:26. [PMID: 17244347 PMCID: PMC1796866 DOI: 10.1186/1471-2164-8-26] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.
Collapse
|
41
|
Dhonukshe P, Samaj J, Baluska F, Friml J. A unifying new model of cytokinesis for the dividing plant and animal cells. Bioessays 2007; 29:371-81. [PMID: 17373659 DOI: 10.1002/bies.20559] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytokinesis ensures proper partitioning of the nucleocytoplasmic contents into two daughter cells. It has generally been thought that cytokinesis is accomplished differently in animals and plants because of the differences in the preparatory phases, into the centrosomal or acentrosomal nature of the process, the presence or absence of rigid cell walls, and on the basis of 'outside-in' or 'inside-out' mechanism. However, this long-standing paradigm needs further reevaluation based on new findings. Recent advances reveal that plant cells, similarly to animal cells, possess astral microtubules that regulate the cell division plane. Furthermore, endocytosis has been found to be important for cytokinesis in animal and plant cells: vesicles containing endocytosed cargo provide material for the cell plate formation in plants and for closure of the midbody channel in animals. Thus, although the preparatory phases of the cell division process differ between plant and animal cells, the later phases show similarities. We unify these findings in a model that suggests a conserved mode of cytokinesis.
Collapse
Affiliation(s)
- Pankaj Dhonukshe
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|