1
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
2
|
Zhang L, Cervantes MD, Pan S, Lindsley J, Dabney A, Kapler GM. Transcriptome analysis of the binucleate ciliate Tetrahymena thermophila with asynchronous nuclear cell cycles. Mol Biol Cell 2023; 34:rs1. [PMID: 36475712 PMCID: PMC9930529 DOI: 10.1091/mbc.e22-08-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.
Collapse
Affiliation(s)
- L. Zhang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - M. D. Cervantes
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - S. Pan
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - J. Lindsley
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - A. Dabney
- Department of Statistics, Texas A&M University, College Station, TX 77843,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| | - G. M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| |
Collapse
|
3
|
Lee SR, Pollard DA, Galati DF, Kelly ML, Miller B, Mong C, Morris MN, Roberts-Nygren K, Kapler GM, Zinkgraf M, Dang HQ, Branham E, Sasser J, Tessier E, Yoshiyama C, Matsumoto M, Turman G. Disruption of a ∼23-24 nucleotide small RNA pathway elevates DNA damage responses in Tetrahymena thermophila. Mol Biol Cell 2021; 32:1335-1346. [PMID: 34010017 PMCID: PMC8694037 DOI: 10.1091/mbc.e20-10-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.
Collapse
Affiliation(s)
- Suzanne R Lee
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Domenico F Galati
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan L Kelly
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Brian Miller
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Christina Mong
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan N Morris
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Geoffrey M Kapler
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Matthew Zinkgraf
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Hung Q Dang
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Erica Branham
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Jason Sasser
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Erin Tessier
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Maya Matsumoto
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Gaea Turman
- Biology Department, Western Washington University, Bellingham, WA 98225
| |
Collapse
|
4
|
Liu Y, Nan B, Niu J, Kapler GM, Gao S. An Optimized and Versatile Counter-Flow Centrifugal Elutriation Workflow to Obtain Synchronized Eukaryotic Cells. Front Cell Dev Biol 2021; 9:664418. [PMID: 33959616 PMCID: PMC8093812 DOI: 10.3389/fcell.2021.664418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Cell synchronization is a powerful tool to understand cell cycle events and its regulatory mechanisms. Counter-flow centrifugal elutriation (CCE) is a more generally desirable method to synchronize cells because it does not significantly alter cell behavior and/or cell cycle progression, however, adjusting specific parameters in a cell type/equipment-dependent manner can be challenging. In this paper, we used the unicellular eukaryotic model organism, Tetrahymena thermophila as a testing system for optimizing CCE workflow. Firstly, flow cytometry conditions were identified that reduced nuclei adhesion and improved the assessment of cell cycle stage. We then systematically examined how to achieve the optimal conditions for three critical factors affecting the outcome of CCE, including loading flow rate, collection flow rate and collection volume. Using our optimized workflow, we obtained a large population of highly synchronous G1-phase Tetrahymena as measured by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into nascent DNA strands, bulk DNA content changes by flow cytometry, and cell cycle progression by light microscopy. This detailed protocol can be easily adapted to synchronize other eukaryotic cells.
Collapse
Affiliation(s)
- Yongqiang Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bei Nan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhua Niu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Tian M, Loidl J. A chromatin-associated protein required for inducing and limiting meiotic DNA double-strand break formation. Nucleic Acids Res 2019; 46:11822-11834. [PMID: 30357385 PMCID: PMC6294514 DOI: 10.1093/nar/gky968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are required for meiotic recombination, but the number is strictly controlled because they are potentially harmful. Here we report a novel protein, Pars11, which is required for Spo11-dependent DSB formation in the protist Tetrahymena. Pars11 localizes to chromatin early in meiotic prophase in a Spo11-independent manner and is removed before the end of prophase. Pars11 removal depends on DSB formation and ATR-dependent phosphorylation. In the absence of the DNA damage sensor kinase ATR, Pars11 is retained on chromatin and excess DSBs are generated. Similar levels of Pars11 persistence and DSB overproduction occur in a non-phosphorylatable pars11 mutant. We conclude that Pars11 supports DSB formation by Spo11 until enough DSBs are formed; thereafter, DSB production stops in response to ATR-dependent degradation of Pars11 or its removal from chromatin. A similar DSB control mechanism involving a Rec114-Tel1/ATM-dependent negative feedback loop regulates DSB formation in budding yeast. However, there is no detectable sequence homology between Pars11 and Rec114, and DSB numbers are more tightly controlled by Pars11 than by Rec114. The discovery of this mechanism for DSB regulation in the evolutionarily distant protist and fungal lineages suggests that it is conserved across eukaryotes.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
6
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lee PH, Meng X, Kapler GM. Developmental regulation of the Tetrahymena thermophila origin recognition complex. PLoS Genet 2015; 11:e1004875. [PMID: 25569357 PMCID: PMC4287346 DOI: 10.1371/journal.pgen.1004875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023] Open
Abstract
The Tetrahymena thermophila DNA replication machinery faces unique demands due to the compartmentalization of two functionally distinct nuclei within a single cytoplasm, and complex developmental program. Here we present evidence for programmed changes in ORC and MCM abundance that are not consistent with conventional models for DNA replication. As a starting point, we show that ORC dosage is critical during the vegetative cell cycle and development. A moderate reduction in Orc1p induces genome instability in the diploid micronucleus, aberrant division of the polyploid macronucleus, and failure to generate a robust intra-S phase checkpoint response. In contrast to yeast ORC2 mutants, replication initiation is unaffected; instead, replication forks elongation is perturbed, as Mcm6p levels decline in parallel with Orc1p. Experimentally induced down-regulation of ORC and MCMs also impairs endoreplication and gene amplification, consistent with essential roles during development. Unexpectedly Orc1p and Mcm6p levels fluctuate dramatically in developing wild type conjugants, increasing for early cycles of conventional micronuclear DNA replication and macronuclear anlagen replication (endoreplication phase I, rDNA gene amplification). This increase does not reflect the DNA replication load, as much less DNA is synthesized during this developmental window compared to vegetative S phase. Furthermore, although Orc1p levels transiently increase prior to endoreplication phase II, Orc1p and Mcm6p levels decline when the replication load increases and unconventional DNA replication intermediates are produced. We propose that replication initiation is re-programmed to meet different requirements or challenges during the successive stages of Tetrahymena development. The Origin Recognition Complex is required for site-specific replication initiation in eukaryotic chromosomes. Null mutations are lethal in yeast and metazoa, and hypomorphs induce genome instability, a hallmark of cancer. We exploited the unique biology of Tetrahymena to explore ORC's role in conventional and alternative replication programs. Modest experimental down-regulation of ORC1 induces genome instability in vegetative growing Tetrahymena, and diminishes the capacity to support developmentally regulated endoreplication and gene amplification, consistent with essential roles in all of these processes. ORC mutants fail to activate the ATR checkpoint response, and are compromised in their ability to elongate existing replication forks. Remarkably, ORC and MCM levels fluctuate in unexpected ways during wild type development. Most notably, programmed changes in ORC abundance do not reflect the impending DNA replication load. Relative to the vegetative cell cycle, ORC and MCM levels increase dramatically and are highest early in development, when the replication load is lowest. Conversely, ORC levels are lowest during genome-wide macronuclear endoreplication, when the replication load increases. Endocycling cells generate unconventional replication intermediates that distinguish them from vegetative ORC1 knockdown mutants. The collective data suggest that the dependence on ORC may be relaxed during late stages of macronuclear development.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schemarova IV, Selivanova GV, Vlasova TD. Influence of activator and inhibitors of Ca2+ channels on proliferative activity in Tetrahymena pyriformis infusoria. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abstract
The ciliate Tetrahymena thermophila can be said to undergo a variety of developmental programs. During vegetative growth, cells coordinate a variety of cell-cycle operations including macronuclear DNA synthesis and a-mitotic fission, micronuclear DNA synthesis and mitosis, cytokinesis and an elaborate program of cortical morphogenesis that replicates the cortical organelles. When starved, cells undergo oral replacement, transformation into fast-swimming dispersal forms or, when encountering cells of a complementary mating type, conjugation. Conjugation involves a 12 hour program of meiosis, mitosis, nuclear exchange and karyogamy, and two postzygotic divisions of the fertilization nucleus. This chapter reviews experimental data exploring the developmental dependencies associated with both vegetative and conjugal development.
Collapse
|
11
|
Kaczanowski A, Kiersnowska M. Inactivation of a macronuclear intra-S-phase checkpoint in Tetrahymena thermophila with caffeine affects the integrity of the micronuclear genome. Protist 2011; 162:616-36. [PMID: 21601521 DOI: 10.1016/j.protis.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/23/2011] [Indexed: 01/16/2023]
Abstract
Aphidicolin (APH), an inhibitor of DNA polymerase α, arrested cell divisions in Tetrahymena thermophila. Surprisingly, low concentrations of APH induced an increase of macronuclear DNA content and cell size in non-dividing cells. In spite of the cell size increase, most proliferation of basal bodies, ciliogenesis and development of new oral primordia were prevented by the APH treatment. The division arrest induced by APH was partly overridden by caffeine (CAF) treatment, which caused the fragmentation ("pulverization") of the chromosomes in G2 micronuclei. Somatic progeny of dividers with pulverized micronuclei (APH+CAF strains) contained aneuploid and amicronucleate cells. The amicronucleate cells, after losing their oral structures and most of their cilia, and undergoing progressive disorganization of cortical structures, assumed an irregular shape ("crinkled") and were nonviable. "Crinkled" cells were not formed after APH + CAF treatment of the amicronuclear BI3840 strain, which contains some mic-specific sequences in its macronucleus. Most of the APH +CAF strains had a typical "*"- like conjugation phenotype: they did not produce pronuclei, but received them unilaterally from their mates and retained old macronuclei. However, 4 among 100 APH+CAF clones induced arrest at meiotic metaphase I in their wt mates. It is likely that the origin of such clones was enhanced by chromosome pulverization.
Collapse
|
12
|
Cappadocia L, Maréchal A, Parent JS, Lepage É, Sygusch J, Brisson N. Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. THE PLANT CELL 2010; 22:1849-67. [PMID: 20551348 PMCID: PMC2910959 DOI: 10.1105/tpc.109.071399] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 05/13/2010] [Accepted: 05/25/2010] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.
Collapse
|
13
|
Lukaszewicz A, Howard-Till RA, Novatchkova M, Mochizuki K, Loidl J. MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma 2010; 119:505-18. [PMID: 20422424 DOI: 10.1007/s00412-010-0274-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Programmed DNA double-strand breaks (DSBs) are generated during meiosis to initiate homologous recombination. Various aspects of DSB formation, signaling, and repair are accomplished or governed by Mre11, a component of the MRN/MRX complex, partially in cooperation with Com1/Sae2/CtIP. We used Tetrahymena to study evolutionarily conserved and changed functions of Mre11 and Com1. There is a difference between organisms with respect to the dependency of meiotic DSB formation on Mre11. By cytology and an electrophoresis-based assay for DSBs, we found that in Tetrahymena Mre11p is not required for the formation and ATR-dependent signaling of DSBs. Its dispensability is also reflected by wild-type-like DSB-dependent reorganization of the meiotic nucleus and by the phosphorylation of H2A.X in mre11∆ mutant. However, mre11∆ and com1∆ mutants are unable to repair DSBs, and chromosome pairing is reduced. It is concluded that, while MRE11 has no universal role in DNA damage signaling, its requirement for DSB repair is conserved between evolutionarily distant organisms. Moreover, reduced chromosome pairing in repair-deficient mutants reveals the existence of two complementing pairing processes, one by the rough parallel arrangement of chromosomes imposed by the tubular shape of the meiotic nucleus and the other by repair-dependent precise sequence matching.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Dr. Bohr Gasse 1, Vienna, Austria
| | | | | | | | | |
Collapse
|
14
|
Loidl J, Mochizuki K. Tetrahymena meiotic nuclear reorganization is induced by a checkpoint kinase-dependent response to DNA damage. Mol Biol Cell 2009; 20:2428-37. [PMID: 19297526 PMCID: PMC2675622 DOI: 10.1091/mbc.e08-10-1058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/27/2009] [Accepted: 03/05/2009] [Indexed: 11/11/2022] Open
Abstract
In the ciliate Tetrahymena, meiotic micronuclei (MICs) undergo extreme elongation, and meiotic pairing and recombination take place within these elongated nuclei (the "crescents"). We have previously shown that elongation does not occur in the absence of Spo11p-induced DNA double-strand breaks (DSBs). Here we show that elongation is restored in spo11Delta mutants by various DNA-damaging agents including ones that may not cause DSBs to a notable extent. MIC elongation following Spo11p-induced DSBs or artificially induced DNA lesions is probably a DNA-damage response mediated by a phosphokinase signal transduction pathway, since it is suppressed by the ATM/ATR kinase inhibitors caffeine and wortmannin and by knocking out Tetrahymena's ATR orthologue. MIC elongation occurs concomitantly with the movement of centromeres away from the telomeric pole of the MIC. This DNA damage-dependent reorganization of the MIC helps to arrange homologous chromosomes alongside each other but is not sufficient for exact pairing. Thus, Spo11p contributes to bivalent formation in two ways: by creating a favorable spatial disposition of homologues and by stabilizing pairing by crossovers. The polarized chromosome orientation inside the crescent resembles the conserved meiotic bouquet, and crescent and bouquet also share the putative function of aiding meiotic pairing. However, they are regulated differently because in Tetrahymena, DSBs are required for entering rather than exiting this stage.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
| | | |
Collapse
|
15
|
Donti TR, Datta S, Sandoval PY, Kapler GM. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J 2009; 28:223-33. [PMID: 19153611 DOI: 10.1038/emboj.2008.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0.8 kb) and ARS1-B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA-independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non-rDNA ARS1 chromosome changed across the cell cycle. In G(2) phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1-A/B. Remarkably, ORC and Mcm6 associated with just the ARS1-A replicator in G(1) phase when pre-replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non-rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | | | | | |
Collapse
|
16
|
Maréchal A, Parent JS, Sabar M, Véronneau-Lafortune F, Abou-Rached C, Brisson N. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC PLANT BIOLOGY 2008; 8:42. [PMID: 18423020 PMCID: PMC2377264 DOI: 10.1186/1471-2229-8-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 04/18/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. RESULTS To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. CONCLUSION AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Jean-Sébastien Parent
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Mohammed Sabar
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Félix Véronneau-Lafortune
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Charbel Abou-Rached
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Normand Brisson
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
17
|
Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition. EMBO J 2007; 26:5048-60. [PMID: 18007594 DOI: 10.1038/sj.emboj.7601919] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/18/2007] [Indexed: 11/08/2022] Open
Abstract
The Tetrahymena thermophila ribosomal DNA (rDNA) replicon contains dispersed cis-acting replication determinants, including reiterated type I elements that associate with sequence-specific, single-stranded binding factors, TIF1 through TIF4. Here, we show that TIF4, previously implicated in cell cycle-controlled DNA replication and rDNA gene amplification, is the T. thermophila origin recognition complex (TtORC). We further demonstrate that TtORC contains an integral RNA subunit that participates in rDNA origin recognition. Remarkably, this RNA, designated 26T, spans the terminal 282 nts of 26S ribosomal RNA. 26T RNA exhibits extensive complementarity to the type I element T-rich strand and binds the rDNA origin in vivo. Mutations that disrupt predicted interactions between 26T RNA and its complementary rDNA target change the in vitro binding specificity of ORC and diminish in vivo rDNA origin utilization. These findings reveal a role for ribosomal RNA in chromosome biology and define a new mechanism for targeting ORC to replication initiation sites.
Collapse
|
18
|
Jacob NK, Lescasse R, Linger BR, Price CM. Tetrahymena POT1a regulates telomere length and prevents activation of a cell cycle checkpoint. Mol Cell Biol 2006; 27:1592-601. [PMID: 17158924 PMCID: PMC1820449 DOI: 10.1128/mcb.01975-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The POT1/TEBP telomere proteins are a group of single-stranded DNA (ssDNA)-binding proteins that have long been assumed to protect the G overhang on the telomeric 3' strand. We have found that the Tetrahymena thermophila genome contains two POT1 gene homologs, POT1a and POT1b. The POT1a gene is essential, but POT1b is not. We have generated a conditional POT1a cell line and shown that POT1a depletion results in a monster cell phenotype and growth arrest. However, G-overhang structure is essentially unchanged, indicating that POT1a is not required for overhang protection. In contrast, POT1a is required for telomere length regulation. After POT1a depletion, most telomeres elongate by 400 to 500 bp, but some increase by up to 10 kb. This elongation occurs in the absence of further cell division. The growth arrest caused by POT1a depletion can be reversed by reexpression of POT1a or addition of caffeine. Thus, POT1a is required to prevent a cell cycle checkpoint that is most likely mediated by ATM or ATR (ATM and ATR are protein kinases of the PI-3 protein kinase-like family). Our findings indicate that the essential function of POT1a is to prevent a catastrophic DNA damage response. This response may be activated when nontelomeric ssDNA-binding proteins bind and protect the G overhang.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, ML0524, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|