1
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Alfituri OA, Blake R, Jensen K, Mabbott NA, Hope J, Stevens JM. Differential role of M cells in enteroid infection by Mycobacterium avium subsp. paratuberculosis and Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2024; 14:1416537. [PMID: 39040600 PMCID: PMC11260670 DOI: 10.3389/fcimb.2024.1416537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanne M. Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
3
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Rousek AA, Mulvey MA. Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic Escherichia coli. Infect Immun 2024; 92:e0008024. [PMID: 38534100 PMCID: PMC11075462 DOI: 10.1128/iai.00080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alexis A. Rousek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Mulvey MA. Plant Phenolics Inhibit Focal Adhesion Kinase and Suppress Host Cell Invasion by Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568486. [PMID: 38045282 PMCID: PMC10690256 DOI: 10.1101/2023.11.23.568486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Zhao X, Guo J, Jia X, Yang Y, Liu L, Nie W, Fang Z. Internalization of Leptospira interrogans via diverse endocytosis mechanisms in human macrophages and vascular endothelial cells. PLoS Negl Trop Dis 2022; 16:e0010778. [PMID: 36137081 PMCID: PMC9531806 DOI: 10.1371/journal.pntd.0010778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/04/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis, one of the leading global causes of morbidity and mortality, is an emerging public health problem, particularly in large urban centers of developing countries. Leptospirosis results from infection with an organism belonging to the Leptospira genus L. interrogans. The extensive invasive ability has previously been documented, however a mechanism that describes how the organism is internalized by human macrophages and transmigrates through human blood vessel remains poorly understood. In the present study, we utilized a human macrophage and vascular endothelial cell line to study the diverse invasive mechanisms by which L. interrogans infections occur. We found that THP-1 and HUVEC had a diverse expression of cell receptors and L. interrogans entered THP-1 and HUVEC by different pathways. In the macrophage model cell line, ITGB1/FAK-signaling mediated microfilament dependent endocytosis with lysosome fusion, whereas ITGB1/CAV-1/PI3K-signaling mediated microfilament dependent endocytosis and transcytosis without lysosome fusion in the endothelial cell model. Shedding of pathogenic leptospires from HUVEC displayed higher viability than those from THP-1. The monolayer of HUVEC maintained integrity during the infection, while 3D imaging showed that leptospires were transmigrated both intra- and intercellularly. These results indicate that endocytosis of leptospires in human macrophages and human vascular endothelial cells are quite different, macrophages are responsible for eliminating leptospires in the human body during the infection while vascular endothelial cells facilitate dissemination of leptospires from blood vessels into target organs where they cause injury. Leptospirosis is a zoonotic bacterial disease which causes 1.03 million cases and 58,900 deaths each year. Human infections occur when the primary reservoir hosts, such as rodents, contaminate food and water with leptospires. Unlike other bacterial pathogens, leptospires invade the human body through mucosal barriers and enter the bloodstream, which can result in septicemia. Left untreated, leptospirosis can spread into multiple organs and tissues such as lungs, liver and kidneys. Pathological features of this disease include high fever, myalgia, lymphadenectasis, hemorrhaging and jaundice. Human macrophages and vascular endothelial cells play important roles in eliminating and preventing the transmission of this pathogen. We speculated that leptospires could be neutralized in macrophages and subsequently transported by vascular endothelial cells throughout the human body. In this research, the diverse mechanisms of human macrophages and vascular endothelial cells infected by leptospires were explored. Our findings can be used to improve the treatment, prevention, and supervision regarding leptospire transmission and infection.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- * E-mail: (XZ); (ZF)
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaling Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin, China
| | - Lijuan Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Weizhong Nie
- Department of health quarantine, Qinhuangdao Customs District, Qinhuangdao, China
| | - Zhiqiang Fang
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- * E-mail: (XZ); (ZF)
| |
Collapse
|
6
|
Yue K, Xu C, Wang Z, Liu W, Liu C, Xu X, Xing Y, Chen S, Li X, Wan S. 1,2-Isoselenazol-3(2H)-one derivatives as NDM-1 inhibitors displaying synergistic antimicrobial effects with meropenem on NDM-1 producing clinical isolates. Bioorg Chem 2022; 129:106153. [DOI: 10.1016/j.bioorg.2022.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
|
7
|
Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility. mBio 2021; 12:e0149421. [PMID: 34425711 PMCID: PMC8406305 DOI: 10.1128/mbio.01494-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions.
Collapse
|
8
|
Davidson A, Tyler J, Hume P, Singh V, Koronakis V. A kinase-independent function of PAK is crucial for pathogen-mediated actin remodelling. PLoS Pathog 2021; 17:e1009902. [PMID: 34460869 PMCID: PMC8432889 DOI: 10.1371/journal.ppat.1009902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/17/2021] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.
Collapse
Affiliation(s)
- Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Tyler
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2020; 16:1335-1346. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has sorted several efforts to its control, generating enormous economic losses. Epigenetic alterations, such as DNA methylation, can play a relevant role in the modulation of the metazoans response to pathogens. Bacterial disease may activate global and local immune responses generating intricate responses with significant biological impact in the host. However, it is scarcely understood how bacterial infections influence fish epigenetic alterations. In the present study, we utilized Pacific salmon and Piscirickettsiosis as model, to gain understanding into the dynamics of DNA methylation among fish-bacterial infection interactions. A genome-wide analysis of DNA methylation patterns in female spleen tissue of Pacific salmon was achieved by reduced representation bisulphite sequencing from a time course design. We determined 2,251, 1,918, and 2,516 differentially methylated regions DMRs among infected and control Pacific salmon in 1 dpi, 5 dpi, and 15 dpi, respectively. The mean methylation difference per DMR among control and infected groups was of ~35%, with an oscillatory pattern of hypo, hyper, and hypomethylation across the disease. DMCs, among the control and infected group, showed that they were statistically enriched in intergenic regions and depleted in exons. Functional annotation of the DMR genes demonstrated three KEGG principal categories, associated directly with the host response to pathogens infections. Our results provide the first evidence of epigenetic variation in fish provoked by bacterial infection and demonstrate that this variation can be modulated across the disease.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Nicolás Bascuñan
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Marziali G, Marangoni A, Foschi C, Re MC, Calonghi N. Effect of Sugars on Chlamydia trachomatis Infectivity. Pathogens 2020; 9:pathogens9040298. [PMID: 32316668 PMCID: PMC7237991 DOI: 10.3390/pathogens9040298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Previous works suggest that sugars can have a beneficial effect on C. trachomatis (CT) survival and virulence. In this study, we investigated the effect of different sugars on CT infectivity, elucidating some of the molecular mechanisms behind CT-sugar interaction. Methods. CT infectivity was investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose, or mannitol solutions (0.5, 2.5, 5.0 mM). The effect of sugars on EB membrane fluidity was investigated by fluorescence anisotropy measurement, whereas the changes in lipopolysaccharide (LPS) exposure were examined by cytofluorimetric analysis. By means of a Western blot, we explored the phosphorylation state of Focal Adhesion Kinase (FAK) in HeLa cells infected with EBs pre-incubated with sugars. Results. All sugar solutions significantly increased CT infectivity on epithelial cells, acting directly on the EB structure. Sugars induced a significant increase of EB membrane fluidity, leading to changes in LPS membrane exposure. Especially after incubation with sucrose and mannitol, EBs led to a higher FAK phosphorylation, enhancing the activation of anti-apoptotic and proliferative signals in the host cells. Conclusions. Sugars can increase CT infectivity and virulence, by modulating the expression/exposure of chlamydial membrane ligands. Further in-depth studies are needed to better understand the molecular mechanisms involved.
Collapse
Affiliation(s)
- Giacomo Marziali
- FaBiT Department, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (G.M.); (N.C.)
| | - Antonella Marangoni
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
- Correspondence: ; Tel.: +39-051-2144513; Fax: +39-051-307397
| | - Maria Carla Re
- Microbiology, DIMES, University of Bologna, St. Orsola Hospital, Via Massarenti, 9, 40138 Bologna, Italy; (A.M.); (M.C.R.)
| | - Natalia Calonghi
- FaBiT Department, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (G.M.); (N.C.)
| |
Collapse
|
11
|
Song X, Xu W, Xu G, Kong S, Ding L, Xiao J, Cao X, Wang F. ACAP4 interacts with CrkII to promote the recycling of integrin β1. Biochem Biophys Res Commun 2019; 516:8-14. [PMID: 31182282 DOI: 10.1016/j.bbrc.2019.05.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
ACAP4, a GTPase-activating protein (GAP) for the ADP-ribosylation factor 6 (ARF6), plays import roles in cell migration, cell polarity, vesicle trafficking and tumorigenesis. Similarly, the ubiquitously expressed adaptor protein CrkII functions in a wide range of cellular activities, including cell proliferation, T cell adhesion and activation, tumorigenesis, and bacterial pathogenesis. Here, we demonstrate that ACAP4 physically interacts with CrkII. Biochemical experiments revealed that ACAP4550-660 and the SH3N domain of CrkII are responsible for the interaction. Functional characterization showed that the interaction is required for the recruitment of ACAP4 to the plasma membrane where ACAP4 functions to regulate the recycling of the signal transducer integrin β1. Thus, we suggest that the CrkII-ACAP4 complex may be involved in regulation of cell adhesion.
Collapse
Affiliation(s)
- Xueyan Song
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guangsheng Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuai Kong
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lu Ding
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Onofre TS, Rodrigues JPF, Yoshida N. Depletion of Host Cell Focal Adhesion Kinase Increases the Susceptibility to Invasion by Trypanosoma cruzi Metacyclic Forms. Front Cell Infect Microbiol 2019; 9:231. [PMID: 31297342 PMCID: PMC6607697 DOI: 10.3389/fcimb.2019.00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase (PTK), is implicated in diverse cellular processes, including the regulation of F-actin dynamics. Host cell F-actin rearrangement is critical for invasion of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. It is unknown whether FAK is involved in the internalization process of metacyclic trypomastigote (MT), the parasite form that is important for vectorial transmission. MT can enter the mammalian host through the ocular mucosa, lesion in the skin, or by the oral route. Oral infection by MT is currently a mode of transmission responsible for outbreaks of acute Chagas disease. Here we addressed the question by generating HeLa cell lines deficient in FAK. Host cell invasion assays showed that, as compared to control wild type (WT) cells, FAK-deficient cells were significantly more susceptible to parasite invasion. Lysosome spreading and a disarranged actin cytoskeleton, two features associated with susceptibility to MT invasion, were detected in FAK-deficient cells, as opposed to WT cells that exhibited a more organized F-actin arrangement, and lysosomes concentrated in the perinuclear area. As compared to WT cells, the capacity of FAK-deficient cells to bind a recombinant protein based on gp82, the MT surface molecule that mediates invasion, was higher. On the other hand, when treated with FAK-specific inhibitor PF573228, WT cells exhibited a dense meshwork of actin filaments, lysosome accumulation around the nucleus, and had increased resistance to MT invasion. In cells treated with PF573228, the phosphorylation levels of FAK were reduced and, as a consequence of FAK inactivation, diminished phosphorylation of extracellular signal-regulated protein kinases (ERK1/2) was observed. Fibronectin, known to impair MT invasion, induced the formation of thick bundles of F-actin and ERK1/2 dephosphorylation.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Li Y, Li KX, Hu WL, Ojcius DM, Fang JQ, Li SJ, Lin X, Yan J. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. eLife 2019; 8:44594. [PMID: 31012847 PMCID: PMC6513555 DOI: 10.7554/elife.44594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-β1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Xuan Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Jia-Qi Fang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Jun Li
- Institute of Communicable Disease Prevention and Control, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Richter E, Mostertz J, Hochgräfe F. Proteomic discovery of host kinase signaling in bacterial infections. Proteomics Clin Appl 2016; 10:994-1010. [PMID: 27440122 PMCID: PMC5096009 DOI: 10.1002/prca.201600035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/08/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation catalyzed by protein kinases acts as a reversible molecular switch in signal transduction, providing a mechanism for the control of protein function in cellular processes. During microbial infection, cellular signaling essentially contributes to immune control to restrict the dissemination of invading pathogens within the host organism. However, pathogenic microbes compete for the control of host signaling to create a beneficial environment for successful invasion and infection. Although efforts to achieve a better understanding of the host–pathogen interaction and its molecular consequences have been made, there is urgent need for a comprehensive characterization of infection‐related host signaling processes. System‐wide and hypothesis‐free analysis of phosphorylation‐mediated host signaling during host–microbe interactions by mass spectrometry (MS)‐based methods is not only promising in view of a greater understanding of the pathogenesis of the infection but also may result in the identification of novel host targets for preventive or therapeutic intervention. Here, we review state‐of‐the‐art MS‐based techniques for the system‐wide identification and quantitation of protein phosphorylation and compare them to array‐based phosphoprotein analyses. We also provide an overview of how phosphoproteomics and kinomics have contributed to our understanding of protein kinase‐driven phosphorylation networks that operate during host–microbe interactions.
Collapse
Affiliation(s)
- Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
15
|
Anuforom O, Wallace GR, Buckner MMC, Piddock LJV. Ciprofloxacin and ceftriaxone alter cytokine responses, but not Toll-like receptors, to Salmonella infection in vitro. J Antimicrob Chemother 2016; 71:1826-33. [PMID: 27076102 DOI: 10.1093/jac/dkw092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/28/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Antibiotics that enhance host natural defences to infection offer an alternative approach to treating infections. However, mechanisms underlying such processes are poorly understood. The aim of this study was to investigate the effects of clinically relevant concentrations of two antibiotics on bacterial interactions with murine macrophages. METHODS Adhesion of Salmonella Typhimurium SL1344 to and invasion by Salmonella Typhimurium SL1344 of antibiotic-treated or untreated J774 murine macrophages were measured using a tissue culture infection model. Expression of genes central to the Toll-like receptor (TLR) signalling pathway of macrophages infected with Salmonella was analysed using the RT(2) Profiler PCR Array. Cytokine production was measured by ELISA. RESULTS Adhesion of Salmonella Typhimurium SL1344 to J774 macrophage monolayers was increased when macrophages were exposed to ciprofloxacin and ceftriaxone, while invasion was decreased by ciprofloxacin. Expression of IL-1β and TNF-α mRNA was greater in SL1344-infected macrophages that had been treated with ciprofloxacin or ceftriaxone than in macrophages exposed to antibiotics alone or SL1344 alone. TLR mRNA was down-regulated by SL1344 infection, a response that was not altered by antibiotic pretreatment. CONCLUSIONS Clinically relevant concentrations of two antibiotics differentially enhanced the response of immune cells and their interaction with bacteria, increasing bacterial adhesion to macrophages and increasing cytokine production. As increased expression of IL-1β fosters apoptosis of Salmonella-infected macrophages and clearance by neutrophils, the immunomodulatory potential of these antibiotics may explain, in part, why these two drugs continue to be used to treat salmonellosis successfully.
Collapse
Affiliation(s)
- Olachi Anuforom
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham R Wallace
- Centre for Translational Inflammation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Menina S, Labouta HI, Geyer R, Krause T, Gordon S, Dersch P, Lehr CM. Invasin-functionalized liposome nanocarriers improve the intracellular delivery of anti-infective drugs. RSC Adv 2016. [DOI: 10.1039/c6ra02988d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liposomes containing gentamicin and surface-functionalized with InvA497 showed a reduced infection load of both cytosolic and vacuolar intracellular bacteria.
Collapse
Affiliation(s)
- Sara Menina
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Hagar Ibrahim Labouta
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Rebecca Geyer
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Tanja Krause
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Sarah Gordon
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Petra Dersch
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| |
Collapse
|
17
|
Van Nhieu GT, Romero S. Common Themes in Cytoskeletal Remodeling by Intracellular Bacterial Effectors. Handb Exp Pharmacol 2016; 235:207-235. [PMID: 27807696 DOI: 10.1007/164_2016_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial pathogens interact with various types of tissues to promote infection. Because it controls the formation of membrane extensions, adhesive processes, or the junction integrity, the actin cytoskeleton is a key target of pathogens during infection. We will highlight common and specific functions of the actin cytoskeleton during bacterial infections, by first reviewing the mechanisms of intracellular motility of invasive Shigella, Listeria, and Rickettsia. Through the models of EPEC/EHEC, Shigella, Salmonella, and Chlamydia spp., we will illustrate various strategies of diversion of actin cytoskeletal processes used by these bacteria to colonize or breach epithelial/endothelial barriers.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France. .,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France.
| | - Stéphane Romero
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France.,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France
| |
Collapse
|
18
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
19
|
Contribution of Crk adaptor proteins to host cell and bacteria interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:372901. [PMID: 25506591 PMCID: PMC4260429 DOI: 10.1155/2014/372901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
The Crk adaptor family of proteins comprises the alternatively spliced CrkI and CrkII isoforms, as well as the paralog Crk-like (CrkL) protein, which is encoded by a different gene. Initially thought to be involved in signaling during apoptosis and cell adhesion, this ubiquitously expressed family of proteins is now known to play essential roles in integrating signals from a wide range of stimuli. In this review, we describe the structure and function of the different Crk proteins. We then focus on the emerging roles of Crk adaptors during Enterobacteriaceae pathogenesis, with special emphasis on the important human pathogens Salmonella, Shigella, Yersinia, and enteropathogenic Escherichia coli. Throughout, we remark on opportunities for future research into this intriguing family of proteins.
Collapse
|
20
|
LeGrand K, Matsumoto H, Young GM. A novel type 3 secretion system effector, YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase. Cell Microbiol 2014; 17:688-701. [PMID: 25387594 DOI: 10.1111/cmi.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 12/22/2022]
Abstract
Some of the world's most important diseases are caused by bacterial pathogens that deliver toxic effector proteins directly into eukaryotic cells using type III secretion systems. The myriad of pathological outcomes caused by these pathogens is determined, in part, by the manipulation of host cell physiology due to the specific activities of individual effectors among the unique suite each pathogen employs. YspI was found to be an effector, delivered by Yersinia enterocolitica Biovar 1B, that inhibits host cell motility. The action of YspI comes about through its specific interaction with focal adhesion kinase, FAK, which is a fulcrum of focal adhesion complexes for controlling cellular motility. The interaction was defined by a specific domain of YspI that bound to the FAK kinase domain. Further examination revealed that YspI-FAK interaction leads to a reduction of FAK steady-state levels without altering its phosphorylation state. This collection of observations and results showed YspI displays unique functionality by targeting the key regulator of focal adhesion complexes to inhibit cellular movement.
Collapse
Affiliation(s)
- Karen LeGrand
- Microbiology Graduate Group, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
21
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
22
|
Eucker TP, Samuelson DR, Hunzicker-Dunn M, Konkel ME. The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cell Microbiol 2014; 16:1441-55. [PMID: 24779413 DOI: 10.1111/cmi.12305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/05/2014] [Accepted: 04/10/2014] [Indexed: 01/20/2023]
Abstract
Bacterial pathogens can induce an inflammatory response from epithelial tissues due to secretion of the pro-inflammatory chemokine interleukin-8 (IL-8). Many bacterial pathogens manipulate components of the focal complex (FC) to induce signalling events in host cells. We examined the interaction of several bacterial pathogens with host cells, including Campylobacter jejuni, to determine if the FC is required for induction of chemokine signalling in response to bacterial pathogens. Our data indicate that secretion of IL-8 is triggered by C. jejuni, Helicobacter pylori and Salmonella enterica serovar Typhimurium in response to engagement of β1 integrins. Additionally, we found that the secretion of IL-8 from C. jejuni infected epithelial cells requires FAK, Src and paxillin, which in turn are necessary for Erk 1/2 recruitment and activation. Targeting the FC component paxillin with siRNA prevented IL-8 secretion from cells infected with several bacterial pathogens, including C. jejuni, Helicobacter pylori, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. Our findings indicate that maximal IL-8 secretion from epithelial cells in response to bacterial infection is dependent on the FC. Based on the commonality of the host response to bacterial pathogens, we propose that the FC is a signalling platform for an epithelial cell response to pathogenic organisms.
Collapse
Affiliation(s)
- Tyson P Eucker
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7520, USA
| | | | | | | |
Collapse
|
23
|
Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. BIOMED RESEARCH INTERNATIONAL 2013; 2013:274096. [PMID: 23936782 PMCID: PMC3722778 DOI: 10.1155/2013/274096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/06/2013] [Indexed: 01/31/2023]
Abstract
This study evaluated the effects of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. Salmonella typhimurium NCCP10812 and Salmonella enteritidis NCCP12243 were exposed to 0, 2, and 4% NaCl and to sequential increase of NaCl concentrations from 0 to 4% NaCl for 24 h at 35°C. The strains were then investigated for heat resistance (60°C), antibiotic susceptibility to eight antibiotics, and Caco-2 cell invasion efficiency. S. typhimurium NCCP10812 showed increased thermal resistance (P < 0.05) after exposure to single NaCl concentrations. A sequential increase of NaCl concentration decreased (P < 0.05) the antibiotic sensitivities of S. typhimurium NCCP10812 to chloramphenicol, gentamicin, and oxytetracycline. NaCl exposure also increased (P < 0.05) Caco-2 cell invasion efficiency of S. enteritidis NCCP12243. These results indicate that NaCl in food may cause increased thermal resistance, cell invasion efficiency, and antibiotic resistance of Salmonella.
Collapse
|
24
|
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013; 8:e67300. [PMID: 23826261 PMCID: PMC3691122 DOI: 10.1371/journal.pone.0067300] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
Collapse
|
25
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
26
|
Wiedemann A, Rosselin M, Mijouin L, Bottreau E, Velge P. Involvement of c-Src tyrosine kinase upstream of class I phosphatidylinositol (PI) 3-kinases in Salmonella Enteritidis Rck protein-mediated invasion. J Biol Chem 2012; 287:31148-54. [PMID: 22810232 DOI: 10.1074/jbc.m112.392134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Salmonella outer membrane protein Rck mediates a Zipper entry mechanism controlled by tyrosine phosphorylation and class I phosphatidylinositol 3-kinase (PI 3-kinase). However, the underlying mechanism leading to this signaling cascade remains unclear. The present study showed that using Rck-coated beads or Rck-overexpressing Escherichia coli, Rck-mediated actin polymerization and invasion were blocked by PP2, a Src family tyrosine kinase inhibitor. In addition, phosphorylation of Src family kinases significantly increased after stimulation with Rck. The specific contribution of c-Src, one member of the Src family kinases, was demonstrated using c-Src-deficient fibroblasts or c-Src siRNA transfected epithelial cells. We also observed that Rck-mediated internalization led to the formation of a complex between c-Src and at least one tyrosine-phosphorylated protein. Furthermore, our results revealed that the c-Src signal molecule was upstream of PI 3-kinase during the Rck-mediated signaling pathway as Rck-mediated PI 3-kinase activation was blocked by PP2, and PI 3-kinase inhibitor had no effect on the Src phosphorylation. These results demonstrate the involvement of c-Src upstream of the PI 3-kinase in the Zipper entry process mediated by Rck.
Collapse
Affiliation(s)
- Agnès Wiedemann
- UMR 1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique (INRA), F-37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
27
|
Breast cancer anti-estrogen resistance protein 1 (BCAR1/p130cas) in pulmonary disease tissue and serum. Mol Diagn Ther 2011; 15:31-40. [PMID: 21469768 DOI: 10.1007/bf03257191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The purpose of the study was to evaluate clinical presentation of breast cancer anti-estrogen resistance protein 1 (BCAR1, also known as p130cas) expression in pulmonary diseases, and to assess its potential as a molecular marker for diagnosis and prognosis. METHODS Between March 2008 and August 2010, we enrolled a total of 80 patients (group A) with non-small-cell lung cancer (NSCLC), 48 patients (group B) with pulmonary tuberculosis (including 27 cases of tuberculoma and 21 cases of cavitary pulmonary tuberculosis), and 32 patients (group C) with other benign pulmonary mass (hamartoma in 15 cases, inflammatory pseudotumor in 10 cases, fibroid tumor in 7 cases). Additionally, 160 healthy age- and sex-matched volunteers were recruited as healthy controls. Tissue BCAR1 expression was investigated by using tissue microarray and immunohistochemistry. BCAR1 and tumor markers (carcinoma embryonic antigen [CEA] and the cancer antigens CA19-9 and CA125) in serum were assayed by using ELISA and immunoradiometrics, respectively. RESULTS BCAR1 expression was detected (either in the nucleus, the cytoplasm, or both) in tumor cells in 79 of the 80 NSCLC cases in group A, and in fibroblasts in 41 of the 48 pulmonary tuberculosis cases in group B. However, it was not detected in the normal adjacent tissue in 70 of the 80 cases in group A and in 47 of the 48 cases in group B. In group C, BCAR1 expression was negative in all 32 cases. Additionally, we investigated adjacent tissue with acute or chronic inflammation in 20 cases from group C, and found no expression of BCAR1. Serum BCAR1 levels were significantly higher in patients with NSCLC than in the control group, increased gradually with the progression of tumor staging, and decreased after removal of the tumors. The levels were significantly lower in bronchioloalveolar carcinoma than in other subtypes of carcinoma (Mann-Whitney U test, Z = -5.089; p < 0.001). Serum BCAR1 levels were significantly higher in patients with pulmonary tuberculosis than in the control group, were positively and significantly correlated with the diameter of the tuberculosis lesion (Spearman's rho, correlation coefficient 0.753; p < 0.001), and decreased after removal of the tuberculosis lesions. The levels were significantly higher in patients with cavitary pulmonary tuberculosis than in those with tuberculoma (517.6 ± 326.5 vs 282.2 ± 137.6; Student's t-test, t = -3.387; p = 0.001). In group C, there was no appreciable difference in serum BCAR1 levels compared with the matched controls (222.8 ± 111.0 vs 201.6 ± 35.7; Dunnett's T3 test, p = 0.993). The discrimination power of combining BCAR1 and tumor markers in NSCLC versus benign lung diseases was higher than that of sole use of BCAR1 as a marker (maximal sum of sensitivity and specificity: 1.538 vs 1.237). CONCLUSION We conclude that a combined assay of serum BCAR1 and traditional tumor markers is potentially applicable for distinguishing NSCLC from benign lung diseases. However, the clinical utility of serum BCAR1 as a molecular marker for prognosis in NSCLC or pulmonary tuberculosis requires further clarification and verification.
Collapse
|
28
|
Malik-Kale P, Jolly CE, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O. Salmonella - at home in the host cell. Front Microbiol 2011; 2:125. [PMID: 21687432 PMCID: PMC3109617 DOI: 10.3389/fmicb.2011.00125] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022] Open
Abstract
The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.
Collapse
Affiliation(s)
- Preeti Malik-Kale
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, National Institute of Health Hamilton, MT, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
30
|
Dunn JD, Valdivia RH. Uncivil engineers: Chlamydia, Salmonella and Shigella alter cytoskeleton architecture to invade epithelial cells. Future Microbiol 2010; 5:1219-32. [DOI: 10.2217/fmb.10.77] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is a major cause of blindness and sexually transmitted diseases. Like the enteric pathogens Salmonella and Shigella, Chlamydia injects effector proteins into epithelial cells to initiate extensive remodeling of the actin cytoskeleton at the bacterial attachment site, which culminates in the engulfment of the bacterium by plasma membrane extensions. Numerous Salmonella and Shigella effectors promote this remodeling by activating Rho GTPases and tyrosine kinase signaling cascades and by directly manipulating actin dynamics. Recent studies indicate that similar host-cell alterations occur during Chlamydia invasion, but few effectors are known. The identification of additional Chlamydia effectors and the elucidation of their modes of function are critical steps towards an understanding of how this clinically important pathogen breaches epithelial surfaces and causes infection.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Department of Molecular Genetics & Microbiology & Center for Microbial Pathogenesis Duke University Medical Center, 272 Jones Building, Box 3580, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Salmonella enterica serovar typhimurium invades fibroblasts by multiple routes differing from the entry into epithelial cells. Infect Immun 2010; 78:2700-13. [PMID: 20368348 DOI: 10.1128/iai.01389-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal tissues. Features distinct to the invasion of epithelial cells were found in all fibroblasts tested. In some fibroblasts, bacteria lacking the type III secretion system encoded in the Salmonella pathogenicity island 1 displayed significant invasion rates and induced the formation of lamellipodia and filopodia at the fibroblast-bacteria contact site. Other bacterial invasion traits observed in fibroblasts were the requirement of phosphatidylinositol 3-kinase, mitogen-activated protein kinase MEK1, and both actin filaments and microtubules. RNA interference studies showed that different Rho family GTPases are targeted by S. Typhimurium to enter into distinct fibroblasts. Rac1 and Cdc42 knockdown affected invasion of normal rat kidney fibroblasts, whereas none of the GTPases tested (Rac1, Cdc42, RhoA, or RhoG) was essential for invasion of immortalized human foreskin fibroblasts. Collectively, these data reveal a marked diversity in the modes used by S. Typhimurium to enter into fibroblasts.
Collapse
|
32
|
Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67:1025-48. [PMID: 19937461 PMCID: PMC2836406 DOI: 10.1007/s00018-009-0213-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Proteins of the CAS (Crk-associated substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer's and Parkinson's disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
- Department of Biochemistry, Drexel University Medical School, Philadelphia, PA 19102 USA
| | - Joy L. Little
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
33
|
Huett A, Leong JM, Podolsky DK, Xavier RJ. The cytoskeletal scaffold Shank3 is recruited to pathogen-induced actin rearrangements. Exp Cell Res 2009; 315:2001-11. [PMID: 19371741 PMCID: PMC2693461 DOI: 10.1016/j.yexcr.2009.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/14/2009] [Accepted: 04/06/2009] [Indexed: 01/25/2023]
Abstract
The common gastrointestinal pathogens enteropathogenic Escherichia coli (EPEC) and Salmonella typhimurium both reorganize the gut epithelial cell actin cytoskeleton to mediate pathogenesis, utilizing mimicry of the host signaling apparatus. The PDZ domain-containing protein Shank3, is a large cytoskeletal scaffold protein with known functions in neuronal morphology and synaptic signaling, and is also capable of acting as a scaffolding adaptor during Ret tyrosine kinase signaling in epithelial cells. Using immunofluorescent and functional RNA-interference approaches we show that Shank3 is present in both EPEC- and S. typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation. We propose that Shank3 is one of a number of host synaptic proteins likely to play key roles in bacteria-host interactions.
Collapse
Affiliation(s)
- Alan Huett
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
34
|
Shiratsuchi H, Kouatli Y, Yu GX, Marsh HM, Basson MD. Propofol inhibits pressure-stimulated macrophage phagocytosis via the GABAA receptor and dysregulation of p130cas phosphorylation. Am J Physiol Cell Physiol 2009; 296:C1400-C1410. [PMID: 19357231 PMCID: PMC2692417 DOI: 10.1152/ajpcell.00345.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 03/24/2009] [Indexed: 12/13/2022]
Abstract
Surgical stress and anesthesia result in systemic immunosuppression. Propofol, a commonly used anesthetic agent, alters immune cell functions. Previously, we demonstrated that extracellular pressure increases macrophage phagocytosis. We hypothesized that propofol might influence pressure-induced macrophage phagocytosis in monocytes from patients undergoing surgery. Pressure (20 mmHg above ambient pressure) augmented phagocytosis in monocytes from non-propofol-anesthetized patients but reduced phagocytosis in monocytes from propofol-anesthetized patients. In vitro, propofol stimulated phagocytosis but reversed pressure-induced phagocytosis in THP-1 macrophages and monocytes from healthy volunteers. The GABA(A) receptor antagonists picrotoxin and SR-95531 did not affect basal THP-1 phagocytosis or prevent pressure-stimulated phagocytosis. However, picrotoxin and SR-95531 negated the inhibitory effect of pressure in propofol-treated cells without altering propofol-induced phagocytosis. Phosphorylation of the adaptor protein p130cas was inversely related to phagocytosis: it was inhibited by pressure or propofol but increased by pressure + propofol compared with propofol alone. Reduction of p130cas by small interfering RNA in THP-1 macrophages increased basal phagocytosis and prevented pressure and propofol effects. In conclusion, propofol may alter macrophage responses to pressure via the GABA(A) receptor and p130cas, whereas pressure also acts via p130cas but independently of GABA(A) receptors. p130cas may be an important target for modulation of macrophage function in anesthetized patients.
Collapse
Affiliation(s)
- Hiroe Shiratsuchi
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
35
|
Hallé M, Gomez MA, Stuible M, Shimizu H, McMaster WR, Olivier M, Tremblay ML. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem 2008; 284:6893-908. [PMID: 19064994 DOI: 10.1074/jbc.m805861200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Leishmania parasite is a widespread disease threat in tropical areas, causing symptoms ranging from skin lesions to death. Leishmania parasites typically invade macrophages but are also capable of infecting fibroblasts, which may serve as a reservoir for recurrent infection. Invasion by intracellular pathogens often involves exploitation of the host cell cytoskeletal and signaling machinery. Here we have observed a dramatic rearrangement of the actin cytoskeleton and marked modifications in the profile of protein tyrosine phosphorylation in fibroblasts infected with Leishmania major. Correspondingly, exposure to L. major resulted in degradation of the phosphorylated adaptor protein p130Cas and the protein-tyrosine phosphatase-PEST. Cellular and in vitro assays using pharmacological protease inhibitors, recombinant enzyme, and genetically modified strains of L. major identified the parasite protease GP63 as the principal catalyst of proteolysis during infection. A number of additional signaling proteins were screened for degradation during L. major infection as follows: a small subset was cleaved, including cortactin, T-cell protein-tyrosine phosphatase, and caspase-3, but the majority remained unaffected. Protein degradation occurred in cells incubated with Leishmania extracts in the absence of intact parasites, suggesting a mechanism permitting transfer of functional GP63 into the intracellular space. Finally, we evaluated the impact of Leishmania on MAPK signaling; unlike p44/42 and JNK, p38 was inactivated upon infection in a GP63- and protein degradation-dependent manner, which likely involves cleavage of the upstream adaptor TAB1. Our results establish that GP63 plays a central role in a number of hostcell molecular events that likely contribute to the infectivity of Leishmania.
Collapse
Affiliation(s)
- Maxime Hallé
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Abelson tyrosine kinase facilitates Salmonella enterica serovar Typhimurium entry into epithelial cells. Infect Immun 2008; 77:60-9. [PMID: 18936177 DOI: 10.1128/iai.00639-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium gains entry into nonphagocytic cells by manipulating the assembly of the host actin cytoskeleton. S. enterica serovar Typhimurium entry requires a functional type III secretion system, a conduit through which bacterial effector proteins are directly translocated into the host cytosol. We and others have previously reported the enhancement of tyrosine kinase activities during Salmonella serovar Typhimurium infection; however, neither specific kinases nor their targets have been well characterized. In this study, we investigated the roles of the cellular Abelson tyrosine kinase (c-Abl) and the related protein Arg in the context of serovar Typhimurium infection. We found that bacterial internalization was inhibited by more than 70% in cells lacking both c-Abl and Arg and that treatment of wild-type cells with a pharmaceutical inhibitor of the c-Abl kinase, STI571 (imatinib), reduced serovar Typhimurium invasion efficiency to a similar extent. Bacterial infection led to enhanced phosphorylation of two previously identified c-Abl substrates, the adaptor protein CT10 regulator of kinase (CrkII) and the Abelson-interacting protein Abi1, a component of the WAVE2 complex. Furthermore, overexpression of the nonphosphorylatable form of CrkII resulted in decreased invasion. Taken together, these findings indicate that c-Abl is activated during S. enterica serovar Typhimurium infection and that its phosphorylation of multiple downstream targets is functionally important in bacterial internalization.
Collapse
|
37
|
Boyle EC, Brown NF, Brumell JH, Finlay BB. Src homology domain 2 adaptors affect adherence of Salmonella enterica serovar Typhimurium to non-phagocytic cells. MICROBIOLOGY-SGM 2007; 153:3517-3526. [PMID: 17906149 DOI: 10.1099/mic.0.2007/008581-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of Salmonella enterica serovar Typhimurium (S. Typhimurium) to penetrate the intestinal epithelium is key to its pathogenesis. Bacterial invasion can be seen as a two-step process initially requiring adherence to the host cell surface followed by internalization into the host cell. Evidence suggests that adherence of S. Typhimurium to host cells is receptor-mediated; however, the host cell receptor(s) has/have not been identified. Internalization of S. Typhimurium absolutely requires the actin cytoskeleton yet only a few of the cytoskeletal components involved in this process have been identified. In order to identify host proteins that may play a role in S. Typhimurium invasion, the recruitment of actin-associated proteins was investigated. The contribution of recruited Src homology 2 adaptor proteins to invasion was further investigated and it was found that, while not involved in bacterial internalization itself, the adaptors Nck and ShcA influenced adherence of S. Typhimurium to non-phagocytic cells.
Collapse
Affiliation(s)
- Erin C Boyle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nat F Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Brumell
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - B Brett Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Brown MD, Bry L, Li Z, Sacks DB. IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1, and Cdc42. J Biol Chem 2007; 282:30265-72. [PMID: 17693642 DOI: 10.1074/jbc.m702537200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.
Collapse
Affiliation(s)
- Matthew D Brown
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Salmonella enterica is an enteric bacterial pathogen that causes a variety of food and water-borne diseases ranging from gastroenteritis to typhoid fever. Ingested bacteria colonize the intestinal epithelium by triggering their own phagocytosis, using a sophisticated array of effector proteins that are injected into the host cell cytoplasm through a type III secretion apparatus. The synergistic action of these secreted effectors leads to a dramatic reorganization of the host actin cytoskeleton, resulting in vigorous membrane protrusion and the engulfment of attached bacteria. Analysis of these effector proteins and identification of their cellular targets has provided insight into the molecular mechanisms by which bacteria can subvert the host signalling and cytoskeletal machinery for their own purposes. This review is intended to summarize our current understanding of the tools used by Salmonella to enter host cells, with a focus on effectors that modulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Kim Thien Ly
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA
| | | |
Collapse
|