1
|
Simoes-Barbosa A, Pinheiro J. Unconventional features in the transcription and processing of spliceosomal small nuclear RNAs in the protozoan parasite Trichomonas vaginalis. Int J Parasitol 2024; 54:257-266. [PMID: 38452964 DOI: 10.1016/j.ijpara.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand.
| | - Jully Pinheiro
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Budzak J, Goodwin I, Tiengwe C, Rudenko G. Imaging of genomic loci in Trypanosoma brucei using an optimised LacO-LacI system. Mol Biochem Parasitol 2023; 256:111598. [PMID: 37923299 PMCID: PMC7617574 DOI: 10.1016/j.molbiopara.2023.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Visualisation of genomic loci by microscopy is essential for understanding nuclear organisation, particularly at the single cell level. One powerful technique for studying the positioning of genomic loci is through the Lac Operator-Lac Repressor (LacO-LacI) system, in which LacO repeats introduced into a specific genomic locus can be visualised through expression of a LacI-protein fused to a fluorescent tag. First utilised in Trypanosoma brucei over 20 years ago, we have now optimised this system with short, stabilised LacO repeats of less than 2 kb paired with a constitutively expressed mNeongreen::LacI fusion protein to facilitate visualisation of genomic loci. We demonstrate the compatibility of this system with super-resolution microscopy and propose its suitability for multiplexing with inducible RNAi or protein over expression which will allow analysis of nuclear organisation after perturbation of gene expression.
Collapse
Affiliation(s)
- James Budzak
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Ione Goodwin
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Calvin Tiengwe
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
3
|
Pozzi B, Naguleswaran A, Florini F, Rezaei Z, Roditi I. The RNA export factor TbMex67 connects transcription and RNA export in Trypanosoma brucei and sets boundaries for RNA polymerase I. Nucleic Acids Res 2023; 51:5177-5192. [PMID: 37070196 PMCID: PMC10250216 DOI: 10.1093/nar/gkad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
TbMex67 is the major mRNA export factor known to date in trypanosomes, forming part of the docking platform within the nuclear pore. To explore its role in co-transcriptional mRNA export, recently reported in Trypanosoma brucei, pulse labelling of nascent RNAs with 5-ethynyl uridine (5-EU) was performed with cells depleted of TbMex67 and complemented with a dominant-negative mutant (TbMex67-DN). RNA polymerase (Pol) II transcription was unaffected, but the procyclin loci, which encode mRNAs transcribed by Pol I from internal sites on chromosomes 6 and 10, showed increased levels of 5-EU incorporation. This was due to Pol I readthrough transcription, which proceeded beyond the procyclin and procyclin-associated genes up to the Pol II transcription start site on the opposite strand. Complementation by TbMex67-DN also increased Pol I-dependent formation of R-loops and γ-histone 2A foci. The DN mutant exhibited reduced nuclear localisation and binding to chromatin compared to wild-type TbMex67. Together with its interaction with chromatin remodelling factor TbRRM1 and Pol II, and transcription-dependent association of Pol II with nucleoporins, our findings support a role for TbMex67 in connecting transcription and export in T. brucei. In addition, TbMex67 stalls readthrough by Pol I in specific contexts, thereby limiting R-loop formation and replication stress.
Collapse
Affiliation(s)
- Berta Pozzi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Curvicollide D Isolated from the Fungus Amesia sp. Kills African Trypanosomes by Inhibiting Transcription. Int J Mol Sci 2022; 23:ijms23116107. [PMID: 35682786 PMCID: PMC9181715 DOI: 10.3390/ijms23116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Sleeping sickness or African trypanosomiasis is a serious health concern with an added socio-economic impact in sub-Saharan Africa due to direct infection in both humans and their domestic livestock. There is no vaccine available against African trypanosomes and its treatment relies only on chemotherapy. Although the current drugs are effective, most of them are far from the modern concept of a drug in terms of toxicity, specificity and therapeutic regime. In a search for new molecules with trypanocidal activity, a high throughput screening of 2000 microbial extracts was performed. Fractionation of one of these extracts, belonging to a culture of the fungus Amesia sp., yielded a new member of the curvicollide family that has been designated as curvicollide D. The new compound showed an inhibitory concentration 50 (IC50) 16-fold lower in Trypanosoma brucei than in human cells. Moreover, it induced cell cycle arrest and disruption of the nucleolar structure. Finally, we showed that curvicollide D binds to DNA and inhibits transcription in African trypanosomes, resulting in cell death. These results constitute the first report on the activity and mode of action of a member of the curvicollide family in T. brucei.
Collapse
|
5
|
An assembly of nuclear bodies associates with the active VSG expression site in African trypanosomes. Nat Commun 2022; 13:101. [PMID: 35013170 PMCID: PMC8748868 DOI: 10.1038/s41467-021-27625-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
A Variant Surface Glycoprotein (VSG) coat protects bloodstream form Trypanosoma brucei. Prodigious amounts of VSG mRNA (~7-10% total) are generated from a single RNA polymerase I (Pol I) transcribed VSG expression site (ES), necessitating extremely high levels of localised splicing. We show that splicing is required for processive ES transcription, and describe novel ES-associated T. brucei nuclear bodies. In bloodstream form trypanosomes, the expression site body (ESB), spliced leader array body (SLAB), NUFIP body and Cajal bodies all frequently associate with the active ES. This assembly of nuclear bodies appears to facilitate the extraordinarily high levels of transcription and splicing at the active ES. In procyclic form trypanosomes, the NUFIP body and SLAB do not appear to interact with the Pol I transcribed procyclin locus. The congregation of a restricted number of nuclear bodies at a single active ES, provides an attractive mechanism for how monoallelic ES transcription is mediated. A Variant Surface Glycoprotein (VSG) coat protects bloodstream form T. brucei. Applying super-resolution microscopy Budzak et al. characterize a set of nuclear bodies, which associate with the active expression site in bloodstream form T. brucei and highlight the importance of trans-splicing for transcription of VSG.
Collapse
|
6
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
7
|
Jiang W, Zhang Z, Sun Y, Zhang Y, Zhang L, Liu H, Peng R. Construction and analysis of a diabetic nephropathy related protein-protein interaction network reveals nine critical and functionally associated genes. Comput Biol Chem 2019; 83:107115. [PMID: 31561072 DOI: 10.1016/j.compbiolchem.2019.107115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the common diabetic complications, but the mechanisms are still largely unknown. In this study, we constructed a DN related protein-protein interaction network (DNPPIN) on the basis of RNA-seq analysis of renal cortices of DN and normal mice, and the STRING database. We analyzed DNPPIN in detail revealing nine critical proteins which are central in DNPPIN, and contained in one network module which is functionally enriched in ribosome, nucleic acid binding and metabolic process. Overall, this study identified nine critical and functionally associated protein-coding genes concerning DN. These genes could be a starting point of future research towards the goal of elucidating the mechanisms of DN pathogenesis and progression.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yajuan Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Negreiros RS, Lander N, Huang G, Cordeiro CD, Smith SA, Morrissey JH, Docampo R. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol 2018; 110:973-994. [PMID: 30230089 DOI: 10.1111/mmi.14131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high-energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over-representation of nucleolar and glycosomal proteins. Using the polyphosphate-binding domain (PPBD) of Escherichia coli exopolyphosphatase (PPX), we localized long-chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre-incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration-dependent and chain length-dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Raquel S Negreiros
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ciro D Cordeiro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005432. [PMID: 28263991 PMCID: PMC5354456 DOI: 10.1371/journal.pntd.0005432] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/16/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhibitors for selective anti-trypanosomal activity. The Pol I inhibitors quarfloxin (CX-3543), CX-5461, and BMH-21 are currently under investigation for treating cancer, as rapidly dividing cancer cells are particularly dependent on high levels of Pol I transcription compared with nontransformed cells. In T. brucei all three Pol I inhibitors have IC50 concentrations for cell proliferation in the nanomolar range: quarfloxin (155 nM), CX-5461 (279 nM) or BMH-21 (134 nM) compared with IC50 concentrations in the MCF10A human breast epithelial cell line (4.44 μM, 6.89 μM or 460 nM, respectively). T. brucei was therefore 29-fold more sensitive to quarfloxin, 25-fold more sensitive to CX-5461 and 3.4-fold more sensitive to BMH-21. Cell death in T. brucei was due to rapid inhibition of Pol I transcription, as within 15 minutes treatment with the inhibitors rRNA precursor transcript was reduced 97-98% and VSG precursor transcript 91-94%. Incubation with Pol I transcription inhibitors also resulted in disintegration of the ESB as well as the nucleolus subnuclear structures, within one hour. Rapid ESB loss following the block in Pol I transcription argues that the ESB is a Pol I transcription nucleated structure, similar to the nucleolus. In addition to providing insight into Pol I transcription and ES control, Pol I transcription inhibitors potentially also provide new approaches to treat trypanosomiasis. Trypanosoma brucei is protected by an essential Variant Surface Glycoprotein (VSG) coat in the mammalian bloodstream. The active VSG gene is transcribed by RNA polymerase I (Pol I), which typically only transcribes rDNA. Pol I transcription inhibitors are under clinical trials for cancer chemotherapy. As T. brucei relies on Pol I for VSG transcription, we investigated its susceptibility to these drugs. We show that quarfloxin (CX-3543), CX-5461, and BMH-21 are effective against T. brucei at nanomolar concentrations. T. brucei death was due to rapid and specific inhibition of Pol I transcription. Incubation with Pol I transcription inhibitors also resulted in disappearance of Pol I subnuclear structures like the nucleolus and the VSG expression site body (ESB). Rapid ESB loss followed the Pol I transcription block, arguing that the ESB is nucleated by Pol I transcription. Pol I transcription inhibitors could therefore potentially function as novel drugs against trypanosomiasis.
Collapse
|
10
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
11
|
Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion ofTrypanosoma brucei. FEBS J 2015; 282:4157-75. [DOI: 10.1111/febs.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Horáková
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Piya Changmai
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
| | - Zdeněk Paris
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis; Centro de Ciências e da Saude; Federal University of Rio de Janeiro; Brazil
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
- Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
12
|
Umaer K, Williams N. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis. PLoS One 2015; 10:e0131323. [PMID: 26121669 PMCID: PMC4488245 DOI: 10.1371/journal.pone.0131323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lecordier L, Uzureau P, Tebabi P, Brauner J, Benghiat FS, Vanhollebeke B, Pays E. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus. Mol Microbiol 2015; 97:397-407. [PMID: 25899052 DOI: 10.1111/mmi.13036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Human apolipoprotein L1 (APOL1) kills African trypanosomes except Trypanosoma rhodesiense and Trypanosoma gambiense, the parasites causing sleeping sickness. APOL1 uptake into trypanosomes is favoured by its association with the haptoglobin-related protein-haemoglobin complex, which binds to the parasite surface receptor for haptoglobin-haemoglobin. As haptoglobin-haemoglobin can saturate the receptor, APOL1 uptake is increased in haptoglobin-poor (hypohaptoglobinaemic) serum (HyHS). While T. rhodesiense resists APOL1 by RNA polymerase I (pol-I)-mediated expression of the serum resistance-associated (SRA) protein, T. gambiense resists by pol-II-mediated expression of the T. gambiense-specific glycoprotein (TgsGP). Moreover, in T. gambiense resistance to HyHS is linked to haptoglobin-haemoglobin receptor inactivation by mutation. We report that unlike T. gambiense, T. rhodesiense possesses a functional haptoglobin-haemoglobin receptor, and that like T. gambiense experimentally provided with active receptor, this parasite is killed in HyHS because of receptor-mediated APOL1 uptake. However, T. rhodesiense could adapt to low haptoglobin by increasing transcription of SRA. When assayed in Trypanosoma brucei, resistance to HyHS occurred with pol-I-, but not with pol-II-mediated SRA expression. Similarly, T. gambiense provided with active receptor acquired resistance to HyHS only when TgsGP was moved to a pol-I locus. Thus, transcription by pol-I favours adaptive gene regulation, explaining the presence of SRA in a pol-I locus.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratoire de Médecine Expérimentale (ULB222), Hôpital André Vésale, Université Libre de Bruxelles, 706, route de Gozée, B6110, Montigny le Tilleul, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Jonathan Brauner
- Department of Clinical Chemistry, Hôpital Erasme, Université Libre de Bruxelles, 808, route de Lennik, B1070, Brussels, Belgium
| | - Fleur Samantha Benghiat
- Department of Hematology, Hôpital Erasme, Université Libre de Bruxelles, 808, route de Lennik, B1070, Brussels, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041, Gosselies, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Liège, Belgium
| |
Collapse
|
14
|
Ream TS, Haag JR, Pontvianne F, Nicora CD, Norbeck AD, Paša-Tolić L, Pikaard CS. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 2015; 43:4163-78. [PMID: 25813043 PMCID: PMC4417161 DOI: 10.1093/nar/gkv247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.
Collapse
Affiliation(s)
- Thomas S Ream
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jeremy R Haag
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frederic Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carrie D Nicora
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Angela D Norbeck
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 2013; 501:430-4. [PMID: 23965626 DOI: 10.1038/nature12516] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 08/01/2013] [Indexed: 11/08/2022]
Abstract
The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic β-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.
Collapse
|
16
|
Narayanan MS, Rudenko G. TDP1 is an HMG chromatin protein facilitating RNA polymerase I transcription in African trypanosomes. Nucleic Acids Res 2013; 41:2981-92. [PMID: 23361461 PMCID: PMC3597664 DOI: 10.1093/nar/gks1469] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unusually for a eukaryote, Trypanosoma brucei transcribes its variant surface glycoprotein (VSG) gene expression sites (ESs) in a monoallelic fashion using RNA polymerase I (Pol I). It is still unclear how ES transcription is controlled in T. brucei. Here, we show that the TDP1 architectural chromatin protein is an essential high mobility group box (HMGB) protein facilitating Pol I transcription in T. brucei. TDP1 is specifically enriched at the active compared with silent VSG ES and immediately downstream of ribosomal DNA promoters and is abundant in the nucleolus and the expression site body subnuclear compartments. Distribution of TDP1 at Pol I-transcribed loci is inversely correlated with histones. Depletion of TDP1 results in up to 40–90% reduction in VSG and rRNA transcripts and a concomitant increase in histones H3, H2A and H1 at these Pol I transcription units. TDP1 shares features with the Saccharomyces cerevisiae HMGB protein Hmo1, but it is the first architectural chromatin protein facilitating Pol I-mediated transcription of both protein coding genes as well as rRNA. These results show that TDP1 has a mutually exclusive relationship with histones on actively transcribed Pol I transcription units, providing insight into how Pol I transcription is controlled.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|
17
|
Povelones ML, Gluenz E, Dembek M, Gull K, Rudenko G. Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei. PLoS Pathog 2012; 8:e1003010. [PMID: 23133390 PMCID: PMC3486875 DOI: 10.1371/journal.ppat.1003010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022] Open
Abstract
The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6–8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei. Trypanosoma brucei causes African sleeping sickness, endemic to sub-Saharan Africa. Bloodstream form T. brucei is covered with a dense coat of variant surface glycoprotein (VSG). Only one VSG is expressed at a time out of a vast repertoire of ∼1500 VSGs. The active VSG is transcribed in a telomeric VSG expression site (ES), and VSG switching allows immune evasion. Exactly how monoallelic exclusion of VSG ESs operates, and how switching between ESs is mediated remains mysterious, although epigenetics and chromatin structure clearly play a major role. The linker histone H1 is thought to orchestrate higher order chromatin structure in eukaryotes, but its exact function is unclear. We investigated the role of histone H1 in the regulation of antigenic variation in T. brucei. We show that histone H1 is associated with chromatin and is required for higher order chromatin structure. Depletion of histone H1 results in derepression of silent VSG ES promoters, indicating that H1-mediated chromatin functions in antigenic variation in T. brucei.
Collapse
Affiliation(s)
- Megan L. Povelones
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Eva Gluenz
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marcin Dembek
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Keith Gull
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Daniels JP, Gull K, Wickstead B. The trypanosomatid-specific N terminus of RPA2 is required for RNA polymerase I assembly, localization, and function. EUKARYOTIC CELL 2012; 11:662-72. [PMID: 22389385 PMCID: PMC3346432 DOI: 10.1128/ec.00036-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 11/20/2022]
Abstract
African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.
Collapse
Affiliation(s)
- Jan-Peter Daniels
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Elongator protein 3b negatively regulates ribosomal DNA transcription in african trypanosomes. Mol Cell Biol 2011; 31:1822-32. [PMID: 21357738 DOI: 10.1128/mcb.01026-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells limit ribosomal DNA (rDNA) transcription by RNA polymerase I (RNAP-I) to maintain genome integrity. African trypanosomes present an excellent model for studies on RNAP-I regulation because they possess a bifunctional RNAP-I and because RNAP-II transcription appears unregulated. Since Elp3, the catalytic component of Elongator, controls RNAP-II transcription in yeast and human cells, we predicted a role for a trypanosome Elp3-related protein, ELP3a or ELP3b, in RNAP-I regulation. elp3b null and conditional strains specifically exhibited resistance to a transcription elongation inhibitor, suggesting that ELP3b negatively impacts elongation. Nascent RNA analysis and expression of integrated reporter cassettes supported this interpretation and revealed negative control of rDNA transcription. ELP3b specifically localized to the nucleolus, and ELP3b loss rendered cells hypersensitive to DNA damage and to translation inhibition, suggesting that anti-Elongator function was important to maintain genome integrity rather than to modulate ribosome production. Finally, ELP3b displayed discrimination between RNAP-I compartments in the same cell. Our results establish ELP3b as a major negative regulator of rDNA transcription and extend the roles of the Elp3-related proteins to RNAP-I transcription units. ELP3b is also the first trypanosome protein shown to distinguish between rDNA and variant surface glycoprotein transcription within different RNAP-I compartments.
Collapse
|
20
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
21
|
Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K. Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 2010; 123:1407-13. [PMID: 20388734 PMCID: PMC2858018 DOI: 10.1242/jcs.064873] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2010] [Indexed: 01/07/2023] Open
Abstract
Centrioles are highly conserved structures that fulfil important cellular functions, such as nucleation of cilia and flagella (basal-body function) and organisation of pericentriolar material to form the centrosome. The evolution of these functions can be inferred from the distribution of the molecular components of extant centrioles and centrosomes. Here, we undertake an evolutionary analysis of 53 proteins known either for centriolar association or for involvement in cilia-associated pathologies. By linking protein distribution in 45 diverse eukaryotes with organism biology, we provide molecular evidence to show that basal-body function is ancestral, whereas the presence of the centrosome is specific to the Holozoa. We define an ancestral centriolar inventory of 14 core proteins, Polo-like-kinase, and proteins associated with Bardet-Biedl syndrome (BBS) and Meckel-Gruber syndrome. We show that the BBSome is absent from organisms that produce cilia only for motility, predicting a dominant and ancient role for this complex in sensory function. We also show that the unusual centriole of Caenorhabditis elegans is highly divergent in both protein composition and sequence. Finally, we demonstrate a correlation between the presence of specific centriolar proteins and eye evolution. This correlation is used to predict proteins with functions in the development of ciliary, but not rhabdomeric, eyes.
Collapse
Affiliation(s)
- Matthew E. Hodges
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Nicole Scheumann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
22
|
Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 2009; 19:740-5. [PMID: 19896367 DOI: 10.1016/j.sbi.2009.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/04/2009] [Accepted: 10/08/2009] [Indexed: 11/20/2022]
Abstract
Recent advances in elucidating the structure of yeast Pol I and III are based on a combination of X-ray crystal analysis, electron microscopy and homology modelling. They allow a better comparison of the three eukaryotic nuclear RNA polymerases, underscoring the most obvious difference existing between the three enzymes, which lies in the existence of additional Pol-I-specific and Pol-III-specific subunits. Their location on the cognate RNA polymerases is now fairly well known, suggesting precise hypotheses as to their function in transcription during initiation, elongation, termination and/or reinitiation. Unexpectedly, even though Pol I and III, but not Pol II, have an intrinsic RNA cleavage activity, it was found that TFIIS Pol II cleavage stimulation factor also played a general role in Pol III transcription.
Collapse
|
23
|
Daniels JP, Kelly S, Wickstead B, Gull K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol Direct 2009; 4:24. [PMID: 19640276 PMCID: PMC2732611 DOI: 10.1186/1745-6150-4-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 07/29/2009] [Indexed: 11/12/2022] Open
Abstract
The transcription machineries of Archaea and eukaryotes are similar in many aspects, but little is understood about archaeal chromatin and its role in transcription. Here, we describe the identification in hyperthermophilic Crenarchaeota and a Korarchaeon of an orthologue of the eukaryotic transcription elongation factor Elf1, which has been shown to function in chromatin structure maintenance of actively transcribed templates. Our discovery has implications for the relationship of chromatin and transcription in Archaea and the evolution of these processes in eukaryotes.
Collapse
Affiliation(s)
- Jan-Peter Daniels
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Kelly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Centre for Mathematical Biology, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB , UK
- Oxford Centre for Interactive Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
24
|
Landeira D, Bart JM, Van Tyne D, Navarro M. Cohesin regulates VSG monoallelic expression in trypanosomes. J Cell Biol 2009; 186:243-54. [PMID: 19635842 PMCID: PMC2717648 DOI: 10.1083/jcb.200902119] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/25/2009] [Indexed: 11/22/2022] Open
Abstract
Antigenic variation allows Trypanosoma brucei to evade the host immune response by switching the expression of 1 out of approximately 15 telomeric variant surface glycoprotein (VSG) expression sites (ESs). VSG ES transcription is mediated by RNA polymerase I in a discrete nuclear site named the ES body (ESB). However, nothing is known about how the monoallelic VSG ES transcriptional state is maintained over generations. In this study, we show that during S and G2 phases and early mitosis, the active VSG ES locus remains associated with the single ESB and exhibits a delay in the separation of sister chromatids relative to control loci. This delay is dependent on the cohesin complex, as partial knockdown of cohesin subunits resulted in premature separation of sister chromatids of the active VSG ES. Cohesin depletion also prompted transcriptional switching from the active to previously inactive VSG ESs. Thus, in addition to maintaining sister chromatid cohesion during mitosis, the cohesin complex plays an essential role in the correct epigenetic inheritance of the active transcriptional VSG ES state.
Collapse
Affiliation(s)
- David Landeira
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Granada, Spain
| | | | | | | |
Collapse
|
25
|
Portman N, Lacomble S, Thomas B, McKean PG, Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 2009; 284:5610-9. [PMID: 19074134 PMCID: PMC2645819 DOI: 10.1074/jbc.m808859200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic flagella from organisms such as Trypanosoma brucei can be isolated and their protein components identified by mass spectrometry. Here we used a comparative approach utilizing two-dimensional difference gel electrophoresis and isobaric tags for relative and absolute quantitation to reveal protein components of flagellar structures via ablation by inducible RNA interference mutation. By this approach we identified 20 novel components of the paraflagellar rod (PFR). Using epitope tagging we validated a subset of these as being present within the PFR by immunofluorescence. Bioinformatic analysis of the PFR cohort reveals a likely calcium/calmodulin regulatory/signaling linkage between some components. We extended the RNA interference mutant/comparative proteomic analysis to individual novel components of our PFR proteome, showing that the approach has the power to reveal dependences between subgroups within the cohort.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatography, Liquid
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Flagella/genetics
- Flagella/metabolism
- Fluorescent Antibody Technique
- Proteomics
- Protozoan Proteins/antagonists & inhibitors
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Interference
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Peñate X, López-Farfán D, Landeira D, Wentland A, Vidal I, Navarro M. RNA pol II subunit RPB7 is required for RNA pol I-mediated transcription in Trypanosoma brucei. EMBO Rep 2009; 10:252-7. [PMID: 19165144 DOI: 10.1038/embor.2008.244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 01/11/2023] Open
Abstract
In the protozoan parasite Trypanosoma brucei, the two main surface glycoprotein genes are transcribed by RNA polymerase I (pol I) instead of RNA pol II, the polymerase committed to the production of mRNA in eukaryotes. This unusual feature might be accomplished by the recruitment of specific subunits or cofactors that allow pol I to transcribe protein-coding RNAs. Here, we report that transcription mediated by pol I requires TbRPB7, a dissociable subunit of the pol II complex. TbRPB7 was found to interact with two pol I-specific subunits, TbRPA1 and TbRPB6z. Pol I-specific transcription was affected on depletion of TbRPB7 in run-on assays, whereas recombinant TbRPB7 increased transcription driven by a pol I promoter. These results represent a unique example of a functional RNA polymerase chimaera consisting of a core pol I complex that recruits a specific pol II subunit.
Collapse
Affiliation(s)
- Xenia Peñate
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, CSIC (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Figueiredo LM, Janzen CJ, Cross GA. A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 2008; 6:e161. [PMID: 18597556 PMCID: PMC2443197 DOI: 10.1371/journal.pbio.0060161] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/23/2008] [Indexed: 11/18/2022] Open
Abstract
To evade the host immune system, several pathogens periodically change their cell-surface epitopes. In the African trypanosomes, antigenic variation is achieved by tightly regulating the expression of a multigene family encoding a large repertoire of variant surface glycoproteins (VSGs). Immune evasion relies on two important features: exposing a single type of VSG at the cell surface and periodically and very rapidly switching the expressed VSG. Transcriptional switching between resident telomeric VSG genes does not involve DNA rearrangements, and regulation is probably epigenetic. The histone methyltransferase DOT1B is a nonessential protein that trimethylates lysine 76 of histone H3 in Trypanosoma brucei. Here we report that transcriptionally silent telomeric VSGs become partially derepressed when DOT1B is deleted, whereas nontelomeric loci are unaffected. DOT1B also is involved in the kinetics of VSG switching: in ΔDOT1B cells, the transcriptional switch is so slow that cells expressing two VSGs persist for several weeks, indicating that monoallelic transcription is compromised. We conclude that DOT1B is required to maintain strict VSG silencing and to ensure rapid transcriptional VSG switching, demonstrating that epigenetics plays an important role in regulating antigenic variation in T. brucei. The surface of Trypanosoma brucei, a unicellular parasite that lives in the bloodstream of its mammalian host, is coated with glycoprotein (VSG) molecules. To evade elimination by the immune system, this parasite replaces its coat with one tailored from another glycoprotein variant. Even though there are hundreds of VSG genes in the genome, this process, called antigenic variation, works because all are silenced except for the one that encodes the current coat. In this work, we show that the chromatin-modifying enzyme DOT1B helps to epigenetically regulate the number of VSGs each parasite can have at a time at the surface and how fast each parasite can switch from one coat to another. In parasites lacking DOT1B, silent VSG genes become partially active and the switch from one VSG to another slows down, allowing two different VSGs to appear on the surface of an individual parasite at the same time. Our studies reveal the importance of epigenetics in regulating VSG genes and provide new insights toward the understanding of this unique survival device. Antigenic variation in Trypanosoma brucei relies on monoallelic expression of a multigene family. New evidence shows that a chromatin-modifying enzyme prevents simultaneous expression of different proteins at the parasite's surface.
Collapse
Affiliation(s)
- Luisa M Figueiredo
- Laboratory of Molecular Parasitology, the Rockefeller University, New York, New York, United States of America
| | | | - George A.M Cross
- Laboratory of Molecular Parasitology, the Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Gluenz E, Sharma R, Carrington M, Gull K. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol Microbiol 2008; 69:666-80. [PMID: 18554326 PMCID: PMC2610385 DOI: 10.1111/j.1365-2958.2008.06320.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
Abstract
In yeast and metazoa, structural maintenance of chromosome (SMC) complexes play key roles in chromosome segregation, architecture and DNA repair. The main function of the cohesin complex is to hold replicated sister chromatids together until segregation at anaphase, which is dependent on proteolytic cleavage of the cohesin subunit SCC1. Analysis of trypanosomatid genomes showed that the core cohesin and condensin complexes are conserved, but SMC5/6 is absent. To investigate the functional conservation of cohesin in eukaryotes distantly related to yeast and metazoa, we characterized the Trypanosoma brucei SCC1 orthologue. TbSCC1 is expressed prior to DNA synthesis at late G1, remains in the nucleus throughout S- and G2-phases of the cell cycle and disappears at anaphase. Depletion of SCC1 by RNAi or expression of a non-cleavable SCC1 resulted in karyokinesis failure. Using the dominant negative phenotype of non-cleavable SCC1 we investigated checkpoint regulation of cytokinesis in response to mitosis failure at anaphase. In the absence of chromosome segregation, procyclic trypanosomes progressed through cytokinesis to produce one nucleated and one anucleate cell (zoid). In contrast, cytokinesis was incomplete in bloodstream forms, where cleavage was initiated but cells failed to progress to abscission. Kinetoplast duplication was uninterrupted resulting in cells with multiple kinetoplasts and flagella.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
29
|
Uzureau P, Daniels JP, Walgraffe D, Wickstead B, Pays E, Gull K, Vanhamme L. Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol Microbiol 2008; 69:1121-36. [PMID: 18627464 PMCID: PMC2610381 DOI: 10.1111/j.1365-2958.2008.06348.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nuclear transcription of Trypanosoma brucei displays unusual features. Most protein-coding genes are organized in large directional gene clusters, which are transcribed polycistronically by RNA polymerase II (pol II) with subsequent processing to generate mature mRNA. Here, we describe the identification and characterization of two trypanosome homologues of transcription elongation factor TFIIS (TbTFIIS1 and TbTFIIS2-1). TFIIS has been shown to aid transcription elongation by relieving arrested pol II. Our phylogenetic analysis demonstrated the existence of four independent TFIIS expansions across eukaryotes. While TbTFIIS1 contains only the canonical domains II and III, the N-terminus of TbTFIIS2-1 contains a PWWP domain and a domain I. TbTFIIS1 and TbTFIIS2-1 are expressed in procyclic and bloodstream form cells and localize to the nucleus in similar, but distinct, punctate patterns throughout the cell cycle. Neither TFIIS protein was enriched in the major pol II sites of spliced-leader RNA transcription. Single RNA interference (RNAi)-mediated knock-down and knockout showed that neither protein is essential. Double knock-down, however, impaired growth. Repetitive failure to generate a double knockout of TbTFIIS1 and TbTFIIS2-1 strongly suggests synthetical lethality and thus an essential function shared by the two proteins in trypanosome growth.
Collapse
Affiliation(s)
- Pierrick Uzureau
- Laboratoire de Parasitologie Moléculaire, ULB IBMM, rue des Pr Jeneer et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Stephan A, Vaughan S, Shaw MK, Gull K, McKean PG. An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 2007; 8:1323-30. [PMID: 17645436 DOI: 10.1111/j.1600-0854.2007.00611.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Constructing a eukaryotic cilium/flagellum is a demanding task requiring the transport of proteins from their cytoplasmic synthesis site into a spatially and environmentally distinct cellular compartment. The clear potential hazard is that import of aberrant proteins could seriously disable cilia/flagella assembly or turnover processes. Here, we reveal that tubulin protein destined for incorporation into axonemal microtubules interacts with a tubulin cofactor C (TBCC) domain-containing protein that is specifically located at the mature basal body transitional fibres. RNA interference-mediated ablation of this protein results in axonemal microtubule defects but no effect on other microtubule populations within the cell. Bioinformatics analysis indicates that this protein belongs to a clade of flagellum-specific TBCC-like proteins that includes the human protein, XRP2, mutations which lead to certain forms of the hereditary eye disease retinitis pigmentosa. Taken with other observations regarding the role of transitional fibres in cilium/flagellum assembly, we suggest that a localized protein processing capacity embedded at transitional fibres ensures the 'quality' of tubulin imported into the cilium/flagellum, and further, that loss of a ciliary/flagellar quality control capability may underpin a number of human genetic disorders.
Collapse
Affiliation(s)
- Angela Stephan
- Biomedical Sciences Unit, Department of Biological Sciences, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
32
|
Nguyen TN, Schimanski B, Günzl A. Active RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription. Mol Cell Biol 2007; 27:6254-63. [PMID: 17606628 PMCID: PMC1952147 DOI: 10.1128/mcb.00382-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we have epitope tagged the specific subunit RPB6z and tandem affinity purified RNA polymerase I from crude extract. The purified enzyme was active in both a nonspecific and a promoter-dependent transcription assay and exhibited enriched protein bands with apparent sizes of 31, 29, and 27 kDa. p31 and its trypanosomatid orthologues were identified, but their amino acid sequences have no similarity to proteins of other eukaryotes, nor do they contain a conserved sequence motif. Nevertheless, p31 cosedimented with purified RNA polymerase I, and RNA interferance-mediated silencing of p31 was lethal, affecting the abundance of rRNA. Moreover, extract of p31-silenced cells exhibited a specific defect in transcription of class I templates, which was remedied by the addition of purified RNA polymerase I, and an anti-p31 serum completely blocked RNA polymerase I-mediated transcription. We therefore dubbed this novel functional component of T. brucei RNA polymerase I TbRPA31.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | |
Collapse
|
33
|
Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, Salje J, Marinsek N, Gull K, Wickstead B, Carrington M. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol 2007; 154:103-9. [PMID: 17512617 PMCID: PMC2705915 DOI: 10.1016/j.molbiopara.2007.03.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 11/23/2022]
Affiliation(s)
- Steven Kelly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jenny Reed
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Susanne Kramer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Louise Ellis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Jack Sunter
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Jeanne Salje
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nina Marinsek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|