1
|
Banerjee DS, Banerjee S. Design principles and feedback mechanisms in organelle size control. Curr Opin Cell Biol 2025; 95:102533. [PMID: 40403536 DOI: 10.1016/j.ceb.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/24/2025]
Abstract
Intracellular organelles are essential for cellular architecture and function, and their size regulation is critical for maintaining cellular homeostasis. Organelle size often scales with cell size, governed by mechanisms that integrate resource allocation, stochastic dynamics, and feedback controls. Here we review these underlying biophysical principles of organelle size control, including the limiting pool hypothesis, stochastic assembly processes, and feedback-driven growth dynamics. We discuss how negative feedback motifs stabilize size, while positive feedback can amplify growth and maintain size under specific conditions. Additionally, we discuss recent advances in modeling size control for organelles with nucleation and fission-fusion dynamics. By integrating experimental observations with theoretical insights, this review provides a conceptual understanding of the design principles governing organelle size regulation in dynamic cellular environments.
Collapse
|
2
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. Curr Biol 2025; 35:1601-1611.e5. [PMID: 40101718 PMCID: PMC11981834 DOI: 10.1016/j.cub.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allow us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell-cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Chacko LA, Nakaoka H, Morris R, Marshall W, Ananthanarayanan V. Mitochondrial function regulates cell growth kinetics to actively maintain mitochondrial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646474. [PMID: 40236014 PMCID: PMC11996537 DOI: 10.1101/2025.03.31.646474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Mitochondria are not produced de novo in newly divided daughter cells, but are inherited from the mother cell during mitosis. While mitochondrial homeostasis is crucial for living cells, the feedback responses that maintain mitochondrial volume across generations of dividing cells remain elusive. Here, using a microfluidic yeast 'mother machine', we tracked several generations of fission yeast cells and observed that cell size and mitochondrial volume grew exponentially during the cell cycle. We discovered that while mitochondrial homeostasis relied on the 'sizer' mechanism of cell size maintenance, mitochondrial function was a critical determinant of the timing of cell division: cells born with lower than average amounts of mitochondria grew slower and thus added more mitochondria before they divided. Thus, mitochondrial addition during the cell cycle was tailored to the volume of mitochondria at birth, such that all cells ultimately contained the same mitochondrial volume at cell division. Quantitative modelling and experiments with mitochondrial DNA-deficient rho0 cells additionally revealed that mitochondrial function was essential for driving the exponential growth of cells. Taken together, we demonstrate a central role for mitochondrial activity in dictating cellular growth rates and ensuring mitochondrial volume homeostasis.
Collapse
|
4
|
Goswami P, Ghimire A, Coffin C, Cheng J, Coulombe-Huntington J, Ghazal G, Thattikota Y, Guerra MF, Tyers M, Tollis S, Royer CA. Swi4-dependent SWI4 transcription couples cell size to cell cycle commitment. iScience 2025; 28:112027. [PMID: 40124484 PMCID: PMC11930368 DOI: 10.1016/j.isci.2025.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Growth-dependent accumulation of the G1/S transcription factor SBF, composed of Swi4 and Swi6, occurs in G1 phase in budding yeast and is limiting for commitment to division, termed Start. Here, we investigate the mechanisms for the size dependence of Swi4 accumulation using different genetic contexts and quantitative scanning number and brightness microscopy. Mutation of SBF binding sites in the SWI4 promoter or disruption of SBF activation resulted in ∼33-50% decrease in Swi4 accumulation rate and concordantly increased cell size at Start. Ectopic inducible expression of Swi4 in G1 phase cells increased production of Swi4 from the endogenous promoter, upregulated transcription of the G1/S regulon, and accelerated Start. A threshold model in which Swi4 titrates SBF binding sites in G1/S promoters predicted the effects of nutrients, ploidy, and G1/S regulatory mutations on cell size. These results exemplify how transcription factor auto-production can refine a cell state transition.
Collapse
Affiliation(s)
- Pooja Goswami
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Abhishek Ghimire
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carleton Coffin
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jing Cheng
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Ghada Ghazal
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Yogitha Thattikota
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - María Florencia Guerra
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mike Tyers
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvain Tollis
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T1J4, Canada
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
- Centre de Biochimie Structurale INSERM U1054, University of University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
5
|
Mobaraki M, Deng C, Zheng J, Li H. Yeast aging from a dynamic systems perspective: Analysis of single cell trajectories reveals significant interplay between nuclear size scaling, proteasome dynamics, and mitochondrial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642143. [PMID: 40161634 PMCID: PMC11952390 DOI: 10.1101/2025.03.11.642143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Yeast replicative aging is cell autonomous and thus a good model for mechanistic study from a dynamic systems perspective. Utilizing an engineered strain of yeast with a switchable genetic program to arrest daughter cells (without affecting mother cell divisions) and a high throughput microfluidic device, we systematically analyze the dynamic trajectories of thousands of single yeast mother cells throughout their lifespan, using fluorescent reporters that cover a range of biological processes, including some major aging hallmarks. We found that the markers of proteostasis stand out as most predictive of the lifespan of individual cells. In particular, nuclear proteasome concentration at middle age is a good predictor. We found that cell size (measured by area) grows linearly with time, and that nuclear size grows in proportion to maintain isometric scaling in young cells. As the cells become older, their nuclear size increases faster than linear and isometric size scaling breaks down. We observed that proteasome concentration in the nucleus exhibits dynamics very different from that in cytoplasm, with much more rapid decrease during aging; such dynamic behavior can be accounted for by the change of nuclear size in a simple mathematical model of transport. We hypothesize that the gradual increase of cell size and the associated nuclear size increase lead to the dilution of important nuclear factors (such as proteasome) that drives aging. We also show that perturbing proteasome changes mitochondria morphology and function, but not vice versa, potentially placing the change of proteosome upstream of the change of mitochondrial phenotypes. Our study produced large scale single cell dynamic data that can serve as a valuable resource for the aging research community to analyze the dynamics of other markers and potential causal relations between them. It is also a useful resource for building and testing physics/AI based models that identify early dynamics events predictive of lifespan and can be targets for longevity interventions.
Collapse
Affiliation(s)
- Michael Mobaraki
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
McCusker DR, Lubensky DK. Physical limits on chemical sensing in bounded domains. Phys Rev E 2025; 111:034404. [PMID: 40247576 DOI: 10.1103/physreve.111.034404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
Cells respond to chemical signals, and the precision with which they can sense these signals is fundamentally limited by the stochastic nature of diffusion and ligand binding. Berg and Purcell famously investigated how well a small sensor in an infinite ligand bath can determine the ligand concentration, and a number of subsequent analyses have refined and built upon their classical estimates. Not all concentration-sensing problems, however, occur in such an infinite geometry. At different scales, subcellular sensors and cells in tissues are both often confronted with signals whose diffusion is affected by confining boundaries. It is thus valuable to understand how basic limits on chemosensation depend on the sensor's size and on its position in the domain in which ligand diffuses. Here we compute how sensor size and proximity to reflecting boundaries affect the diffusion-limited precision of chemosensation for various geometries in one and three dimensions. We derive analytical expressions for the sensing limit in these geometries. Among our conclusions is the surprising result that, in certain circumstances, smaller sensors can be more effective than larger sensors. This effect arises from a trade-off between spatial averaging and time averaging that we analyze in detail. We also find that proximity to confining boundaries can degrade a sensor's precision significantly compared to the precision of the same sensor far from any boundaries.
Collapse
Affiliation(s)
- Daniel R McCusker
- University of Michigan, Applied Physics Graduate Program, Ann Arbor, Michigan 48109, USA
| | - David K Lubensky
- University of Michigan, Department of Physics, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.02.601447. [PMID: 39005340 PMCID: PMC11244959 DOI: 10.1101/2024.07.02.601447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N. Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M. Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Wu YW, Deng ZQ, Rong Y, Bu GW, Wu YK, Wu X, Cheng H, Fan HY. RNA surveillance by the RNA helicase MTR4 determines volume of mouse oocytes. Dev Cell 2025; 60:85-100.e4. [PMID: 39378876 DOI: 10.1016/j.devcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
Collapse
Affiliation(s)
- Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zuo-Qi Deng
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guo-Wei Bu
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
9
|
Chen J, Mirvis M, Ekman A, Vanslembrouck B, Le Gros M, Larabell C, Marshall WF. Automated segmentation of soft X-ray tomography: native cellular structure with sub-micron resolution at high throughput for whole-cell quantitative imaging in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621371. [PMID: 39554159 PMCID: PMC11565976 DOI: 10.1101/2024.10.31.621371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at sub-optical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based auto-segmentation pipeline to segment and label cellular structures in hundreds of cells across three Saccharomyces cerevisiae strains. This task-based pipeline employs manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the 3D whole-cell morphometric characteristics of wild-type, VPH1-GFP, and vac14 strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts. Significance Statement Soft X-ray tomography offers many powerful features for whole-cell multi-organelle imaging, but, like other high resolution volumetric imaging modalities, is typically limited by low throughput due to laborious segmentation.Auto-segmentation for soft X-ray tomography overcomes this limitation, enabling statistical 3D morphometric analysis of multiple organelles in whole cells across cell populations. The combination of high 3D resolution of SXT data with statistically useful throughput represents an avenue for more thorough characterizations of cells in toto and opens new mesoscale biological questions and statistical whole-cell modeling of organelle and cell morphology, interactions, and responses to perturbations.
Collapse
|
10
|
Wirshing AC, Petrucco CA, Lew DJ. Chemical transformation of the multibudding yeast, Aureobasidium pullulans. J Cell Biol 2024; 223:e202402114. [PMID: 38935076 PMCID: PMC11211067 DOI: 10.1083/jcb.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia A. Petrucco
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J. Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
12
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Ravi J, Samart K, Zwolak J. Modeling the START transition in the budding yeast cell cycle. PLoS Comput Biol 2024; 20:e1012048. [PMID: 39093881 PMCID: PMC11324117 DOI: 10.1371/journal.pcbi.1012048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/14/2024] [Accepted: 04/02/2024] [Indexed: 08/04/2024] Open
Abstract
Budding yeast, Saccharomyces cerevisiae, is widely used as a model organism to study the genetics underlying eukaryotic cellular processes and growth critical to cancer development, such as cell division and cell cycle progression. The budding yeast cell cycle is also one of the best-studied dynamical systems owing to its thoroughly resolved genetics. However, the dynamics underlying the crucial cell cycle decision point called the START transition, at which the cell commits to a new round of DNA replication and cell division, are under-studied. The START machinery involves a central cyclin-dependent kinase; cyclins responsible for starting the transition, bud formation, and initiating DNA synthesis; and their transcriptional regulators. However, evidence has shown that the mechanism is more complicated than a simple irreversible transition switch. Activating a key transcription regulator SBF requires the phosphorylation of its inhibitor, Whi5, or an SBF/MBF monomeric component, Swi6, but not necessarily both. Also, the timing and mechanism of the inhibitor Whi5's nuclear export, while important, are not critical for the timing and execution of START. Therefore, there is a need for a consolidated model for the budding yeast START transition, reconciling regulatory and spatial dynamics. We built a detailed mathematical model (START-BYCC) for the START transition in the budding yeast cell cycle based on established molecular interactions and experimental phenotypes. START-BYCC recapitulates the underlying dynamics and correctly emulates key phenotypic traits of ~150 known START mutants, including regulation of size control, localization of inhibitor/transcription factor complexes, and the nutritional effects on size control. Such a detailed mechanistic understanding of the underlying dynamics gets us closer towards deconvoluting the aberrant cellular development in cancer.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kewalin Samart
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Computational Bioscience program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jason Zwolak
- InSilica Labs, Asheville, North Carolina, United States of America
| |
Collapse
|
14
|
Xie J, Huck WTS, Bao M. Unveiling the Intricate Connection: Cell Volume as a Key Regulator of Mechanotransduction. Annu Rev Biophys 2024; 53:299-317. [PMID: 38424091 DOI: 10.1146/annurev-biophys-030822-035656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The volumes of living cells undergo dynamic changes to maintain the cells' structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands;
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China;
| |
Collapse
|
15
|
Chen F, Li X, Guo W, Wang Y, Guo M, Shum HC. Size Scaling of Condensates in Multicomponent Phase Separation. J Am Chem Soc 2024; 146:16000-16009. [PMID: 38809420 DOI: 10.1021/jacs.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Constant proportionalities between cells and their intracellular organelles have been widely observed in various types of cells, known as intracellular size scaling. However, the mechanism underlying the size scaling and its modulation by environmental factors in multicomponent systems remain poorly understood. Here, we study the size scaling of membrane-less condensates using microdroplet-encapsulated minimalistic condensates formed by droplet microfluidics and mean-field theory. We demonstrate that the size scaling of condensates is an inherent characteristic of liquid-liquid phase separation. This concept is supported by experiments showing the occurrence of size scaling phenomena in various condensate systems and a generic lever rule acquired from mean-field theory. Moreover, it is found that the condensate-to-microdroplet scaling ratio can be affected by the solute and salt concentrations, with good agreement between experiments and predictions by theory. Notably, we identify a noise buffering mechanism whereby condensates composed of large macromolecules effectively maintain constant volumes and counteract concentration fluctuations of small molecules. This mechanism is achieved through the dynamic rearrangement of small molecules in and out of membrane-free interfaces. Our work provides crucial insights into understanding mechanistic principles that govern the size of cells and intracellular organelles as well as associated biological functions.
Collapse
Affiliation(s)
- Feipeng Chen
- Department of Mechanical Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong (SAR) 999077, China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR) 999077, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Guo
- Department of Mechanical Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong (SAR) 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR) 999077, China
| | - Yuchao Wang
- Department of Mechanical Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong (SAR) 999077, China
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ho Cheung Shum
- Department of Mechanical Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong (SAR) 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR) 999077, China
| |
Collapse
|
16
|
Manohar S, Neurohr GE. Too big not to fail: emerging evidence for size-induced senescence. FEBS J 2024; 291:2291-2305. [PMID: 37986656 DOI: 10.1111/febs.16983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Cellular senescence refers to a permanent and stable state of cell cycle exit. This process plays an important role in many cellular functions, including tumor suppression. It was first noted that senescence is associated with increased cell size in the early 1960s; however, how this contributes to permanent cell cycle exit was poorly understood until recently. In this review, we discuss new findings that identify increased cell size as not only a consequence but also a cause of permanent cell cycle exit. We highlight recent insights into how increased cell size alters normal cellular physiology and creates homeostatic imbalances that contribute to senescence induction. Finally, we focus on the potential clinical implications of these findings in the context of cell cycle arrest-causing cancer therapeutics and speculate on how tumor cell size changes may impact outcomes in patients treated with these drugs.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| | - Gabriel E Neurohr
- Department of Biology, Institute for Biochemistry, ETH Zürich, Switzerland
| |
Collapse
|
17
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Chatterjee S, Ganguly A, Bhattacharyya D. Reprogramming nucleolar size by genetic perturbation of the extranuclear Rab GTPases Ypt6 and Ypt32. FEBS Lett 2024; 598:283-301. [PMID: 37994551 DOI: 10.1002/1873-3468.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
Reprogramming organelle size has been proposed as a potential therapeutic approach. However, there have been few reports of nucleolar size reprogramming. We addressed this question in Saccharomyces cerevisiae by studying mutants having opposite effects on the nucleolar size. Mutations in genes involved in nuclear functions (KAR3, CIN8, and PRP45) led to enlarged nuclei/nucleoli, whereas mutations in secretory pathway family genes, namely the Rab-GTPases YPT6 and YPT32, reduced nucleolar size. When combined with mutations leading to enlarged nuclei/nucleoli, the YPT6 or YPT32 mutants can effectively reprogram the nuclear/nucleolar size almost back to normal. Our results further indicate that null mutation of YPT6 causes secretory stress that indirectly influences nuclear localization of Maf1, the negative regulator of RNA Polymerase III, which might reduce the nucleolar size by inhibiting nucleolar transcript enrichment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abira Ganguly
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dibyendu Bhattacharyya
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Hirota S, Nakayama Y, Ekino K, Harashima S. Highly genomic instability of super-polyploid strains of Saccharomyces cerevisiae. J Biosci Bioeng 2024; 137:77-84. [PMID: 38135639 DOI: 10.1016/j.jbiosc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Polyploid (2n, 3n, and 4n) genomes are known to be unstable in Saccharomyces cerevisiae. Here, we attempted construction of super-polypoid strains (defined as having higher ploidy than tetraploidy) up to 32n by using the matα2-PBT method that we newly developed and investigated their genomic stability. It is known that cell size increases as ploidy increases up to tetraploid. However, unexpectedly, there was no change in the average cell size of the super-polyploid strains compared with tetraploid or pentaploid strains. Smaller sized cells were observed at a rather higher frequency in super-polyploid cell populations compared with those of diploid, triploid and tetraploid strains, suggesting that ploidy reduction in super-polyploid strains occurs quickly at a relatively high frequency. Assuming that ploidy reduction occurs through chromosome loss (or non-disjunction) during mitotic growth, we also estimated the frequency of chromosome loss (or non-disjunction) in various polyploid strains. Our results indicated that the frequency of chromosome loss (or non-disjunction) is drastically increased (10-2-10-3/cells plated) in super-polyploid strains compared with that (10-4-10-5/cells plated) of conventional polyploid (2n-4n) strains. This is the first attempt of construction of super-polyploid strains and investigation of their genomic stability in S. cerevisiae. We believe that the matα2-PBT method will be an invaluable tool for investigating a variety of interesting issues regarding polyploidy and their genomic characterization in eukaryotes.
Collapse
Affiliation(s)
- Saeka Hirota
- Department of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto-shi, Kumamoto 860-0082, Japan
| | - Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago-shi, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | - Keisuke Ekino
- Department of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto-shi, Kumamoto 860-0082, Japan
| | - Satoshi Harashima
- Department of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto-shi, Kumamoto 860-0082, Japan.
| |
Collapse
|
20
|
Abramczyk AR, Sung Y. Deep-learning-assisted snapshot optical tomography for microscopic volume prediction: a simulation study. OPTICS LETTERS 2024; 49:302-305. [PMID: 38194553 PMCID: PMC10800007 DOI: 10.1364/ol.511350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
In this simulation study, we demonstrate fast-yet-accurate volume measurement of microscopic objects by combining snapshot optical tomography and deep learning. Snapshot optical tomography simultaneously collects a multitude of projection images and thus can perform 3D imaging in a single snapshot. However, as with other wide-field microscopy techniques, it suffers from the missing-cone problem, which can seriously degrade the quality of 3D reconstruction. We use deep learning to generate a volume prediction from 2D projection images bypassing the 3D reconstruction.
Collapse
Affiliation(s)
- Andrew Richard Abramczyk
- College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee WI, 53211
| | - Yongjin Sung
- College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee WI, 53211
| |
Collapse
|
21
|
Chang FP, Hsu TR, Hung SC, Sung SH, Yu WC, Niu DM, Najafian B. Cardiomyocyte Globotriaosylceramide Accumulation in Adult Male Patients with Fabry Disease and IVS4 + 919G>A GLA Mutation is Progressive with Age and Correlates with Left Ventricular Hypertrophy and Reduced Left Ventricular Ejection Fraction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.09.23298489. [PMID: 38168318 PMCID: PMC10760261 DOI: 10.1101/2023.12.09.23298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background While cardiovascular complications are the most common cause of mortality in Fabry disease, the relationship between globotriaosylceramide (GL-3) accumulation, the hallmark of Fabry cardiomyopathy, and cardiac hypertrophy has not been fully elucidated. Methods We developed unbiased stereology protocols to quantify the ultrastrcture of Fabry cardiomyopathy. Endomyocardial biopsies from 10 adult male enzyme replacement therapy naïve Fabry patients with IVS4 + 919G>A GLA mutation were studied. The findings were correlated with cardiac MRI and clinical data. Results Ultrastructural parameters showed significant relationships with key imaging and clinical and functional variables. Average cardiomyocyte volume and GL-3 volume per cardiomyocyte were progressively increased with age. Eighty-four percent of left ventricular mass index (LVMI) variability was explained by cardiomyocyte nuclear volume, age and plasma globotriaosylsphingosine with cardiomyocyte nuclear volume being the only independent predictor of LVMI. Septal thickness was directly and left ventricular ejection fraction (LVEF) was inversely correlated with cardiomyocyte GL-3 accumulation. Sixty-five percent of left ventricular ejection fraction (LVEF) variability was explained by cardiomyocyte GL3 volume, serum α-galactosidase-A activity and age with cardiomyocyte GL3 volume being the only independent predictor of LVEF. Residual α-galactosidase-A activity was directly correlated with myocardial microvasculature density. Conclusions The unbiased stereological methods introduced in this study unraveled novel relationships between cardiomyocyte structure and important imaging and clinical parameters. These novel tools can help better understand Fabry cardiomyopathy pathophysiology.
Collapse
Affiliation(s)
- Fu-Pang Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Rong Hsu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Che Hung
- Division of Neuroradiology, Department of Radiology, University of North Carolina Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina Chapel Hill, North Carolina, USA
| | - Shih-Hsien Sung
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chung Yu
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Behzad Najafian
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, USA
| |
Collapse
|
22
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023; 14:2178184. [PMID: 36814098 PMCID: PMC9980700 DOI: 10.1080/19491034.2023.2178184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Filomena Broeskamp
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Dimitra Panagaki
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Sean D. Speese
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR, 97201, USA
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Johanna L. Höög
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| |
Collapse
|
23
|
Hara Y. Physical forces modulate interphase nuclear size. Curr Opin Cell Biol 2023; 85:102253. [PMID: 37801797 DOI: 10.1016/j.ceb.2023.102253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
The eukaryotic nucleus exhibits remarkable plasticity in size, adjusting dynamically to changes in cellular conditions such as during development and differentiation, and across species. Traditionally, the supply of structural constituents to the nuclear envelope has been proposed as the principal determinant of nuclear size. However, recent experimental and theoretical analyses have provided an alternative perspective, which emphasizes the crucial role of physical forces such as osmotic pressure and chromatin repulsion forces in regulating nuclear size. These forces can be modulated by the molecular profiles that traverse the nuclear envelope and assemble in the macromolecular complex. This leads to a new paradigm wherein multiple nuclear macromolecules that are not limited to only the structural constituents of the nuclear envelope, are involved in the control of nuclear size and related functions.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan.
| |
Collapse
|
24
|
Antao NV, Lam C, Davydov A, Riggi M, Sall J, Petzold C, Liang FX, Iwasa JH, Ekiert DC, Bhabha G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis. Nat Commun 2023; 14:7662. [PMID: 37996434 PMCID: PMC10667486 DOI: 10.1038/s41467-023-43215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Microsporidia are an early-diverging group of fungal pathogens with a wide host range. Several microsporidian species cause opportunistic infections in humans that can be fatal. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on host metabolites for successful replication and development. Our knowledge of microsporidian intracellular development remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has relied on 2D TEM images and light microscopy. Here, we use serial block-face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting species, Encephalitozoon intestinalis, within host cells. We track E. intestinalis development through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in developing spores. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Our data provide insights into parasite development, polar tube assembly, and microsporidia-induced host mitochondria remodeling.
Collapse
Affiliation(s)
- Noelle V Antao
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Cherry Lam
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ari Davydov
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Joseph Sall
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Christopher Petzold
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Swaffer MP, Marinov GK, Zheng H, Fuentes Valenzuela L, Tsui CY, Jones AW, Greenwood J, Kundaje A, Greenleaf WJ, Reyes-Lamothe R, Skotheim JM. RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size. Cell 2023; 186:5254-5268.e26. [PMID: 37944513 DOI: 10.1016/j.cell.2023.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.
Collapse
Affiliation(s)
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Huan Zheng
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | | | - Crystal Yee Tsui
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Ranjan A, Biswas S, Mallick BN. Rapid eye movement sleep loss associated cytomorphometric changes and neurodegeneration. Sleep Med 2023; 110:25-34. [PMID: 37524037 DOI: 10.1016/j.sleep.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Rapid eye movement sleep (REMS) is essential for leading normal healthy living at least in higher-order mammals, including humans. In this review, we briefly survey the available literature for evidence linking cytomorphometric changes in the brain due to loss of REMS. As a mechanism of action, we add evidence that REMS loss elevates noradrenaline (NA) levels in the brain, which affects neuronal cytomorphology. These changes may be a compensatory mechanism as the changes return to normal after the subjects recover from the loss of REMS or if during REMS deprivation, the subjects are treated with NA-adrenoceptor antagonist prazosin (PRZ). We had proposed earlier that one of the fundamental functions of REMS is to maintain the level of NA in the brain. We elaborate on this idea to propose that if REMS loss continues without recovery, the sustained level of NA breaks down neurophysiologically active compensatory mechanism/s starting with changes in the neuronal cytomorphology, followed by their degeneration, leading to acute and chronic pathological conditions. Identification of neuronal cytomorphological changes could prove to be of significance for predicting future neuronal (brain) damage as well as an indicator for REMS health. Although current brain imaging techniques may not enable us to visualize changes in neuronal cytomorphology, given the rapid technological progress including use of artificial intelligence, we are optimistic that it may be a reality soon. Finally, we propose that maintenance of optimum REMS must be considered a criterion for leading a healthy life.
Collapse
Affiliation(s)
- Amit Ranjan
- Department of Zoology, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India.
| | - Sudipta Biswas
- Math, Science, Engineering Department, South Mountain Community College, 7050 S 24th St, Phoenix, AZ, 85042, USA
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University Campus, Sector 125, Gautam Budh Nagar, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
28
|
Van den Eeckhoudt R, Christiaens AS, Ceyssens F, Vangalis V, Verstrepen KJ, Boon N, Tavernier F, Kraft M, Taurino I. Full-electric microfluidic platform to capture, analyze and selectively release single cells. LAB ON A CHIP 2023; 23:4276-4286. [PMID: 37668159 DOI: 10.1039/d3lc00645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Current single-cell technologies require large and expensive equipment, limiting their use to specialized labs. In this paper, we present for the first time a microfluidic device which demonstrates a combined method for full-electric cell capturing, analyzing, and selectively releasing with single-cell resolution. All functionalities are experimentally demonstrated on Saccharomyces cerevisiae. Our microfluidic platform consists of traps centered around a pair of individually accessible coplanar electrodes, positioned under a microfluidic channel. Using this device, we validate our novel Two-Voltage method for trapping single cells by positive dielectrophoresis (pDEP). Cells are attracted to the trap when a high voltage (VH) is applied. A low voltage (VL) holds the already trapped cell in place without attracting additional cells, allowing full control over the number of trapped cells. After trapping, the cells are analyzed by broadband electrochemical impedance spectroscopy. These measurements allow the detection of single cells and the extraction of cell parameters. Additionally, these measurements show a strong correlation between average phase change and cell size, enabling the use of our system for size measurements in biological applications. Finally, our device allows selectively releasing trapped cells by turning off the pDEP signal in their trap. The experimental results show the techniques potential as a full-electric single-cell analysis tool with potential for miniaturization and automation which opens new avenues towards small-scale, high throughput single-cell analysis and sorting lab-on-CMOS devices.
Collapse
Affiliation(s)
- Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
| | - An-Sofie Christiaens
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Frederik Ceyssens
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Vasileios Vangalis
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Wang M, Li J, Wang Y, Fu H, Qiu H, Li Y, Li M, Lu Y, Fu YV. Single-molecule study reveals Hmo1, not Hho1, promotes chromatin assembly in budding yeast. mBio 2023; 14:e0099323. [PMID: 37432033 PMCID: PMC10470511 DOI: 10.1128/mbio.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
Linker histone H1 plays a crucial role in various biological processes, including nucleosome stabilization, high-order chromatin structure organization, gene expression, and epigenetic regulation in eukaryotic cells. Unlike higher eukaryotes, little about the linker histone in Saccharomyces cerevisiae is known. Hho1 and Hmo1 are two long-standing controversial histone H1 candidates in budding yeast. In this study, we directly observed at the single-molecule level that Hmo1, but not Hho1, is involved in chromatin assembly in the yeast nucleoplasmic extracts (YNPE), which can replicate the physiological condition of the yeast nucleus. The presence of Hmo1 facilitates the assembly of nucleosomes on DNA in YNPE, as revealed by single-molecule force spectroscopy. Further single-molecule analysis showed that the lysine-rich C-terminal domain (CTD) of Hmo1 is essential for the function of chromatin compaction, while the second globular domain at the C-terminus of Hho1 impairs its ability. In addition, Hmo1, but not Hho1, forms condensates with double-stranded DNA via reversible phase separation. The phosphorylation fluctuation of Hmo1 coincides with metazoan H1 during the cell cycle. Our data suggest that Hmo1, but not Hho1, possesses some functionality similar to that of linker histone in Saccharomyces cerevisiae, even though some properties of Hmo1 differ from those of a canonical linker histone H1. Our study provides clues for the linker histone H1 in budding yeast and provides insights into the evolution and diversity of histone H1 across eukaryotes. IMPORTANCE There has been a long-standing debate regarding the identity of linker histone H1 in budding yeast. To address this issue, we utilized YNPE, which accurately replicate the physiological conditions in yeast nuclei, in combination with total internal reflection fluorescence microscopy and magnetic tweezers. Our findings demonstrated that Hmo1, rather than Hho1, is responsible for chromatin assembly in budding yeast. Additionally, we found that Hmo1 shares certain characteristics with histone H1, including phase separation and phosphorylation fluctuations throughout the cell cycle. Furthermore, we discovered that the lysine-rich domain of Hho1 is buried by its second globular domain at the C-terminus, resulting in the loss of function that is similar to histone H1. Our study provides compelling evidence to suggest that Hmo1 shares linker histone H1 function in budding yeast and contributes to our understanding of the evolution of linker histone H1 across eukaryotes.
Collapse
Affiliation(s)
- Mengxue Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Haoning Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Das S, Singh A, Shah P. Evaluating single-cell variability in proteasomal decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554358. [PMID: 37662347 PMCID: PMC10473619 DOI: 10.1101/2023.08.22.554358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gene expression is a stochastic process that leads to variability in mRNA and protein abundances even within an isogenic population of cells grown in the same environment. This variation, often called gene-expression noise, has typically been attributed to transcriptional and translational processes while ignoring the contributions of protein decay variability across cells. Here we estimate the single-cell protein decay rates of two degron GFPs in Saccharomyces cerevisiae using time-lapse microscopy. We find substantial cell-to-cell variability in the decay rates of the degron GFPs. We evaluate cellular features that explain the variability in the proteasomal decay and find that the amount of 20s catalytic beta subunit of the proteasome marginally explains the observed variability in the degron GFP half-lives. We propose alternate hypotheses that might explain the observed variability in the decay of the two degron GFPs. Overall, our study highlights the importance of studying the kinetics of the decay process at single-cell resolution and that decay rates vary at the single-cell level, and that the decay process is stochastic. A complex model of decay dynamics must be included when modeling stochastic gene expression to estimate gene expression noise.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Delaware
| | | |
Collapse
|
31
|
Ashraf HM, Fernandez B, Spencer SL. The intensities of canonical senescence biomarkers integrate the duration of cell-cycle withdrawal. Nat Commun 2023; 14:4527. [PMID: 37500655 PMCID: PMC10374620 DOI: 10.1038/s41467-023-40132-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Senescence, a state of irreversible cell-cycle withdrawal, is difficult to distinguish from quiescence, a state of reversible cell-cycle withdrawal. This difficulty arises because quiescent and senescent cells are defined by overlapping biomarkers, raising the question of whether these states are truly distinct. To address this, we use single-cell time-lapse imaging to distinguish slow-cycling cells that spend long periods in quiescence from cells that never cycle after recovery from senescence-inducing treatments, followed by staining for various senescence biomarkers. We find that the staining intensity of multiple senescence biomarkers is graded rather than binary and reflects the duration of cell-cycle withdrawal, rather than senescence per se. Together, our data show that quiescent and apparent senescent cells are nearly molecularly indistinguishable from each other at a snapshot in time. This suggests that cell-cycle withdrawal itself is graded rather than binary, where the intensities of senescence biomarkers integrate the duration of past cell-cycle withdrawal.
Collapse
Affiliation(s)
- Humza M Ashraf
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Brianna Fernandez
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA.
| |
Collapse
|
32
|
Kaverina N, Schweickart RA, Chan GC, Maggiore JC, Eng DG, Zeng Y, McKinzie SR, Perry HS, Ali A, O’Connor C, Pereira BMV, Theberge AB, Vaughan JC, Loretz CJ, Chang A, Hukriede NA, Bitzer M, Pippin JW, Wessely O, Shankland SJ. Inhibiting NLRP3 signaling in aging podocytes improves their life- and health-span. Aging (Albany NY) 2023; 15:6658-6689. [PMID: 37487005 PMCID: PMC10415579 DOI: 10.18632/aging.204897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1β IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.
Collapse
Affiliation(s)
- Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - R. Allen Schweickart
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Gek Cher Chan
- Department of Medicine, Division of Nephrology, National University Hospital, Singapore
| | - Joseph C. Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Diana G. Eng
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Sierra R. McKinzie
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Adilijiang Ali
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | | | | | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA
| | - Carol J. Loretz
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Antao NV, Lam C, Davydov A, Riggi M, Sall J, Petzold C, Liang FX, Iwasa J, Ekiert DC, Bhabha G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen E. intestinalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547383. [PMID: 37425741 PMCID: PMC10327200 DOI: 10.1101/2023.07.02.547383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Microsporidia are an early-diverging group of fungal pathogens that infect a wide range of hosts. Several microsporidian species infect humans, and infections can lead to fatal disease in immunocompromised individuals. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on metabolites from their hosts for successful replication and development. Our knowledge of how microsporidian parasites develop inside the host remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has thus far relied largely on 2D TEM images and light microscopy. Here, we use serial block face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting microsporidian, Encephalitozoon intestinalis , within host cells. We track the development of E. intestinalis through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in each developing spore. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Together, our data provide insights into parasite development, polar tube assembly, and microsporidia-induced mitochondrial remodeling in the host cell.
Collapse
|
34
|
Ji X, Lin J. Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis. PLoS Comput Biol 2023; 19:e1011336. [PMID: 37506170 PMCID: PMC10411824 DOI: 10.1371/journal.pcbi.1011336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Accurate timing of division and size homeostasis is crucial for cells. A potential mechanism for cells to decide the timing of division is the differential scaling of regulatory protein copy numbers with cell size. However, it remains unclear whether such a mechanism can lead to robust growth and division, and how the scaling behaviors of regulatory proteins influence the cell size distribution. Here we study a mathematical model combining gene expression and cell growth, in which the cell-cycle activators scale superlinearly with cell size while the inhibitors scale sublinearly. The cell divides once the ratio of their concentrations reaches a threshold value. We find that the cell can robustly grow and divide within a finite range of the threshold value with the cell size proportional to the ploidy. In a stochastic version of the model, the cell size at division is uncorrelated with that at birth. Also, the more differential the cell-size scaling of the cell-cycle regulators is, the narrower the cell-size distribution is. Intriguingly, our model with multiple regulators rationalizes the observation that after the deletion of a single regulator, the coefficient of variation of cell size remains roughly the same though the average cell size changes significantly. Our work reveals that the differential scaling of cell-cycle regulators provides a robust mechanism of cell size control.
Collapse
Affiliation(s)
- Xiangrui Ji
- Yuanpei College, Peking University, Beijing, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
35
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
36
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Fung HF, Bergmann DC. Function follows form: How cell size is harnessed for developmental decisions. Eur J Cell Biol 2023; 102:151312. [PMID: 36989838 DOI: 10.1016/j.ejcb.2023.151312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cell size has profound effects on biological function, influencing a wide range of processes, including biosynthetic capacity, metabolism, and nutrient uptake. As a result, size is typically maintained within a narrow, population-specific range through size control mechanisms, which are an active area of study. While the physiological consequences of cell size are relatively well-characterized, less is known about its developmental consequences, and specifically its effects on developmental transitions. In this review, we compare systems where cell size is linked to developmental transitions, paying particular attention to examples from plants. We conclude by proposing that size can offer a simple readout of complex inputs, enabling flexible decisions during plant development.
Collapse
|
38
|
Nunley H, Shao B, Grover P, Singh J, Joyce B, Kim-Yip R, Kohrman A, Watters A, Gal Z, Kickuth A, Chalifoux M, Shvartsman S, Posfai E, Brown LM. A novel ground truth dataset enables robust 3D nuclear instance segmentation in early mouse embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532646. [PMID: 36993260 PMCID: PMC10055179 DOI: 10.1101/2023.03.14.532646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For investigations into fate specification and cell rearrangements in live images of preimplantation embryos, automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of segmentation methods is limited by the images' low signal-to-noise ratio and high voxel anisotropy and the nuclei's dense packing and variable shapes. Supervised machine learning approaches have the potential to radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. H2B-miRFP720 is the longest wavelength nuclear reporter in mice and can be imaged simultaneously with other reporters with minimal overlap. We then generate a dataset, which we call BlastoSPIM, of 3D microscopy images of H2B-miRFP720-expressing embryos with ground truth for nuclear instance segmentation. Using BlastoSPIM, we benchmark the performance of five convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method across preimplantation development. Stardist-3D, trained on BlastoSPIM, performs robustly up to the end of preimplantation development (> 100 nuclei) and enables studies of fate patterning in the late blastocyst. We, then, demonstrate BlastoSPIM's usefulness as pre-train data for related problems. BlastoSPIM and its corresponding Stardist-3D models are available at: blastospim.flatironinstitute.org.
Collapse
Affiliation(s)
- Hayden Nunley
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Binglun Shao
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Prateek Grover
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Jaspreet Singh
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Abraham Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Zsombor Gal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alison Kickuth
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Madeleine Chalifoux
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Shvartsman
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lisa M. Brown
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| |
Collapse
|
39
|
Bremer N, Tria FDK, Skejo J, Martin WF. The Ancestral Mitotic State: Closed Orthomitosis With Intranuclear Spindles in the Syncytial Last Eukaryotic Common Ancestor. Genome Biol Evol 2023; 15:7031494. [PMID: 36752808 PMCID: PMC9985178 DOI: 10.1093/gbe/evad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
All eukaryotes have linear chromosomes that are distributed to daughter nuclei during mitotic division, but the ancestral state of nuclear division in the last eukaryotic common ancestor (LECA) is so far unresolved. To address this issue, we have employed ancestral state reconstructions for mitotic states that can be found across the eukaryotic tree concerning the intactness of the nuclear envelope during mitosis (open or closed), the position of spindles (intranuclear or extranuclear), and the symmetry of spindles being either axial (orthomitosis) or bilateral (pleuromitosis). The data indicate that the LECA possessed closed orthomitosis with intranuclear spindles. Our reconstruction is compatible with recent findings indicating a syncytial state of the LECA, because it decouples three main processes: chromosome division, chromosome partitioning, and cell division (cytokinesis). The possession of closed mitosis using intranuclear spindles adds to the number of cellular traits that can now be attributed to LECA, providing insights into the lifestyle of this otherwise elusive biological entity at the origin of eukaryotic cells. Closed mitosis in a syncytial eukaryotic common ancestor would buffer mutations arising at the origin of mitotic division by allowing nuclei with viable chromosome sets to complement defective nuclei via mRNA in the cytosol.
Collapse
Affiliation(s)
- Nico Bremer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
KYOGOKU H, KITAJIMA TS. The large cytoplasmic volume of oocyte. J Reprod Dev 2023; 69:1-9. [PMID: 36436912 PMCID: PMC9939283 DOI: 10.1262/jrd.2022-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.
Collapse
Affiliation(s)
- Hirohisa KYOGOKU
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan,Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoya S KITAJIMA
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
41
|
Durrieu L, Bush A, Grande A, Johansson R, Janzén D, Katz A, Cedersund G, Colman-Lerner A. Characterization of cell-to-cell variation in nuclear transport rates and identification of its sources. iScience 2022; 26:105906. [PMID: 36686393 PMCID: PMC9852351 DOI: 10.1016/j.isci.2022.105906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Nuclear transport is an essential part of eukaryotic cell function. Here, we present scFRAP, a model-assisted fluorescent recovery after photobleaching (FRAP)- based method to determine nuclear import and export rates independently in individual live cells. To overcome the inherent noise of single-cell measurements, we performed sequential FRAPs on the same cell. We found large cell-to-cell variation in transport rates within isogenic yeast populations. For passive transport, the variability in NPC number might explain most of the variability. Using this approach, we studied mother-daughter cell asymmetry in the active nuclear shuttling of the transcription factor Ace2, which is specifically concentrated in daughter cell nuclei in early G1. Rather than reduced export in the daughter cell, as previously hypothesized, we found that this asymmetry is mainly due to an increased import in daughters. These results shed light on cell-to-cell variation in cellular dynamics and its sources.
Collapse
Affiliation(s)
- Lucía Durrieu
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), C1428EGA, Argentina,Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), C1428EGA, Argentina
| | - Alan Bush
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), C1428EGA, Argentina,Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), C1428EGA, Argentina,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Alicia Grande
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), C1428EGA, Argentina,Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), C1428EGA, Argentina
| | - Rikard Johansson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - David Janzén
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Andrea Katz
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), C1428EGA, Argentina
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Alejandro Colman-Lerner
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), C1428EGA, Argentina,Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), C1428EGA, Argentina,Corresponding author
| |
Collapse
|
42
|
Han XX, Jin S, Yu LM, Wang M, Hu XY, Hu DY, Ren J, Zhang MH, Huang W, Deng JJ, Chen QQ, Gao Z, He H, Cai C. Interferon-beta inhibits human glioma stem cell growth by modulating immune response and cell cycle related signaling pathways. CELL REGENERATION 2022; 11:23. [PMID: 35778531 PMCID: PMC9249963 DOI: 10.1186/s13619-022-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential. The main reason is that malignant glioma holds key cluster cells, glioma stem cells (GSCs). GSCs contribute to tumorigenesis, tumor progression, recurrence, and treatment resistance. Interferon-beta (IFN-β) is well known for its anti-proliferative efficacy in diverse cancers. IFN-β also displayed potent antitumor effects in malignant glioma. IFN-β affect both GSCs and Neural stem cells (NSCs) in the treatment of gliomas. However, the functional comparison, similar or different effects of IFN-β on GSCs and NSCs are rarely reported. Here, we studied the similarities and differences of the responses to IFN-β between human GSCs and normal NSCs. We found that IFN-β preferentially inhibited GSCs over NSCs. The cell body and nucleus size of GSCs increased after IFN-β treatment, and the genomic analysis revealed the enrichment of the upregulated immune response, cell adhesion genes and down regulated cell cycle, ribosome pathways. Several typical cyclin genes, including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin B2 (CCNB2), and cyclin D1 (CCND1), were significantly downregulated in GSCs after IFN-β stimulation. We also found that continuous IFN-β stimulation after passage further enhanced the inhibitory effect. Our study revealed how genetic diversity resulted in differential effects in response to IFN-β treatment. These results may contribute to improve the applications of IFN-β in anti-cancer immunotherapy. In addition, these results may also help to design more effective pharmacological strategies to target cancer stem cells while protecting normal neural stem cells.
Collapse
|
43
|
Heijo H, Merten CA, Hara Y. Differential contribution of nuclear size scaling mechanisms between Xenopus species. Dev Growth Differ 2022; 64:501-507. [PMID: 36308491 PMCID: PMC11520979 DOI: 10.1111/dgd.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022]
Abstract
Size of the nucleus, a membrane-bound organelle for DNA replication and transcription in eukaryotic cells, varies to adapt nuclear functions to the surrounding environment. Nuclear size strongly correlates with cytoplasmic size and genomic content. Previous studies using Xenopus laevis have unraveled two modes, cytoplasmic and chromatin-based mechanisms, for controlling nuclear size. However, owing to limited comparative analyses of the mechanisms among eukaryotic species, the contribution of each mechanism in controlling nuclear size has not been comprehensively elucidated. Here, we compared the relative contribution utilizing a cell-free reconstruction system from the cytoplasmic extract of unfertilized eggs of Xenopus tropicalis to that of the sister species X. laevis. In this system, interphase nuclei were reconstructed in vitro from sperm chromatin and increased in size throughout the incubation period. Using extracts from X. tropicalis, growth rate of the reconstructed nuclei was decreased by obstructing the effective cytoplasmic space, decreasing DNA quantity, or inhibiting molecules involved in various cytoplasmic mechanisms. Although these features are qualitatively identical to that shown by the extract of X. laevis, the sensitivities of experimental manipulation for each cellular parameter were different between the extracts from two Xenopus species. These quantitative differences implied that the contribution of each mode to expansion of the nuclear envelope is coordinated in a species-specific manner, which sets the species-specific nuclear size for in vivo physiological function.
Collapse
Affiliation(s)
- Hiroko Heijo
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| | - Christoph A. Merten
- Laboratory of Biomedical Microfluidics (LBMM), Department of Bioengineering, School of EngineeringSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| |
Collapse
|
44
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
45
|
Liu X, Oh S, Kirschner MW. The uniformity and stability of cellular mass density in mammalian cell culture. Front Cell Dev Biol 2022; 10:1017499. [PMID: 36313562 PMCID: PMC9597509 DOI: 10.3389/fcell.2022.1017499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cell dry mass is principally determined by the sum of biosynthesis and degradation. Measurable change in dry mass occurs on a time scale of hours. By contrast, cell volume can change in minutes by altering the osmotic conditions. How changes in dry mass and volume are coupled is a fundamental question in cell size control. If cell volume were proportional to cell dry mass during growth, the cell would always maintain the same cellular mass density, defined as cell dry mass dividing by cell volume. The accuracy and stability against perturbation of this proportionality has never been stringently tested. Normalized Raman Imaging (NoRI), can measure both protein and lipid dry mass density directly. Using this new technique, we have been able to investigate the stability of mass density in response to pharmaceutical and physiological perturbations in three cultured mammalian cell lines. We find a remarkably narrow mass density distribution within cells, that is, significantly tighter than the variability of mass or volume distribution. The measured mass density is independent of the cell cycle. We find that mass density can be modulated directly by extracellular osmolytes or by disruptions of the cytoskeleton. Yet, mass density is surprisingly resistant to pharmacological perturbations of protein synthesis or protein degradation, suggesting there must be some form of feedback control to maintain the homeostasis of mass density when mass is altered. By contrast, physiological perturbations such as starvation or senescence induce significant shifts in mass density. We have begun to shed light on how and why cell mass density remains fixed against some perturbations and yet is sensitive during transitions in physiological state.
Collapse
Affiliation(s)
| | | | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
47
|
Abstract
The most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.
Collapse
Affiliation(s)
- Shicong Xie
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California, USA;
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
48
|
Curran S, Dey G, Rees P, Nurse P. A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle. Proc Natl Acad Sci U S A 2022; 119:e2206172119. [PMID: 36037351 PMCID: PMC9457408 DOI: 10.1073/pnas.2206172119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We have carried out a systems-level analysis of the spatial and temporal dynamics of cell cycle regulators in the fission yeast Schizosaccharomyces pombe. In a comprehensive single-cell analysis, we have precisely quantified the levels of 38 proteins previously identified as regulators of the G2 to mitosis transition and of 7 proteins acting at the G1- to S-phase transition. Only 2 of the 38 mitotic regulators exhibit changes in concentration at the whole-cell level: the mitotic B-type cyclin Cdc13, which accumulates continually throughout the cell cycle, and the regulatory phosphatase Cdc25, which exhibits a complex cell cycle pattern. Both proteins show similar patterns of change within the nucleus as in the whole cell but at higher concentrations. In addition, the concentrations of the major fission yeast cyclin-dependent kinase (CDK) Cdc2, the CDK regulator Suc1, and the inhibitory kinase Wee1 also increase in the nucleus, peaking at mitotic onset, but are constant in the whole cell. The significant increase in concentration with size for Cdc13 supports the view that mitotic B-type cyclin accumulation could act as a cell size sensor. We propose a two-step process for the control of mitosis. First, Cdc13 accumulates in a size-dependent manner, which drives increasing CDK activity. Second, from mid-G2, the increasing nuclear accumulation of Cdc25 and the counteracting Wee1 introduce a bistability switch that results in a rapid rise of CDK activity at the end of G2 and thus, brings about an orderly progression into mitosis.
Collapse
Affiliation(s)
- Scott Curran
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Gautam Dey
- Medical Research Council Laboratory for Molecular Cell Biology, London, WC1E 6BT, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
- Imaging Platform Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065
| |
Collapse
|
49
|
Zhang S, Zatulovskiy E, Arand J, Sage J, Skotheim JM. The cell cycle inhibitor RB is diluted in G1 and contributes to controlling cell size in the mouse liver. Front Cell Dev Biol 2022; 10:965595. [PMID: 36092730 PMCID: PMC9452963 DOI: 10.3389/fcell.2022.965595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Every type of cell in an animal maintains a specific size, which likely contributes to its ability to perform its physiological functions. While some cell size control mechanisms are beginning to be elucidated through studies of cultured cells, it is unclear if and how such mechanisms control cell size in an animal. For example, it was recently shown that RB, the retinoblastoma protein, was diluted by cell growth in G1 to promote size-dependence of the G1/S transition. However, it remains unclear to what extent the RB-dilution mechanism controls cell size in an animal. We therefore examined the contribution of RB-dilution to cell size control in the mouse liver. Consistent with the RB-dilution model, genetic perturbations decreasing RB protein concentrations through inducible shRNA expression or through liver-specific Rb1 knockout reduced hepatocyte size, while perturbations increasing RB protein concentrations in an Fah -/- mouse model increased hepatocyte size. Moreover, RB concentration reflects cell size in G1 as it is lower in larger G1 hepatocytes. In contrast, concentrations of the cell cycle activators Cyclin D1 and E2f1 were relatively constant. Lastly, loss of Rb1 weakened cell size control, i.e., reduced the inverse correlation between how much cells grew in G1 and how large they were at birth. Taken together, our results show that an RB-dilution mechanism contributes to cell size control in the mouse liver by linking cell growth to the G1/S transition.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Julia Arand
- Departments of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Julien Sage
- Departments of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
50
|
Cadart C, Heald R. Scaling of biosynthesis and metabolism with cell size. Mol Biol Cell 2022; 33:pe5. [PMID: 35862496 PMCID: PMC9582640 DOI: 10.1091/mbc.e21-12-0627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cells adopt a size that is optimal for their function, and pushing them beyond this limit can cause cell aging and death by senescence or reduce proliferative potential. However, by increasing their genome copy number (ploidy), cells can increase their size dramatically and homeostatically maintain physiological properties such as biosynthesis rate. Recent studies investigating the relationship between cell size and rates of biosynthesis and metabolism under normal, polyploid, and pathological conditions are revealing new insights into how cells attain the best function or fitness for their size by tuning processes including transcription, translation, and mitochondrial respiration. A new frontier is to connect single-cell scaling relationships with tissue and whole-organism physiology, which promises to reveal molecular and evolutionary principles underlying the astonishing diversity of size observed across the tree of life.
Collapse
Affiliation(s)
- Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|