1
|
Huang M, Song D, Zhou L, Jiao Z, Yang L, Yang Y, Peng J, Guo G. Unveiling the roles of CaSDH8 in Candida albicans: Implications for virulence and azole resistance. Virulence 2024; 15:2405000. [PMID: 39403939 PMCID: PMC11485852 DOI: 10.1080/21505594.2024.2405000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/19/2024] Open
Abstract
Candida albicans is the most common pathogen in systemic fungal diseases, exhibits a complex pathogenic mechanism, and is increasingly becoming drug tolerant. Therefore, it is particularly important to study the genes associated with virulence and resistance of C. albicans. Here, we identified a gene (orf19.1588) that encodes a conserved mitochondrial protein known as CaSDH8, upon deletion of CaSdh8, the deleted strain (Casdh8Δ/Δ) experienced impaired growth, hyphal development, and virulence. Casdh8Δ/Δ displayed a reduced capacity to utilize alternative carbon sources, along with detrimental alterations in reactive oxygen species (ROS), mitochondrial membrane potential (MMP) depolarization, and adenosine triphosphate (ATP) levels. Interestingly, Casdh8Δ/Δ demonstrated resistance to azole drugs, and under the influence of fluconazole, the cell membrane permeability and mitochondrial function of Casdh8Δ/Δ were less compromised than those of the wild type, indicating a reduction in the detrimental effects of fluconazole on Casdh8Δ/Δ. These findings highlight the significance of CaSDH8 as a crucial gene for the maintenance of cellular homoeostasis. Our study is the first to document the effects of the CaSDH8 gene on the virulence and azole resistance of C. albicans at both the molecular and animal levels, providing new clues and directions for the antifungal infection and the discovery of antifungal drug targets.
Collapse
Affiliation(s)
- Mingjiao Huang
- School of Basic Medical Sciences, Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Dongxu Song
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Zhenlong Jiao
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Longbing Yang
- School of Basic Medical Sciences, Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
| | - Yang Yang
- School of Basic Medical Sciences, Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- School of Basic Medical Sciences, Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
3
|
Schyck S, Marchese P, Amani M, Ablonczy M, Spoelstra L, Jones M, Bathaei Y, Bismarck A, Masania K. Harnessing Fungi Signaling in Living Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400104. [PMID: 39469481 PMCID: PMC11514302 DOI: 10.1002/gch2.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Indexed: 10/30/2024]
Abstract
Signaling pathways in fungi offer a profound avenue for harnessing cellular communication and have garnered considerable interest in biomaterial engineering. Fungi respond to environmental stimuli through intricate signaling networks involving biochemical and electrical pathways, yet deciphering these mechanisms remains a challenge. In this review, an overview of fungal biology and their signaling pathways is provided, which can be activated in response to external stimuli and direct fungal growth and orientation. By examining the hyphal structure and the pathways involved in fungal signaling, the current state of recording fungal electrophysiological signals as well as the landscape of fungal biomaterials is explored. Innovative applications are highlighted, from sustainable materials to biomonitoring systems, and an outlook on the future of harnessing fungi signaling in living composites is provided.
Collapse
Affiliation(s)
- Sarah Schyck
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Pietro Marchese
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Muhamad Amani
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mark Ablonczy
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Linde Spoelstra
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mitchell Jones
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Yaren Bathaei
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Alexander Bismarck
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| |
Collapse
|
4
|
Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. mBio 2023; 14:e0343422. [PMID: 36809010 PMCID: PMC10128014 DOI: 10.1128/mbio.03434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The ability to transition between yeast and filamentous growth states is critical for virulence of the leading human fungal pathogen Candida albicans. Large-scale genetic screens have identified hundreds of genes required for this morphological switch, but the mechanisms by which many of these genes orchestrate this developmental transition remain largely elusive. In this study, we characterized the role of Ent2 in governing morphogenesis in C. albicans. We showed that Ent2 is required for filamentous growth under a wide range of inducing conditions and is also required for virulence in a mouse model of systemic candidiasis. We found that the epsin N-terminal homology (ENTH) domain of Ent2 enables morphogenesis and virulence and does so via a physical interaction with the Cdc42 GTPase-activating protein (GAP) Rga2 and regulation of its localization. Further analyses revealed that overexpression of the Cdc42 effector protein Cla4 can overcome the requirement for the ENTH-Rga2 physical interaction, indicating that Ent2 functions, at least in part, to enable proper activation of the Cdc42-Cla4 signaling pathway in the presence of a filament-inducing cue. Overall, this work characterizes the mechanism by which Ent2 regulates hyphal morphogenesis in C. albicans, unveils the importance of this factor in enabling virulence in an in vivo model of systemic candidiasis and adds to the growing understanding of the genetic control of a key virulence trait. IMPORTANCE Candida albicans is a leading human fungal pathogen that can cause life-threatening infections in immunocompromised individuals, with mortality rates of ~40%. The ability of this organism to grow in both yeast and filamentous forms is critical for the establishment of systemic infection. Genomic screens have identified many genes required for this morphological transition, yet our understanding of the mechanisms that regulate this key virulence trait remains incomplete. In this study, we characterized Ent2 as a core regulator of C. albicans morphogenesis. We show that Ent2 regulates hyphal morphogenesis through an interaction between its ENTH domain and the Cdc42 GAP, Rga2, which signals through the Cdc42-Cla4 signaling pathway. Finally, we show that the Ent2 protein, and specifically its ENTH domain, is required for virulence in a mouse model of systemic candidiasis. Overall, this work identifies Ent2 as a key regulator of filamentation and virulence in C. albicans.
Collapse
|
5
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
6
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
7
|
Kowalewski GP, Wildeman AS, Bogliolo S, Besold AN, Bassilana M, Culotta VC. Cdc42 regulates reactive oxygen species production in the pathogenic yeast Candida albicans. J Biol Chem 2021; 297:100917. [PMID: 34181946 PMCID: PMC8329510 DOI: 10.1016/j.jbc.2021.100917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Across eukaryotes, Rho GTPases such as Rac and Cdc42 play important roles in establishing cell polarity, which is a key feature of cell growth. In mammals and filamentous fungi, Rac targets large protein complexes containing NADPH oxidases (NOX) that produce reactive oxygen species (ROS). In comparison, Rho GTPases of unicellular eukaryotes were believed to signal cell polarity without ROS, and it was unclear whether Rho GTPases were required for ROS production in these organisms. We document here the first example of Rho GTPase-mediated post-transcriptional control of ROS in a unicellular microbe. Specifically, Cdc42 is required for ROS production by the NOX Fre8 of the opportunistic fungal pathogen Candida albicans. During morphogenesis to a hyphal form, a filamentous growth state, C. albicans FRE8 mRNA is induced, which leads to a burst in ROS. Fre8-ROS is also induced during morphogenesis when FRE8 is driven by an ectopic promoter; hence, Fre8 ROS production is in addition controlled at the post-transcriptional level. Using fluorescently tagged Fre8, we observe that the majority of the protein is associated with the vacuolar system. Interestingly, much of Fre8 in the vacuolar system appears inactive, and Fre8-induced ROS is only produced at sites near the hyphal tip, where Cdc42 is also localized during morphogenesis. We observe that Cdc42 is necessary to activate Fre8-mediated ROS production during morphogenesis. Cdc42 regulation of Fre8 occurs without the large NOX protein complexes typical of higher eukaryotes and therefore represents a novel form of ROS control by Rho GTPases.
Collapse
Affiliation(s)
- Griffin P Kowalewski
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Asia S Wildeman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stéphanie Bogliolo
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Angelique N Besold
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
9
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
10
|
Establishment of tetracycline-regulated bimolecular fluorescence complementation assay to detect protein-protein interactions in Candida albicans. Sci Rep 2020; 10:2936. [PMID: 32076074 PMCID: PMC7031294 DOI: 10.1038/s41598-020-59891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1–159) and C-terminus (amino acids 160–237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.
Collapse
|
11
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
12
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi (Basel) 2019; 5:jof5010021. [PMID: 30823468 PMCID: PMC6463138 DOI: 10.3390/jof5010021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a human commensal fungus that is able to assume several morphologies, including yeast, hyphal, and pseudohyphal. Under a range of conditions, C. albicans performs a regulated switch to the filamentous morphology, characterized by the emergence of a germ tube from the yeast cell, followed by a mold-like growth of branching hyphae. This transition from yeast to hyphal growth has attracted particular attention, as it has been linked to the virulence of C. albicans as an opportunistic human pathogen. Signal transduction pathways that mediate the induction of the hyphal transcription program upon the imposition of external stimuli have been extensively investigated. However, the hyphal morphogenesis transcription program can also be induced by internal cellular signals, such as inhibition of cell cycle progression, and conversely, the inhibition of hyphal extension can repress hyphal-specific gene expression, suggesting that endogenous cellular signals are able to modulate hyphal gene expression as well. Here we review recent developments in the regulation of the hyphal morphogenesis of C. albicans, with emphasis on endogenous morphogenetic signals.
Collapse
|
14
|
Stypulkowski E, Asangani IA, Witze ES. The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division. Sci Signal 2018; 11:eaam8705. [PMID: 29295957 PMCID: PMC5914505 DOI: 10.1126/scisignal.aam8705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asymmetric cell division results in two distinctly fated daughter cells. A molecular hallmark of asymmetric division is the unequal partitioning of cell fate determinants. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which, in turn, drives migration and metastasis. We report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell fate determinants Numb and β-catenin through the activity of the depalmitoylating enzyme APT1. Using point mutations, we showed that specific palmitoylated residues on Numb were required for its asymmetric localization. By live-cell imaging, we showed that reciprocal interactions between APT1 and the Rho family GTPase CDC42 promoted the asymmetric localization of Numb and β-catenin to the plasma membrane. This, in turn, restricted Notch- or Wnt-responsive transcriptional activity to one daughter cell. Moreover, we showed that altering APT1 abundance changed the transcriptional signatures of MDA-MB-231 triple receptor-negative breast cancer cells, similar to changes in Notch and β-catenin-mediated Wnt signaling. We also showed that loss of APT1 depleted a specific subpopulation of tumorigenic cells in colony formation assays. Together, our findings suggest that APT1-mediated depalmitoylation is a major mechanism of asymmetric cell division that maintains Notch- and Wnt-associated protein dynamics, gene expression, and cellular functions.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Witze
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Glory A, van Oostende CT, Geitmann A, Bachewich C. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genet Biol 2017; 107:51-66. [DOI: 10.1016/j.fgb.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
16
|
Oliveira AF, Fernandes FF, Mariano VS, Almeida F, Ruas LP, Oliveira LL, Oliver C, Jamur MC, Roque-Barreira MC. Paracoccin distribution supports its role in Paracoccidioides brasiliensis growth and dimorphic transformation. PLoS One 2017; 12:e0184010. [PMID: 28846733 PMCID: PMC5573292 DOI: 10.1371/journal.pone.0184010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022] Open
Abstract
Paracoccidioides brasiliensis yeast was reported to express paracoccin, a GlcNAc-binding protein that displays N-acetyl-β-d-glucosaminidase (NAGase) activity. Highly specific anti-paracoccin antibodies have been previously used to examine the localization of paracoccin in yeast and inhibit its growth in vitro. In the present study, anti-paracoccin antibodies were used to characterize, by scanning confocal microscopy, the distribution of paracoccin in P. brasiliensis hyphae, transition forms from hyphae to yeast, and mature yeast. In the mycelial phase, paracoccin was detected mainly in the hyphae tips, where it demonstrated a punctate distribution, and was associated with the cell wall. During the first 48 hours after a temperature shift from 26°C to 37°C, paracoccin expression in the differentiating hyphae was mainly detected in the budding regions, i.e. lateral protrusions, and inside the new daughter cells. There was an increased number of chlamydoconidia that expressed a high concentration of paracoccin on their surfaces and/or in their interiors 72–96 hours after the temperature shift. After 120 hours, yeast cells were the predominant form and their cytoplasm stained extensively for paracoccin, whereas Wheat Germ Agglutinin (WGA) staining was predominant on their exterior walls. After 10 days at 37°C, the interior of both mother and daughter yeast cells, as well as the budding regions, stained intensely for paracoccin. The comparison of mRNA-expression in the different fungal forms showed that PCN transcripts, although detected in all evaluated morphological forms, were higher in hypha and yeast-to-hypha transition forms. In conclusion, the pattern of paracoccin distribution in all P. brasiliensis morphotypes supports prevalent beliefs that it plays important roles in fungal growth and dimorphic transformation.
Collapse
Affiliation(s)
- Aline Ferreira Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fabricio Freitas Fernandes
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Vânia Sammartino Mariano
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fausto Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Luciana Pereira Ruas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | | | - Constance Oliver
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Celia Jamur
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
17
|
Pedraza N, Cemeli T, Monserrat MV, Garí E, Ferrezuelo F. Regulation of small GTPase activity by G1 cyclins. Small GTPases 2017; 10:47-53. [PMID: 28129038 DOI: 10.1080/21541248.2016.1268665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.
Collapse
Affiliation(s)
- Neus Pedraza
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Tània Cemeli
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Ma Ventura Monserrat
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Eloi Garí
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Francisco Ferrezuelo
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| |
Collapse
|
18
|
Saputo S, Norman KL, Murante T, Horton BN, Diaz JDLC, DiDone L, Colquhoun J, Schroeder JW, Simmons LA, Kumar A, Krysan DJ. Complex Haploinsufficiency-Based Genetic Analysis of the NDR/Lats Kinase Cbk1 Provides Insight into Its Multiple Functions in Candida albicans. Genetics 2016; 203:1217-33. [PMID: 27206715 PMCID: PMC4937472 DOI: 10.1534/genetics.116.188029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 01/11/2023] Open
Abstract
Although the analysis of genetic interactions and networks is a powerful approach to understanding biology, it has not been applied widely to the pathogenic yeast Candida albicans Here, we describe the use of both screening and directed genetic interaction studies based on complex haploinsufficiency to probe the function of the R: egulation of A: ce2 and M: orphogenesis (RAM) pathway in C. albicans A library of 5200 Tn7-mutagenized derivatives of a parental strain heterozygous at CBK1, the key kinase in the RAM pathway, was screened for alterations in serum-induced filamentation. Following confirmation of phenotypes and identification of insertion sites by sequencing, a set of 36 unique double heterozygous strains showing complex haploinsufficiency was obtained. In addition to a large set of genes regulated by the RAM transcription factor Ace2, genes related to cell wall biosynthesis, cell cycle, polarity, oxidative stress, and nitrogen utilization were identified. Follow-up analysis led to the first demonstration that the RAM pathway is required for oxidative stress tolerance in a manner related to the two-component-regulated kinase Chk1 and revealed a potential direct connection between the RAM pathway and the essential Mps1 spindle pole-related kinase. In addition, genetic interactions with CDC42-related genes MSB1, a putative scaffold protein, and RGD3, a putative Rho GTPase-activating protein (GAP) were identified. We also provide evidence that Rgd3 is a GAP for Cdc42 and show that its localization and phosphorylation are dependent on Cbk1.
Collapse
Affiliation(s)
- Sarah Saputo
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Kaitlyn L Norman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Murante
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Brooke N Horton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jacinto De La Cruz Diaz
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Louis DiDone
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jennifer Colquhoun
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jeremy W Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Damian J Krysan
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
19
|
Si H, Rittenour WR, Harris SD. Roles of Aspergillus nidulans Cdc42/Rho GTPase regulators in hyphal morphogenesis and development. Mycologia 2016; 108:543-55. [PMID: 26932184 DOI: 10.3852/15-232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 02/03/2023]
Abstract
The Rho-related family of GTPases are pivotal regulators of morphogenetic processes in diverse eukaryotic organisms. In the filamentous fungi two related members of this family, Cdc42 and Rac1, perform particularly important roles in the establishment and maintenance of hyphal polarity. The activity of these GTPases is tightly controlled by two sets of regulators: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the importance of Cdc42 and Rac1 in polarized hyphal growth, the morphogenetic functions of their cognate GEFs and GAPs have not been widely characterized in filamentous fungi outside the Saccharomycotina. Here we present a functional analysis of the Aspergillus nidulans homologs of the yeast GEF Cdc24 and the yeast GAP Rga1. We show that Cdc24 is required for the establishment of hyphal polarity and localizes to hyphal tips. We also show that Rga1 is necessary for the suppression of branching in developing conidiophores. During asexual development Rga1 appears to act primarily via Cdc42 and in doing so serves as a critical determinant of conidiophore architecture. Our results provide new insight into the roles of Cdc42 during development in A nidulans.
Collapse
Affiliation(s)
- Haoyu Si
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| | - William R Rittenour
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| |
Collapse
|
20
|
Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol 2016; 54:170-7. [PMID: 26920877 DOI: 10.1007/s12275-016-5550-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.
Collapse
Affiliation(s)
- Yue Wang
- Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 2015; 11:e1004630. [PMID: 25617770 PMCID: PMC4305328 DOI: 10.1371/journal.ppat.1004630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity. The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
Collapse
Affiliation(s)
- Jamie A. Greig
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Ian M. Sudbery
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan P. Richardson
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Julian R. Naglik
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biochemistry, Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- * E-mail: (PES); (YW)
| | - Peter E. Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (PES); (YW)
| |
Collapse
|
23
|
Caballero-Lima D, Sudbery PE. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell 2014; 25:1097-110. [PMID: 24501427 PMCID: PMC3967973 DOI: 10.1091/mbc.e13-11-0688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Candida albicans hyphae continue to grow throughout mitosis, and phosphorylation of Exo84 by Cdk is necessary for efficient hyphal growth. In contrast, phosphorylation of Exo84 by Cdk halts cell growth in Saccharomyces cerevisiae. The location of Cdk1 target sites in Exo84 explains how phosphoregulation mediates these different patterns of growth. The exocyst, a conserved multiprotein complex, tethers secretory vesicles before fusion with the plasma membrane; thus it is essential for cell surface expansion. In both Saccharomyces cerevisiae and mammalian cells, cell surface expansion is halted during mitosis. In S. cerevisiae, phosphorylation of the exocyst component Exo84 by Cdk1-Clb2 during mitosis causes the exocyst to disassemble. Here we show that the hyphae of the human fungal pathogen Candida albicans continue to extend throughout the whole of mitosis. We show that CaExo84 is phosphorylated by Cdk1, which is necessary for efficient hyphal extension. This action of Cdk1 depends on the hyphal-specific cyclin Hgc1, the homologue of G1 cyclins in budding yeast. Phosphorylation of CaExo84 does not alter its localization but does alter its affinity for phosphatidylserine, allowing it to recycle at the plasma membrane. The different action of Cdk1 on CaExo84 and ScExo84 is consistent with the different locations of the Cdk1 target sites in the two proteins. Thus this conserved component of polarized growth has evolved so that its phosphoregulation mediates the dramatically different patterns of growth shown by these two organisms.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
24
|
Brand AC, Morrison E, Milne S, Gonia S, Gale CA, Gow NAR. Cdc42 GTPase dynamics control directional growth responses. Proc Natl Acad Sci U S A 2014; 111:811-6. [PMID: 24385582 PMCID: PMC3896204 DOI: 10.1073/pnas.1307264111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca(2+) influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca(2+) influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca(2+). Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca(2+). Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca(2+). The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca(2+) influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca(2+)-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance.
Collapse
Affiliation(s)
- Alexandra C. Brand
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Emma Morrison
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Stephen Milne
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| | - Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Neil A. R. Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
25
|
Corvest V, Bogliolo S, Follette P, Arkowitz RA, Bassilana M. Spatiotemporal regulation of Rho1 and Cdc42 activity duringCandida albicansfilamentous growth. Mol Microbiol 2013; 89:626-48. [DOI: 10.1111/mmi.12302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
|
26
|
Nadeem SG, Shafiq A, Hakim ST, Anjum Y, U. Kazm S. Effect of Growth Media, pH and Temperature on Yeast to Hyphal Transition in <i>Candida albicans</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmm.2013.33028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Carlisle PL, Kadosh D. A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell 2012; 24:246-60. [PMID: 23242994 PMCID: PMC3564527 DOI: 10.1091/mbc.e12-01-0065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions.
Collapse
Affiliation(s)
- Patricia L Carlisle
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
28
|
Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. EUKARYOTIC CELL 2012; 12:482-95. [PMID: 23223038 DOI: 10.1128/ec.00294-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 "fine-tunes" the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis.
Collapse
|
29
|
Jiang YS, Maeda M, Okamoto M, Fujii M, Fukutomi R, Hori M, Tatsuka M, Ota T. Centrosomal localization of RhoGDIβ and its relevance to mitotic processes in cancer cells. Int J Oncol 2012; 42:460-8. [PMID: 23232495 PMCID: PMC3583720 DOI: 10.3892/ijo.2012.1730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Rho GDP-dissociation inhibitors (RhoGDIs) are regulators of Rho family GTPases. RhoGDIβ has been implicated in cancer progression, but its precise role remains unclear. We determined the subcellular localization of RhoGDIβ and examined the effects of its overexpression and RNAi knockdown in cancer cells. Immunofluorescence staining showed that RhoGDIβ localized to centrosomes in human cancer cells. In HeLa cells, exogenous GFP-tagged RhoGDIβ localized to centrosomes and its overexpression caused prolonged mitosis and aberrant cytokinesis in which the cell shape was distorted. RNAi knockdown of RhoGDIβ led to increased incidence of monopolar spindle mitosis resulting in polyploid cells. These results suggest that RhoGDIβ has mitotic functions, including regulation of cytokinesis and bipolar spindle formation. The dysregulated expression of RhoGDIβ may contribute to cancer progression by disrupting these processes.
Collapse
Affiliation(s)
- Yong-Sheng Jiang
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium that requires Amt1 and Amt2 ammonium permeases. EUKARYOTIC CELL 2012; 11:1391-8. [PMID: 23002105 DOI: 10.1128/ec.00242-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.
Collapse
|
31
|
A Candida albicans temperature-sensitive cdc12-6 mutant identifies roles for septins in selection of sites of germ tube formation and hyphal morphogenesis. EUKARYOTIC CELL 2012; 11:1210-8. [PMID: 22886998 DOI: 10.1128/ec.00216-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Septins were identified for their role in septation in Saccharomyces cerevisiae and were subsequently implicated in other morphogenic processes. To study septins in Candida albicans hyphal morphogenesis, a temperature-sensitive mutation was created that altered the C terminus of the essential Cdc12 septin. The cdc12-6 cells grew well at room temperature, but at 37°C they displayed expected defects in septation, nuclear localization, and bud morphogenesis. Although serum stimulated the cdc12-6 cells at 37°C to form germ tube outgrowths, the mutant could not maintain polarized hyphal growth and instead formed chains of elongated cell compartments. Serum also stimulated the cdc12-6 mutant to induce a hyphal reporter gene (HWP1-GFP) and a characteristic zone of filipin staining at the leading edge of growth. Interestingly, cdc12-6 cells shifted to 37°C in the absence of serum gradually displayed enriched filipin staining at the tip, which may be due to the altered cell cycle regulation. A striking difference from the wild type was that the cdc12-6 cells frequently formed a second germ tube in close proximity to the first. The mutant cells also failed to form the diffuse band of septins at the base of germ tubes and hyphae, indicating that this septin band plays a role in preventing proximal formation of germ tubes in a manner analogous to bud site selection. These studies demonstrate that not only are septins important for cytokinesis, but they also promote polarized morphogenesis and selection of germ tube sites that may help disseminate an infection in host tissues.
Collapse
|
32
|
Richthammer C, Enseleit M, Sanchez-Leon E, März S, Heilig Y, Riquelme M, Seiler S. RHO1 and RHO2 share partially overlapping functions in the regulation of cell wall integrity and hyphal polarity in Neurospora crassa. Mol Microbiol 2012; 85:716-33. [DOI: 10.1111/j.1365-2958.2012.08133.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
34
|
Arkowitz RA, Bassilana M. Polarized growth in fungi: symmetry breaking and hyphal formation. Semin Cell Dev Biol 2011; 22:806-15. [PMID: 21906692 DOI: 10.1016/j.semcdb.2011.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023]
Abstract
Cell shape is a critical determinant for function. The baker's yeast Saccharomyces cerevisiae changes shape in response to its environment, growing by budding in rich nutrients, forming invasive pseudohyphal filaments in nutrient poor conditions and pear shaped shmoos for growth towards a partner during mating. The human opportunistic pathogen Candida albicans can switch from budding to hyphal growth, in response to numerous environmental stimuli to colonize and invade its host. Hyphal growth, typical of filamentous fungi, is not observed in S. cerevisiae. A number of internal cues regulate when and where yeast cells break symmetry leading to polarized growth and ultimately distinct cell shapes. This review discusses how cells break symmetry using the yeast S. cerevisiae paradigm and how polarized growth is initiated and maintained to result in dramatic morphological changes during C. albicans hyphal growth.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Centre National de la Recherche Scientifique and Université de Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer, CNRS-UMR6543 Faculté des Sciences, Nice, France.
| | | |
Collapse
|
35
|
|
36
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
37
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
38
|
Killing of Candida albicans filaments by Salmonella enterica serovar Typhimurium is mediated by sopB effectors, parts of a type III secretion system. EUKARYOTIC CELL 2011; 10:782-90. [PMID: 21498643 DOI: 10.1128/ec.00014-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although bacterial-fungal interactions shape microbial virulence during polymicrobial infections, only a limited number of studies have evaluated this interaction on a genetic level. We report here that one interaction is mediated by sopB, an effector of a type III secretion system (TTSS) of Salmonella enterica serovar Typhimurium. In these studies, we screened 10 TTSS effector-related mutants and determined their role in the killing of C. albicans filaments in vitro during coinfection in planktonic environments. We found that deleting the sopB gene (which encodes inositol phosphatase) was associated with a significant decrease in C. albicans killing at 25°C after 5 days, similar to that caused by the deletion of sipB (which encodes TTSS translocation machinery components). The sopB deletion dramatically influenced the killing of C. albicans filaments. It was associated with repressed filamentation in the Caenorhabditis elegans model of C. albicans-S. Typhimurium coinfection, as well as with biofilm formation by C. albicans. We confirmed that SopB translocated to fungal filaments through SipB during coinfection. Using quantitative real-time PCR assays, we found that the Candida supernatant upregulated the S. Typhimurium genes associated with C. albicans killing (sopB and sipB). Interestingly, the sopB effector negatively regulated the transcription of CDC42, which is involved in fungal viability. Taken together, these results indicate that specific TTSS effectors, including SopB, play a critical role in bacterial-fungal interactions and are important to S. Typhimurium in order to selectively compete with fungal pathogens. These findings highlight a new role for TTSS of S. Typhimurium in the intestinal tract and may further explain the evolution and maintenance of these traits.
Collapse
|
39
|
Sudbery P. Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus. Fungal Genet Biol 2011; 48:849-57. [PMID: 21362491 DOI: 10.1016/j.fgb.2011.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
Abstract
Fungal hyphae show extreme polarized growth at the tip. Electron microscope studies have revealed a apical body called the Spitzenkörper that is thought to drive polarized growth. Studies of polarized growth in S. cerevisiae have identified the protein components of the polarized growth machinery, that are conserved in other fungi. Fusion of these proteins to GFP and its variants has for the first time allowed the localization of these proteins in real time to the hyphal tip without the need for drastic fixation procedures. Such studies showed that vesicle-associated proteins localize to the Spitzenkörper and identified a second compartment located at the tip surface composed of exocyst and other proteins that mediate the fusion of secretory vesicles with the plasma membrane.
Collapse
Affiliation(s)
- Peter Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
40
|
The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth. Fungal Genet Biol 2010; 47:1001-11. [DOI: 10.1016/j.fgb.2010.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 01/01/2023]
|
41
|
Vauchelles R, Stalder D, Botton T, Arkowitz RA, Bassilana M. Rac1 dynamics in the human opportunistic fungal pathogen Candida albicans. PLoS One 2010; 5:e15400. [PMID: 21060846 PMCID: PMC2965673 DOI: 10.1371/journal.pone.0015400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans.
Collapse
Affiliation(s)
- Romain Vauchelles
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Danièle Stalder
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Thomas Botton
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Robert A. Arkowitz
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Martine Bassilana
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
- * E-mail:
| |
Collapse
|
42
|
Gladfelter AS. Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Curr Opin Microbiol 2010; 13:720-6. [PMID: 20934902 DOI: 10.1016/j.mib.2010.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 01/16/2023]
Abstract
Recent investigations have established core principles by which septins can form non-polar filaments in vitro. How cells then assemble, regulate and use septin polymers is still only beginning to be understood. It is clear that there is plasticity and variability in septin organization across diverse species and cell types. Work in the filamentous fungi has been invaluable in discovering this variation in form and function. In particular filamentous fungi display many forms of higher order septin structures and study of septins in these systems has led to insights into septin assembly, dynamics and regulation. Importantly in many cases work in these alternative systems reveal differences to how septins may be organized, functioning or regulated in Saccharomyces cerevisiae. Here I review the novel aspects of septin biology found in filamentous fungi and raise many open questions about these enigmatic polymers that should guide future study.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
43
|
Seiler S, Justa-Schuch D. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 2010; 78:1058-76. [PMID: 21091496 DOI: 10.1111/j.1365-2958.2010.07392.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis is essential for cell proliferation, yet its molecular description is challenging, because >100 conserved proteins must be spatially and temporally co-ordinated. Despite the high importance of a tight co-ordination of cytokinesis with chromosome and organelle segregation, the mechanism for determining the cell division plane is one of the least conserved aspects of cytokinesis in eukaryotic cells. Budding and fission yeast have developed fundamentally distinct mechanisms to ensure proper nuclear segregation. The extent to which these pathways are conserved in multicellular fungi remains unknown. Recent progress indicates common components, but different mechanisms that are required for proper selection of the septation site in the different groups of Ascomycota. Cortical cues are used in yeast- and filament-forming species of the Saccharomycotina clade that are established at the incipient bud site or the hyphal tip respectively. In contrast, septum formation in the filament-forming Pezizomycotina species Aspergillus nidulans and Neurospora crassa seems more closely related to the fission yeast programme in that they may combine mitotic signals with a cell end-based marker system and Rho GTPase signalling. Thus, significant differences in the use and connection of conserved signalling modules become apparent that reflect the phylogenetic relationship of the analysed models.
Collapse
Affiliation(s)
- Stephan Seiler
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | |
Collapse
|
44
|
Sorais F, Barreto L, Leal JA, Bernabé M, San-Blas G, Niño-Vega GA. Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Med Mycol 2010; 48:35-47. [PMID: 19225978 DOI: 10.3109/13693780802713356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this report we identified orthologues of fungal AGS1, RHO1, RHO2, RAC1 and CDC42 genes in the dimorphic fungus Paracoccidioides brasiliensis. Based on its homology to known fungal sequences, P. brasiliensis Ags1 was identified as an alpha-1,3-glucan synthase, while Rho1, Rho2, Rac1 and Cdc42 proteins were classified into the Rho1, Rho2, Rac1 and Cdc42 subgroups of fungal Rho GTPases, respectively. Of them, Rho1 is one of two subunits of a putative beta-1,3-glucan synthase complex, the other being the synthase itself (Fks1), while Rho2 has been associated to the alpha-1,3-glucan synthase (Ags1). Expression studies showed that mRNAs levels of RHO2 and AGS1 kept a direct relationship but the levels of RHO1 and FKS1 did not. P. brasiliensis RHO1 successfully restored growth of Saccharomyces cerevisiae rho1 mutant under restrictive temperature conditions. Chemical analyses of P. brasiliensis alpha-1,3-glucan, synthesized by Ags1p, indicated that it is essentially a linear polysaccharide, with <3% of alpha-1,4-linked glucose branches, occasionally attached as single units to the alpha-1,3-backbone.
Collapse
Affiliation(s)
- Françoise Sorais
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
45
|
Carlisle PL, Kadosh D. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. EUKARYOTIC CELL 2010; 9:1320-8. [PMID: 20656912 PMCID: PMC2937344 DOI: 10.1128/ec.00046-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/14/2010] [Indexed: 01/15/2023]
Abstract
The ability of Candida albicans, the most common human fungal pathogen, to transition from yeast to hyphae is essential for pathogenicity. While a variety of transcription factors important for filamentation have been identified and characterized, links between transcriptional regulators of C. albicans morphogenesis and molecular mechanisms that drive hyphal growth are not well defined. We have previously observed that constitutive expression of UME6, which encodes a filament-specific transcriptional regulator, is sufficient to direct hyphal growth in the absence of filament-inducing conditions. Here we show that HGC1, encoding a cyclin-related protein necessary for hyphal growth under filament-inducing conditions, is specifically important for agar invasion, hyphal extension, and formation of true septa in response to constitutive UME6 expression under non-filament-inducing conditions. HGC1-dependent inactivation of Rga2, a Cdc42 GTPase activating protein (GAP), also appears to be important for these processes. In response to filament-inducing conditions, HGC1 is induced prior to UME6 although UME6 controls the level and duration of HGC1 expression, which are likely to be important for hyphal extension. Interestingly, an epistasis analysis suggests that UME6 and HGC1 play distinct roles during early filament formation. These findings establish a link between a key regulator of filamentation and a downstream mechanism important for hyphal formation. In addition, this study demonstrates that a strain expressing constitutive high levels of UME6 provides a powerful strategy to specifically dissect downstream mechanisms important for hyphal development in the absence of complex filament-inducing conditions.
Collapse
Affiliation(s)
- Patricia L. Carlisle
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7758, San Antonio, Texas 78229-3900
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7758, San Antonio, Texas 78229-3900
| |
Collapse
|
46
|
Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 2010; 29:2930-42. [PMID: 20639857 PMCID: PMC2944046 DOI: 10.1038/emboj.2010.158] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/10/2010] [Indexed: 01/16/2023] Open
Abstract
Polarized growth is a fundamental property of cell growth and development. It requires the delivery of post-Golgi secretory vesicles to the site of polarized growth. This process is mediated by Rab GTPases activated by their guanine exchange factors (GEFs). The human fungal pathogen, Candida albicans, can grow in a budded yeast form or in a highly polarized hyphal form, and thus provides a model to study this phenomenon. During hyphal, but not yeast growth, secretory vesicles accumulate in an apical body called a Spitzenkörper, which acts to focus delivery of the vesicles to the tip. Post-Golgi transport of secretory vesicles is mediated by the Rab GTPase Sec4, activated by its GEF Sec2. Using a combination of deletion mapping, in vitro mutagenesis, an analogue-sensitive allele of Cdc28 and an in vitro kinase assay, we show that localization of Sec2 to the Spitzenkörper and normal hyphal development requires phosphorylation of Serine 584 by the cyclin-dependent kinase Cdc28. Thus, as well as controlling passage through the cell cycle, Cdc28 has an important function in controlling polarized secretion.
Collapse
Affiliation(s)
- Amy Bishop
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Rachel Lane
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Richard Beniston
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Bernardo Chapa-y-Lazo
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Carl Smythe
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Peter Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
47
|
Lettner T, Zeidler U, Gimona M, Hauser M, Breitenbach M, Bito A. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance. PLoS One 2010; 5:e11993. [PMID: 20700541 PMCID: PMC2916835 DOI: 10.1371/journal.pone.0011993] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it represents a promising antifungal drug target.
Collapse
Affiliation(s)
- Thomas Lettner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Ute Zeidler
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mario Gimona
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Arnold Bito
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
48
|
Reijnst P, Jorde S, Wendland J. Candida albicans SH3-domain proteins involved in hyphal growth, cytokinesis, and vacuolar morphology. Curr Genet 2010; 56:309-19. [PMID: 20383711 DOI: 10.1007/s00294-010-0301-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 12/13/2022]
Abstract
This report describes the analyses of three Candida albicans genes that encode Src Homology 3 (SH3)-domain proteins. Homologs in Saccharomyces cerevisiae are encoded by the SLA1, NBP2, and CYK3 genes. Deletion of CYK3 in C. albicans was not feasible, suggesting it is essential. Promoter shutdown experiments of CaCYK3 revealed cytokinesis defects, which are in line with the localization of GFP-tagged Cyk3 at septal sites. Deletion of SLA1 resulted in strains with decreased ability to form hyphal filaments. The number of cortical actin patches was strongly reduced in Deltasla1 strains during all growth stages. Sla1-GFP localizes in patches that are found concentrated at the hyphal tip. Deletion of the first two SH3-domains of Sla1 still resulted in cortical localization of the truncated protein. However, the actin cytoskeleton in this strain was aberrant like in the Deltasla1 deletion mutant indicating a function of these SH3 domains to recruit actin nucleation to sites of endocytosis. Deletion of NBP2 resulted in a defect in vacuolar fusion in hyphae. Germ cells of Deltanbp2 strains lacked a large vacuole but initiated several germ tubes. The mutant phenotypes of Deltanbp2 and Deltasla1 could be corrected by reintegration of the wild-type genes.
Collapse
Affiliation(s)
- Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Valby, Copenhagen, Denmark
| | | | | |
Collapse
|
49
|
Ballou ER, Nichols CB, Miglia KJ, Kozubowski L, Alspaugh JA. Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions. Mol Microbiol 2009; 75:763-80. [PMID: 20025659 DOI: 10.1111/j.1365-2958.2009.07019.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The precise regulation of morphogenesis is a key mechanism by which cells respond to a variety of stresses, including those encountered by microbial pathogens in the host. The polarity protein Cdc42 regulates cellular morphogenesis throughout eukaryotes, and we explore the role of Cdc42 proteins in the host survival of the human fungal pathogen Cryptococcus neoformans. Uniquely, C. neoformans has two functional Cdc42 paralogues, Cdc42 and Cdc420. Here we investigate the contribution of each paralogue to resistance to host stress. In contrast to non-pathogenic model organisms, C. neoformans Cdc42 proteins are not required for viability under non-stress conditions but are required for resistance to high temperature. The paralogues play differential roles in actin and septin organization and act downstream of C. neoformans Ras1 to regulate its morphogenesis sub-pathway, but not its effects on mating. Cdc42, and not Cdc420, is upregulated in response to temperature stress and is required for virulence in a murine model of cryptococcosis. The C. neoformans Cdc42 proteins likely perform complementary functions with other Rho-like GTPases to control cell polarity, septin organization and hyphal transitions that allow survival in the environment and in the host.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
50
|
Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol 2009; 12:644-9. [DOI: 10.1016/j.mib.2009.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
|