1
|
Kremer LS, Rehling P. Coordinating mitochondrial translation with assembly of the OXPHOS complexes. Hum Mol Genet 2024; 33:R47-R52. [PMID: 38779773 PMCID: PMC11112383 DOI: 10.1093/hmg/ddae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.
Collapse
Affiliation(s)
- Laura S Kremer
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, Göttingen 37073, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Max Planck Institute for Multidisciplinary Science, Am Faßberg 11, Göttingen 37077, Germany
| |
Collapse
|
2
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Baleva MV, Piunova UE, Chicherin IV, Levitskii SA, Kamenski PA. Diversity and Evolution of Mitochondrial Translation Apparatus. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1832-1843. [PMID: 38105202 DOI: 10.1134/s0006297923110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.
Collapse
Affiliation(s)
- Mariya V Baleva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ulyana E Piunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Piotr A Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
4
|
Hubble KA, Henry MF. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:1260-1276. [PMID: 36620885 PMCID: PMC9943650 DOI: 10.1093/nar/gkac1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We found this 29 kDa protein to be a general mitochondrial translation factor, Dpc29, rather than a COX1-specific translational activator. Its activity was necessary for the optimal expression of OXPHOS mtDNA reporters, and mutations within the mitoribosomal large subunit protein gene MRP7 produced a global reduction of mitochondrial translation in dpc29Δ cells, indicative of a general mitochondrial translation factor. Northern-based mitoribosome profiling of dpc29Δ cells showed higher footprint frequencies at the 3' ends of mRNAs, suggesting a role in translation post-initiation. Additionally, human TACO1 expressed at native levels rescued defects in dpc29Δ yeast strains, suggesting that the two proteins perform highly conserved functions.
Collapse
Affiliation(s)
- Kyle A Hubble
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Michael F Henry
- To whom correspondence should be addressed. Tel: +1 856 566 6970; Fax: +1 856 566 6291; E-mail:
| |
Collapse
|
5
|
Overexpression of MRX9 impairs processing of RNAs encoding mitochondrial oxidative phosphorylation factors COB and COX1 in yeast. J Biol Chem 2022; 298:102214. [PMID: 35779633 PMCID: PMC9307953 DOI: 10.1016/j.jbc.2022.102214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.
Collapse
|
6
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
7
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
8
|
Timón-Gómez A, Pérez-Pérez R, Nyvltova E, Ugalde C, Fontanesi F, Barrientos A. Protocol for the Analysis of Yeast and Human Mitochondrial Respiratory Chain Complexes and Supercomplexes by Blue Native Electrophoresis. STAR Protoc 2020; 1. [PMID: 32995753 PMCID: PMC7521667 DOI: 10.1016/j.xpro.2020.100089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By using negatively charged Coomassie brilliant blue G-250 dye to induce a charge shift on proteins, blue native polyacrylamide gel electrophoresis (BN-PAGE) allows resolution of enzymatically active multiprotein complexes extracted from cellular or subcellular lysates while retaining their native conformation. BN-PAGE was first developed to analyze the size, composition, and relative abundance of the complexes and supercomplexes that form the mitochondrial respiratory chain and OXPHOS system. Here, we present a detailed protocol of BN-PAGE to obtain robust and reproducible results. For complete details on the use and execution of this protocol, please refer to Lobo-Jarne et al. (2018) and Timón-Gómez et al. (2020). Optimized BN-PAGE protocol to resolve respiratory complexes and supercomplexes The protocol can be applied to isolated mitochondria, cultured cells and tissue extracts Guidelines to couple BN-PAGE to downstream applications, such as SDS-PAGE, WB, IGA, or MS
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Technical Contact
| | - Rafael Pérez-Pérez
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Eva Nyvltova
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Lead Contact
| |
Collapse
|
9
|
Hillman GA, Henry MF. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome. J Biol Chem 2019; 294:9813-9829. [PMID: 31053642 DOI: 10.1074/jbc.ra119.008476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. Although remarkable progress has been made toward understanding the structure of mitoribosomes, the pathways and factors that facilitate their biogenesis remain largely unknown. The long unstructured domains of unassembled ribosomal proteins are highly prone to misfolding and often require dedicated chaperones to prevent aggregation. To date, chaperones that ensure safe delivery to the assembling ribosome have not been identified in the mitochondrion. In this study, a respiratory synthetic lethality screen revealed a role for an evolutionarily conserved mitochondrial matrix protein called Mam33 in Saccharomyces cerevisiae mitoribosome biogenesis. We found that the absence of Mam33 results in misassembled, aggregated ribosomes and a respiratory lethal phenotype in combination with other ribosome-assembly mutants. Using sucrose gradient sedimentation, native affinity purifications, in vitro binding assays, and SILAC-based quantitative proteomics, we found that Mam33 does not associate with the mature mitoribosome, but directly binds a subset of unassembled large subunit proteins. Based on these data, we propose that Mam33 binds specific mitoribosomal proteins to ensure proper assembly.
Collapse
Affiliation(s)
- Gabrielle A Hillman
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and.,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| | - Michael F Henry
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and .,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| |
Collapse
|
10
|
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of Mitochondrial Electron Transport Chain Assembly. J Mol Biol 2018; 430:4849-4873. [DOI: 10.1016/j.jmb.2018.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
|
11
|
Zeng R, Smith E, Barrientos A. Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane. Cell Metab 2018; 27. [PMID: 29514071 PMCID: PMC5951612 DOI: 10.1016/j.cmet.2018.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitoribosomes are specialized for the synthesis of hydrophobic membrane proteins encoded by mtDNA, all essential for oxidative phosphorylation. Despite their linkage to human mitochondrial diseases and the recent cryoelectron microscopy reconstruction of yeast and mammalian mitoribosomes, how they are assembled remains obscure. Here, we dissected the yeast mitoribosome large subunit (mtLSU) assembly process by systematic genomic deletion of 44 mtLSU proteins (MRPs). Analysis of the strain collection unveiled 37 proteins essential for functional mtLSU assembly, three of which are critical for mtLSU 21S rRNA stability. Hierarchical cluster analysis of mtLSU subassemblies accumulated in mutant strains revealed co-operative assembly of protein sets forming structural clusters and preassembled modules. It also indicated crucial roles for mitochondrion-specific membrane-binding MRPs in anchoring newly transcribed 21S rRNA to the inner membrane, where assembly proceeds. Our results define the yeast mtLSU assembly landscape in vivo and provide a foundation for studies of mitoribosome assembly across evolution.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA
| | - Erin Smith
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Plasticity of Mitochondrial Translation. Trends Cell Biol 2017; 27:712-721. [DOI: 10.1016/j.tcb.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/21/2022]
|
13
|
De Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N, Perez-Martinez X, Fontanesi F, Barrientos A. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 2017; 45:6628-6643. [PMID: 28520979 PMCID: PMC5499750 DOI: 10.1093/nar/gkx426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah Poliquin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angelica Zamudio-Ochoa
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Natalie Marrero
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xochitl Perez-Martinez
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
14
|
Richman TR, Spåhr H, Ermer JA, Davies SMK, Viola HM, Bates KA, Papadimitriou J, Hool LC, Rodger J, Larsson NG, Rackham O, Filipovska A. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016; 7:11884. [PMID: 27319982 PMCID: PMC4915168 DOI: 10.1038/ncomms11884] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. Mutations in the translational activator of cytochrome c oxidase subunit I (TACO1) causes cytochrome c oxidase deficiency and Leigh Syndrome in patients. Here, the authors characterize mice with a mutation that causes lack of TACO1 expression, identifying a mouse model that could be useful for preclinical trials.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
15
|
Mayorga JP, Camacho-Villasana Y, Shingú-Vázquez M, García-Villegas R, Zamudio-Ochoa A, García-Guerrero AE, Hernández G, Pérez-Martínez X. A Novel Function of Pet54 in Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria. J Biol Chem 2016; 291:9343-55. [PMID: 26929411 DOI: 10.1074/jbc.m116.721985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Cytochrome c oxidase assembly requires the synthesis of the mitochondria-encoded core subunits, Cox1, Cox2, and Cox3. In yeast, Pet54 protein is required to activate translation of the COX3 mRNA and to process the aI5β intron on the COX1 transcript. Here we report a third, novel function of Pet54 on Cox1 synthesis. We observed that Pet54 is necessary to achieve an efficient Cox1 synthesis. Translation of the COX1 mRNA is coupled to the assembly of cytochrome c oxidase by a mechanism that involves Mss51. This protein activates translation of the COX1 mRNA by acting on the COX1 5'-UTR, and, in addition, it interacts with the newly synthesized Cox1 protein in high molecular weight complexes that include the factors Coa3 and Cox14. Deletion of Pet54 decreased Cox1 synthesis, and, in contrast to what is commonly observed for other assembly mutants, double deletion of cox14 or coa3 did not recover Cox1 synthesis. Our results show that Pet54 is a positive regulator of Cox1 synthesis that renders Mss51 competent as a translational activator of the COX1 mRNA and that this role is independent of the assembly feedback regulatory loop of Cox1 synthesis. Pet54 may play a role in Mss51 hemylation/conformational change necessary for translational activity. Moreover, Pet54 physically interacts with the COX1 mRNA, and this binding was independent of the presence of Mss51.
Collapse
Affiliation(s)
- Juan Pablo Mayorga
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yolanda Camacho-Villasana
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Miguel Shingú-Vázquez
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences Monash University, Clayton, Victoria 3800, Australia, and
| | - Rodolfo García-Villegas
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angélica Zamudio-Ochoa
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aldo E García-Guerrero
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Greco Hernández
- the Division of Basic Research, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Xochitl Pérez-Martínez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico,
| |
Collapse
|
16
|
Soto IC, Barrientos A. Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator. Antioxid Redox Signal 2016; 24:281-98. [PMID: 26415097 PMCID: PMC4761835 DOI: 10.1089/ars.2015.6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. RESULTS We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. INNOVATION H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. CONCLUSION The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.
Collapse
Affiliation(s)
- Iliana C Soto
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | - Antoni Barrientos
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
17
|
Roloff GA, Henry MF. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2015; 26:2885-94. [PMID: 26108620 PMCID: PMC4571327 DOI: 10.1091/mbc.e15-04-0222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Expression of genes encoded by the mitochondrial genome is dependent on gene-specific translational activators. Mam33, the yeast homologue of p32/gC1qR/C1QBP/HABP1, promotes the translation of Cox1, a core catalytic subunit of respiratory chain complex IV. Three mitochondrial DNA–encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1.
Collapse
Affiliation(s)
- Gabrielle A Roloff
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Michael F Henry
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
18
|
Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci 2015; 128:833-7. [DOI: 10.1242/jcs.161729] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondria provide the main portion of cellular energy in form of ATP produced by the F1Fo ATP synthase, which uses the electrochemical gradient, generated by the mitochondrial respiratory chain (MRC). In human mitochondria, the MRC is composed of four multisubunit enzyme complexes, with the cytochrome c oxidase (COX, also known as complex IV) as the terminal enzyme. COX comprises 14 structural subunits, of nuclear or mitochondrial origin. Hence, mitochondria are faced with the predicament of organizing and controlling COX assembly with subunits that are synthesized by different translation machineries and that reach the inner membrane by alternative transport routes. An increasing number of COX assembly factors have been identified in recent years. Interestingly, mutations in several of these factors have been associated with human disorders leading to COX deficiency. Recently, studies have provided mechanistic insights into crosstalk between assembly intermediates, import processes and the synthesis of COX subunits in mitochondria, thus linking conceptually separated functions. This Cell Science at a Glance article and the accompanying poster will focus on COX assembly and discuss recent discoveries in the field, the molecular functions of known factors, as well as new players and control mechanisms. Furthermore, these findings will be discussed in the context of human COX-related disorders.
Collapse
|
19
|
Zamudio-Ochoa A, Camacho-Villasana Y, García-Guerrero AE, Pérez-Martínez X. The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol 2014; 11:953-67. [PMID: 25181249 PMCID: PMC4179968 DOI: 10.4161/rna.29780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5′-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.
Collapse
Affiliation(s)
- Angélica Zamudio-Ochoa
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Aldo E García-Guerrero
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| |
Collapse
|
20
|
Ostojić J, Glatigny A, Herbert CJ, Dujardin G, Bonnefoy N. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae? Biochimie 2013; 100:27-37. [PMID: 24262604 DOI: 10.1016/j.biochi.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Glatigny
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christopher J Herbert
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
21
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
22
|
Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life 2013; 65:397-408. [PMID: 23554047 DOI: 10.1002/iub.1156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
23
|
Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A. A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab 2012; 16:801-13. [PMID: 23217259 PMCID: PMC3523284 DOI: 10.1016/j.cmet.2012.10.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/01/2022]
Abstract
Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae, a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production.
Collapse
Affiliation(s)
- Iliana C Soto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
24
|
Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C. Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 2012; 11:1840-52. [PMID: 22984289 PMCID: PMC3518125 DOI: 10.1074/mcp.m112.021105] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
26
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
27
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
28
|
Kühl I, Dujeancourt L, Gaisne M, Herbert CJ, Bonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res 2011; 39:8029-41. [PMID: 21727087 PMCID: PMC3185421 DOI: 10.1093/nar/gkr511] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.
Collapse
Affiliation(s)
- Inge Kühl
- Centre de Génétique Moléculaire du CNRS, UPR3404, FRC3115, Avenue de Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry. Mech Ageing Dev 2011; 132:315-23. [DOI: 10.1016/j.mad.2011.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/08/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
|
30
|
Mick DU, Fox TD, Rehling P. Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 2011; 12:14-20. [PMID: 21179059 PMCID: PMC3376542 DOI: 10.1038/nrm3029] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria maintain genome and translation machinery to synthesize a small subset of subunits of the oxidative phosphorylation system. To build up functional enzymes, these organellar gene products must assemble with imported subunits that are encoded in the nucleus. New findings on the early steps of cytochrome c oxidase assembly reveal how the mitochondrial translation of its core component, cytochrome c oxidase subunit 1 (Cox1), is directly coupled to the assembly of this respiratory complex.
Collapse
Affiliation(s)
- David U Mick
- Abteilung für Biochemie II, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Fontanesi F, Clemente P, Barrientos A. Cox25 teams up with Mss51, Ssc1, and Cox14 to regulate mitochondrial cytochrome c oxidase subunit 1 expression and assembly in Saccharomyces cerevisiae. J Biol Chem 2010; 286:555-66. [PMID: 21068384 DOI: 10.1074/jbc.m110.188805] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) biogenesis is translationally regulated. Mss51, a specific COX1 mRNA translational activator and Cox1 chaperone, drives the regulatory mechanism. During translation and post-translationally, newly synthesized Cox1 physically interacts with a complex of proteins involving Ssc1, Mss51, and Cox14, which eventually hand over Cox1 to the assembly pathway. This step is probably catalyzed by assembly chaperones such as Shy1 in a process coupled to the release of Ssc1-Mss51 from the complex. Impaired COX assembly results in the trapping of Mss51 in the complex, thus limiting its availability for COX1 mRNA translation. An exception is a null mutation in COX14 that does not affect Cox1 synthesis because the Mss51 trapping complexes become unstable, and Mss51 is readily available for translation. Here we present evidence showing that Cox25 is a new essential COX assembly factor that plays some roles similar to Cox14. A null mutation in COX25 by itself or in combination with other COX mutations does not affect Cox1 synthesis. Cox25 is an inner mitochondrial membrane intrinsic protein with a hydrophilic C terminus protruding into the matrix. Cox25 is an essential component of the complexes containing newly synthesized Cox1, Ssc1, Mss51, and Cox14. In addition, Cox25 is also found to interact with Shy1 and Cox5 in a complex that does not contain Mss51. These results suggest that once Ssc1-Mss51 are released from the Cox1 stabilization complex, Cox25 continues to interact with Cox14 and Cox1 to facilitate the formation of multisubunit COX assembly intermediates.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Departments of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
32
|
Mick DU, Vukotic M, Piechura H, Meyer HE, Warscheid B, Deckers M, Rehling P. Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria. ACTA ACUST UNITED AC 2010; 191:141-54. [PMID: 20876281 PMCID: PMC2953447 DOI: 10.1083/jcb.201007026] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for association of the Mss51 translational activator with these complexes. Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation.
Collapse
Affiliation(s)
- David U Mick
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis. Mol Cell Biol 2010; 30:245-59. [PMID: 19858289 DOI: 10.1128/mcb.00983-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intricate biogenesis of multimeric organellar enzymes of dual genetic origin entails several levels of regulation. In Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) assembly is regulated translationally. Synthesis of subunit 1 (Cox1) is contingent on the availability of its assembly partners, thereby acting as a negative feedback loop that coordinates COX1 mRNA translation with Cox1 utilization during COX assembly. The COX1 mRNA-specific translational activator Mss51 plays a fundamental role in this process. Here, we report that Mss51 successively interacts with the COX1 mRNA translational apparatus, newly synthesized Cox1, and other COX assembly factors during Cox1 maturation/assembly. Notably, the mitochondrial Hsp70 chaperone Ssc1 is shown to be an Mss51 partner throughout its metabolic cycle. We conclude that Ssc1, by interacting with Mss51 and Mss51-containing complexes, plays a critical role in Cox1 biogenesis, COX assembly, and the translational regulation of these processes.
Collapse
|
34
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
35
|
Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase. Mol Cell Biol 2009; 30:1004-17. [PMID: 19995914 DOI: 10.1128/mcb.00640-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrion-encoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a(3):Cu(B) center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites in Cox1 form downstream of Mss51- and Coa1-containing Cox1 intermediates. These Cox1 intermediates form normally in cells defective in heme a biosynthesis or in cox1 mutant strains with heme a axial His mutations. In contrast, the Shy1-containing Cox1 assembly intermediate is perturbed in the absence of heme a. Heme a(3) center formation in Cox1 appears to be chaperoned by Shy1. Cu(B) site formation occurs near or at the Shy1-containing Cox1 assembly intermediate also. The Cu(B) metallochaperone Cox11 transiently interacts with Shy1 by coimmunoprecipitation. The Shy1-containing Cox1 complex is markedly attenuated in cells lacking Cox11 but is partially restored with a nonfunctional Cox11 mutant. Thus, formation of the heterobimetallic Cu(B):heme a(3) site likely occurs in the Shy1-containing Cox1 complex.
Collapse
|
36
|
Soto IC, Fontanesi F, Valledor M, Horn D, Singh R, Barrientos A. Synthesis of cytochrome c oxidase subunit 1 is translationally downregulated in the absence of functional F1F0-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1776-86. [PMID: 19735676 PMCID: PMC2764804 DOI: 10.1016/j.bbamcr.2009.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
The mitochondrial F(1)F(0)-ATP synthase or ATPase is a key enzyme for aerobic energy production in eukaryotic cells. Mutations in ATPase structural and assembly genes are the primary cause of severe human encephalomyopathies, frequently associated with a pleiotropic decrease in cytochrome c oxidase (COX) activity. We have studied the structural and functional constraints underlying the COX defect using Saccharomyces cerevisiae genetic and pharmacological models of ATPase deficiency. In both yeast Deltaatp10 and oligomycin-treated wild type cells, COX assembly is selectively impaired in the absence of functional ATPase. The COX biogenesis defect does not involve a primary alteration in the expression of the COX subunits as previously suggested but in their maturation and/or assembly. Expression of COX subunit 1, however, is translationally regulated as in most bona fide COX assembly mutants. Additionally, the COX defect in oligomycin-inhibited ATPase-deficient yeast cells, but not in atp10 cells could be partially prevented by partially dissipating the mitochondrial membrane potential using the uncoupler CCCP. Similar results were obtained with oligomycin-treated and ATP12-deficient human fibroblasts respectively. Our findings imply that fully assembled ATPase and its proton pumping function are both required for COX biogenesis in yeast and mammalian cells through a mechanism independent of Cox1p synthesis.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
| | - Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
| | - Melvys Valledor
- Department of Biochemistry & Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
| | - Darryl Horn
- Department of Biochemistry & Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
| | - Rajiv Singh
- Department of Biochemistry & Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
| |
Collapse
|
37
|
Perez-Martinez X, Butler CA, Shingu-Vazquez M, Fox TD. Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2009; 20:4371-80. [PMID: 19710419 PMCID: PMC2762147 DOI: 10.1091/mbc.e09-06-0522] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 11/11/2022] Open
Abstract
Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.
Collapse
Affiliation(s)
- Xochitl Perez-Martinez
- *Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México; and
| | - Christine A. Butler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Miguel Shingu-Vazquez
- *Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México; and
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
38
|
Merz S, Westermann B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol 2009; 10:R95. [PMID: 19751518 PMCID: PMC2768984 DOI: 10.1186/gb-2009-10-9-r95] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/14/2009] [Indexed: 12/13/2022] Open
Abstract
A genome-wide deletion mutant analysis in budding yeast reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis. Background The mitochondrial respiratory chain produces metabolic energy by oxidative phosphorylation. Biogenesis of the respiratory chain requires the coordinated expression of two genomes: the nuclear genome encoding the vast majority of mitochondrial proteins, and the mitochondrial genome encoding a handful of mitochondrial proteins. The understanding of the molecular processes contributing to respiratory chain assembly and maintenance requires the systematic identification and functional analysis of the genes involved. Results We pursued a systematic, genome-wide approach to define the sets of genes required for respiratory activity and maintenance and expression of the mitochondrial genome in yeast. By comparative gene deletion analysis we found an unexpected phenotypic plasticity among respiratory-deficient mutants, and we identified ten previously uncharacterized genes essential for respiratory growth (RRG1 through RRG10). Systematic functional analysis of 319 respiratory-deficient mutants revealed 16 genes essential for maintenance of the mitochondrial genome, 88 genes required for mitochondrial protein translation, and 10 genes required for expression of specific mitochondrial gene products. A group of mutants acquiring irreversible damage compromising respiratory capacity includes strains defective in assembly of the cytochrome c oxidase that were found to be particularly sensitive to aging. Conclusions These data advance the understanding of the molecular processes contributing to maintenance of the mitochondrial genome, mitochondrial protein translation, and assembly of the respiratory chain. They revealed a number of previously uncharacterized components, and provide a comprehensive picture of the molecular processes required for respiratory activity in a simple eukaryotic cell.
Collapse
Affiliation(s)
- Sandra Merz
- Institut für Zellbiologie, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
39
|
Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:97-107. [PMID: 18522805 PMCID: PMC2644423 DOI: 10.1016/j.bbamcr.2008.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin whose assembly is intricate and highly regulated. In addition to the structural subunits, a large number of accessory factors are required to build the holoenzyme. The function of these factors is required in all stages of the assembly process. They are relevant to human health because devastating human disorders have been associated with mutations in nuclear genes encoding conserved COX assembly factors. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to attain the current state of knowledge, even if still fragmentary, of the COX assembly process. After the identification of the genes involved, the isolation and characterization of genetic and metabolic suppressors of COX assembly defects, reviewed here, have become a profitable strategy to gain insight into their functions and the pathways in which they operate. Additionally, they have the potential to provide useful information for devising therapeutic approaches to combat human disorders associated with COX deficiency.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
40
|
Pogson BJ, Woo NS, Förster B, Small ID. Plastid signalling to the nucleus and beyond. TRENDS IN PLANT SCIENCE 2008; 13:602-9. [PMID: 18838332 DOI: 10.1016/j.tplants.2008.08.008] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/21/2008] [Accepted: 08/27/2008] [Indexed: 05/02/2023]
Abstract
Communication between the compartments or organelles of cells is essential for plant growth and development. There is an emerging understanding of signals generated within energy-transducing organelles, such as chloroplasts and mitochondria, and the nuclear genes that respond to them, a process known as retrograde signalling. A recent series of unconnected breakthroughs have given scientists a glimpse inside the 'black box' of organellar signalling thanks to the identification of some of the factors involved in generating and propagating signals to the nucleus and, in some instances, systemically throughout photosynthetic tissues. This review will focus on recent developments in our understanding of retrograde and systemic signals generated by organelles, with an emphasis on chloroplasts.
Collapse
Affiliation(s)
- Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
41
|
Wang Z, Wang Y, Hegg EL. Regulation of the heme A biosynthetic pathway: differential regulation of heme A synthase and heme O synthase in Saccharomyces cerevisiae. J Biol Chem 2008; 284:839-47. [PMID: 18953022 DOI: 10.1074/jbc.m804167200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The assembly and activity of cytochrome c oxidase is dependent on the availability of heme A, one of its essential cofactors. In eukaryotes, two inner mitochondrial membrane proteins, heme O synthase (Cox10) and heme A synthase (Cox15), are required for heme A biosynthesis. In this report, we demonstrate that in Saccharomyces cerevisiae the transcription of COX15 is regulated by Hap1, a transcription factor whose activity is positively controlled by intracellular heme concentration. Conversely, COX10, the physiological partner of COX15, does not share the same regulatory mechanism with COX15. Interestingly, protein quantification identified an 8:1 protein ratio between Cox15 and Cox10. Together, these results suggest that heme A synthase and/or heme O synthase might play a new, unidentified role in addition to heme A biosynthesis.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | | | | |
Collapse
|
42
|
Abstract
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
| | - Ileana C. Soto
- Department of Biochemistry & Molecular Biology. The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
- Department of Biochemistry & Molecular Biology. The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
43
|
Coa2 is an assembly factor for yeast cytochrome c oxidase biogenesis that facilitates the maturation of Cox1. Mol Cell Biol 2008; 28:4927-39. [PMID: 18541668 DOI: 10.1128/mcb.00057-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is dependent on a new assembly factor designated Coa2. Coa2 was identified from its ability to suppress the respiratory deficiency of coa1Delta and shy1Delta cells. Coa1 and Shy1 function at an early step in maturation of the Cox1 subunit of CcO. Coa2 functions downstream of the Mss51-Coa1 step in Cox1 maturation and likely concurrent with the Shy1-related heme a(3) insertion into Cox1. Coa2 interacts with Shy1. Cells lacking Coa2 show a rapid degradation of newly synthesized Cox1. Rapid Cox1 proteolysis also occurs in shy1Delta cells, suggesting that in the absence of Coa2 or Shy1, Cox1 forms an unstable conformer. Overexpression of Cox10 or Cox5a and Cox6 or attenuation of the proteolytic activity of the m-AAA protease partially restores respiration in coa2Delta cells. The matrix-localized Coa2 protein may aid in stabilizing an early Cox1 intermediate containing the nuclear subunits Cox5a and Cox6.
Collapse
|
44
|
Bauerschmitt H, Funes S, Herrmann JM. The membrane-bound GTPase Guf1 promotes mitochondrial protein synthesis under suboptimal conditions. J Biol Chem 2008; 283:17139-46. [PMID: 18442968 DOI: 10.1074/jbc.m710037200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the bacterial elongation factor LepA was identified as critical for the accuracy of in vitro translation reactions. Extremely well conserved homologues of LepA are present throughout bacteria and eukaryotes, but the physiological relevance of these proteins is unclear. Here we show that the yeast counterpart of LepA, Guf1, is located in the mitochondrial matrix and tightly associated with the inner membrane. It binds to mitochondrial ribosomes in a GTP-dependent manner. Mutants lacking Guf1 show cold- and heat-sensitive growth defects on non-fermentable carbon sources that are especially pronounced under nutrient-limiting conditions. The cold sensitivity is explained by diminished rates of protein synthesis at low temperatures. At elevated temperatures, Guf1-deficient mutants exhibit defects in the assembly of cytochrome oxidase, suggesting that the polypeptides produced are not functional. Moreover, Guf1 mutants exhibit synthetic growth defects with mutations of the protein insertase Oxa1. These observations show a critical role for Guf1 in vivo. The observed defects in Guf1-deficient mitochondria are consistent with a function of Guf1 as a fidelity factor of mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Heike Bauerschmitt
- Institute of Physiological Chemistry, University of Munich, 81377 Munich, Germany
| | | | | |
Collapse
|
45
|
Gouget K, Verde F, Barrientos A. In vivo labeling and analysis of mitochondrial translation products in budding and in fission yeasts. Methods Mol Biol 2008; 457:113-24. [PMID: 19066022 DOI: 10.1007/978-1-59745-261-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondrial biogenesis requires the contribution of two genomes and of two compartmentalized protein synthesis systems (nuclear and mitochondrial). Mitochondrial protein synthesis is unique on many respects, including the use of a genetic code with deviations from the universal code, the use of a restricted number of transfer RNAs, and because of the large number of nuclear encoded factors involved in assembly of the mitochondrial biosynthetic apparatus. The mitochondrial biosynthetic apparatus is involved in the actual synthesis of a handful of proteins encoded in the mitochondrial DNA. The budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are excellent models to identify and study factors required for mitochondrial translation. For that purpose, in vivo mitochondrial protein synthesis, following the incorporation of a radiolabeled precursor into the newly synthesized mitochondrial encoded products, is a relatively simple technique that has been extensively used. Although variations of this technique are well established for studies in S. cerevisiae, they have not been optimized yet for studies in S. pombe. In this chapter, we present an easy, fast and reliable method to in vivo radiolabel mitochondrial translation products from this fission yeast.
Collapse
Affiliation(s)
- Karine Gouget
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
46
|
Mick DU, Wagner K, van der Laan M, Frazier AE, Perschil I, Pawlas M, Meyer HE, Warscheid B, Rehling P. Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly. EMBO J 2007; 26:4347-58. [PMID: 17882259 PMCID: PMC2034671 DOI: 10.1038/sj.emboj.7601862] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/24/2007] [Indexed: 11/09/2022] Open
Abstract
Cytochrome c oxidase (complex IV) of the respiratory chain is assembled from nuclear and mitochondrially-encoded subunits. Defects in the assembly process lead to severe human disorders such as Leigh syndrome. Shy1 is an assembly factor for complex IV in Saccharomyces cerevisiae and mutations of its human homolog, SURF1, are the most frequent cause for Leigh syndrome. We report that Shy1 promotes complex IV biogenesis through association with different protein modules; Shy1 interacts with Mss51 and Cox14, translational regulators of Cox1. Additionally, Shy1 associates with the subcomplexes of complex IV that are potential assembly intermediates. Formation of these subcomplexes depends on Coa1 (YIL157c), a novel assembly factor that cooperates with Shy1. Moreover, partially assembled forms of complex IV bound to Shy1 and Cox14 can associate with the bc1 complex to form transitional supercomplexes. We suggest that Shy1 links Cox1 translational regulation to complex IV assembly and supercomplex formation.
Collapse
Affiliation(s)
- David U Mick
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Karina Wagner
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Martin van der Laan
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
| | - Ann E Frazier
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | - Inge Perschil
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
| | - Magdalena Pawlas
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Bettina Warscheid
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Rehling
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Straße 7, Freiburg 79104, Germany. Tel.: +49 761 203 5245; Fax: +49 761 203 5245; E-mail:
| |
Collapse
|
47
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Khalimonchuk O, Bird A, Winge DR. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J Biol Chem 2007; 282:17442-9. [PMID: 17430883 DOI: 10.1074/jbc.m702379200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrogen peroxide sensitivity of cells lacking two proteins, Sco1 and Cox11, important in the assembly of cytochrome c oxidase (CcO), is shown to arise from the transient accumulation of a pro-oxidant heme A-Cox1 stalled intermediate. The peroxide sensitivity of these cells is abrogated by a reduction in either Cox1 expression or heme A formation but exacerbated by either enhanced Cox1 expression or heme A production arising from overexpression of COX15. Sco1 and Cox11 are implicated in the formation of the Cu(A) and Cu(B) sites of CcO, respectively. The respective wild-type genes suppress the peroxide sensitivities of sco1Delta and cox11Delta cells, but no cross-complementation is seen with noncognate genes. Copper-binding mutant alleles of Sco1 and Cox11 that are nonfunctional in promoting the assembly of CcO are functional in suppressing the peroxide sensitivity of their respective null mutants. Likewise, human Sco1 that is nonfunctional in yeast CcO assembly is able to suppress the peroxide sensitivity of yeast sco1Delta cells. Thus, a disconnect exists between the respiratory capacity of cells and hydrogen peroxide sensitivity. Hydrogen peroxide sensitivity of sco1Delta and cox11Delta cells is abrogated by overexpression of a novel mitochondrial ATPase Afg1 that promotes the degradation of CcO mitochondrially encoded subunits. Studies on the hydrogen peroxide sensitivity in CcO assembly mutants reveal new aspects of the CcO assembly process.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|