1
|
Xiao H, Vierling MM, Kennedy RF, Boone EC, Decker LM, Sy VT, Haynes JB, Williams MA, Shiu PKT. Involvement of RNA granule proteins in meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2021; 11:jkab179. [PMID: 34568932 PMCID: PMC8482848 DOI: 10.1093/g3journal/jkab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.
Collapse
Affiliation(s)
- Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rana F Kennedy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Logan M Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jackson B Haynes
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michelle A Williams
- Present address: Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Marklein B, Jenning M, Konthur Z, Häupl T, Welzel F, Nonhoff U, Krobitsch S, Mulder DM, Koenders MI, Joshua V, Cope AP, Shlomchik MJ, Anders HJ, Burmester GR, Hensvold A, Catrina AI, Rönnelid J, Steiner G, Skriner K. The citrullinated/native index of autoantibodies against hnRNP-DL predicts an individual "window of treatment success" in RA patients. Arthritis Res Ther 2021; 23:239. [PMID: 34521462 PMCID: PMC8439038 DOI: 10.1186/s13075-021-02603-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a need for biomarker to identify patients "at risk" for rheumatoid arthritis (risk-RA) and to better predict the therapeutic response and in this study we tested the hypothesis that novel native and citrullinated heterogeneous nuclear ribonucleoprotein (hnRNP)-DL autoantibodies could be possible biomarkers. METHODS Using protein macroarray and ELISA, epitope recognition against hnRNP-DL was analysed in sera from different developed RA disease and diagnosed SLE patients. Toll-like receptor (TLR) 7/9 and myeloid differentiation primary response gene 88 (MyD88)-dependency were studied in sera from murine disease models. HnRNP-DL expression in cultivated cells and synovial tissue was analysed by indirect immunofluorescence, immunoblot and immunohistochemistry. RESULTS HnRNP-DL was highly expressed in stress granules, citrullinated in the rheumatoid joint and targeted by autoantibodies either as native or citrullinated proteins in patient subsets with different developed RA disease. Structural citrullination dependent epitopes (SCEs) of hnRNP-DL were detected in 58% of the SLE patients although 98% of these sera were α-CCP-2-negative. To obtain a specific citrullinated signal value, we subtracted the native antibody value from the citrullinated signal. The citrullinated/native index of autoantibodies against hnRNP-DL (CNDL-Index) was identified as a new value for an "individual window of treatment success" in early RA and for the detection of RF IgM/α-CCP-2 seronegative RA patients (24-46%). Negative CNDL-index was found in SLE patients, risk-RA and early RA cohorts such as EIRA where the majority of these patients are DAS28-responders to methotrexate (MTX) treatment (87%). High positive CNDL-values were associated with more severe RA, shared epitope and parenchymal changes in the lung. Specifically, native α-hnRNP-DL is TLR7/9-dependent, associated with pain and ROC analysis revealed an association to initial MTX or etanercept treatment response, especially in seronegative RA patients. CONCLUSION CNDL-index defines people at risk to develop RA and the "window of treatment success" thereby closing the sensitivity gap in RA.
Collapse
Affiliation(s)
- Bianka Marklein
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charite Campus Mitte, Rheumatologisches Forschungslabor - AG Skriner, Chariteplatz 1 (intern Virchowweg 11, 5.OG, R011), 10117, Berlin, Germany
| | - Madeleine Jenning
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charite Campus Mitte, Rheumatologisches Forschungslabor - AG Skriner, Chariteplatz 1 (intern Virchowweg 11, 5.OG, R011), 10117, Berlin, Germany
- German Rheumatism Research Centre, Leibniz Institute, 10117, Berlin, Germany
| | - Zoltán Konthur
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Analytical Chemistry (Dpt.1), Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charite Campus Mitte, Rheumatologisches Forschungslabor - AG Skriner, Chariteplatz 1 (intern Virchowweg 11, 5.OG, R011), 10117, Berlin, Germany
| | | | - Ute Nonhoff
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Debbie M Mulder
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vijay Joshua
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew P Cope
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hans-Joachim Anders
- Medical Clinic and Policlinic IV, Nephrological Center, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charite Campus Mitte, Rheumatologisches Forschungslabor - AG Skriner, Chariteplatz 1 (intern Virchowweg 11, 5.OG, R011), 10117, Berlin, Germany
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Academic Specialist Center, Center for Rheumatology, Stockholm Health Region, Stockholm, Sweden
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Günter Steiner
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria
| | - Karl Skriner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charite Campus Mitte, Rheumatologisches Forschungslabor - AG Skriner, Chariteplatz 1 (intern Virchowweg 11, 5.OG, R011), 10117, Berlin, Germany.
- German Rheumatism Research Centre, Leibniz Institute, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Wang Y, Shen W, Liang XH, Crooke ST. Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly. Nucleic Acid Ther 2019; 29:343-358. [PMID: 31429620 DOI: 10.1089/nat.2019.0806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) regulate gene expression by binding to complementary target RNA, and ASOs can be designed to take advantage of a growing array of post RNA binding molecular mechanisms. Intracellular trafficking of ASOs influences their efficacy. We have identified a number of membrane-less structures in the nucleus, nucleolus, and cytoplasm where phosphorothioate-modified ASOs (PS-ASOs) accumulate and have shown that PS-ASOs can induce the formation of new nuclear structures such as PS-bodies and paraspeckle-like structures. In this study, we report that PS-ASOs can localize to cytoplasmic processing bodies (P-bodies) and increase the number of P-bodies in cells. The antisense activity of PS-ASOs was not affected by the absence of essential P-body assembly proteins DDX6 and LSm14A. Moreover, the effects of PS-ASOs on P-body assembly were independent of their antisense activities. The phosphorothioate modification stabilizes the association between ASOs and cellular proteins and is essential for the P-body localization of ASOs. Since PS-ASOs bind to major P-body components, PS-ASOs may serve as scaffolds for P-body formation. Taken together, these results indicate that interactions of PS-ASO with proteins, rather than antisense activities, are essential for the dynamic interplay between PS-ASOs and P-bodies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| |
Collapse
|
4
|
Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Collapse
Affiliation(s)
- Saife Niaz
- Department of Biotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
5
|
Zhou J, Bai W, Liu Q, Cui J, Zhang W. Silencing of ADAM33 restrains proliferation and induces apoptosis of airway smooth muscle cells in ovalbumin-induced asthma model. J Cell Biochem 2019; 120:1435-1443. [PMID: 30450713 DOI: 10.1002/jcb.27263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
A defibrinogen and metalloproteinase 33 (ADAM33) was reported to play an important role in asthma. Furthermore, ADAM33 may play a possible role in airway remodeling due to its high expression in myo-/fibroblasts, epithelium, as well as the airway smooth muscle cells (ASMCs). Thus, the study is supposed to investigate the effect of the downregulation of ADAM33 on the proliferation and apoptosis of ASMCs in allergic asthma. An ovalbumin-induced asthma model in rats was established for investigating the function of the silencing of ADAM33. ASMCs were cultured and divided into four groups after transfection. The messenger RNA and protein expressions of ADAM33 were measured by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Cell proliferation was tested by cell counting kit-8 and cell apoptosis by TdT-mediated dUTP nick-end labeling. The allergic asthma rats showed a large number of inflammatory cell infiltration, airway smooth muscle hypertrophy and hyperplasia, and increased WA t , WA m , and numbers of bronchial smooth muscle nucleus. Additionally, increased numbers of eosinophils and neutrophils, expressions of immunoglobulin E and interleukin-4, content of airway air pressure, and NO, although decreased in expression of interferon-γ, were exhibited in rats with allergic asthma. In our study, upregulated ADAM33 was found, and after the silencing of ADAM33, decreased proliferation and increased apoptosis of ASMCs were observed. The study evidences that silencing of ADAM33 can decrease the proliferation and increase the apoptosis of ASMCs in a rat model of allergic asthma, suggesting ADAM33 represents a potential investigative focus target aiding allergic asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Cui
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
7
|
Abstract
Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Oral & Maxillofacial Surgery, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
8
|
Hu Y, Yin KL, Ma X, Xia HF. Anti-PABPC1 co-immunoprecipitation for examining the miRNAs directly targeting the 3'-UTR of EED mRNA. PLoS One 2014; 9:e103695. [PMID: 25084349 PMCID: PMC4118908 DOI: 10.1371/journal.pone.0103695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/04/2014] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate post-transcriptional gene expression by base pairing with partially complementary sequences within target messenger RNAs (mRNAs). Although the target genes and the precise biological functions of individual miRNAs remain largely unknown, miRNAs have been implicated in diverse biological processes, including both normal and pathological states. As a single stranded mRNA can be directly targeted by multiple miRNAs, and as the target sites may exist in the 3′-untranslated region (UTR), 5′-UTR, or the coding regions, it is essential to develop an effective method to identify the full-scale miRNA regulatory pattern of each particular gene. In this study, we employed a biochemical approach to identify the miRNA profiles that regulate the expression of embryonic ectoderm development (EED) protein by using anti-PABPC1 ribonucleoprotein (RNP) co-immunoprecipitation (Co-IP). The full length EED mRNA was subcloned into an expression vector and transiently transfected into a Flag-PABPC1 stable expression cell line. Subsequent to cross-linking and an anti-Flag Co-IP, the miRNAs that directly targeted EED were identified. We found that the best time point to distinguish the positive miRNAs from the background was 18 hours after the plasmid transfection. As expected, the miRNAs that directly target EED were found to interact with EED mRNA through the miRNA-induced silencing complex (miRISC). Meanwhile, the EED mRNA was bound by Flag-PABPC1. This method depends on the integrity of the miRISC complex and achieves greater efficiency when ultraviolet irradiation is used for the process of cross-linking. By using anti-PABPC1 RIP, we identified EED to be a new target gene of miR-16; a finding further confirmed using a dual-luciferase assay. In summary, our data indicate that anti-PABPC1 RIP is a validated and direct biochemical method to provide data about specific miRNA-mRNA interactions, as well as global miRNA patterns regulating the mRNAs.
Collapse
Affiliation(s)
- Yi Hu
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun-Lun Yin
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
| | - Xu Ma
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
- * E-mail: (XM); (HFX)
| | - Hong-Fei Xia
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, China
- Graduate School, Peking Union Medical College, Beijing, China
- * E-mail: (XM); (HFX)
| |
Collapse
|
9
|
Calise SJ, Carcamo WC, Krueger C, Yin JD, Purich DL, Chan EKL. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell Mol Life Sci 2014; 71:2963-73. [PMID: 24477477 PMCID: PMC11113311 DOI: 10.1007/s00018-014-1567-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/21/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Rods and rings (RR) are protein assemblies composed of cytidine triphosphate synthetase type 1 (CTPS1) and inosine monophosphate dehydrogenase type 2 (IMPDH2), key enzymes in CTP and GTP biosynthesis. Small-molecule inhibitors of CTPS1 or IMPDH2 induce RR assembly in various cancer cell lines within 15 min to hours. Since glutamine is an essential amide nitrogen donor in these nucleotide biosynthetic pathways, glutamine deprivation was examined to determine whether it leads to RR formation. HeLa cells cultured in normal conditions did not show RR, but after culturing in media lacking glutamine, short rods (<2 μm) assembled after 24 h, and longer rods (>5 μm) formed after 48 h. Upon supplementation with glutamine or guanosine, these RR underwent almost complete disassembly within 15 min. Inhibition of glutamine synthetase with methionine sulfoximine also increased RR assembly in cells deprived of glutamine. Taken together, our data support the hypothesis that CTP/GTP biosynthetic enzymes polymerize to form RR in response to a decreased intracellular level of glutamine. We speculate that rod and ring formation is an adaptive metabolic response linked to disruption of glutamine homeostasis.
Collapse
Affiliation(s)
- S. John Calise
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| | - Wendy C. Carcamo
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| | - Claire Krueger
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| | - Joyce D. Yin
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| | - Daniel L. Purich
- Department of Biochemistry and Molecular Biology, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610-0245 USA
| | - Edward K. L. Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| |
Collapse
|
10
|
Abstract
MicroRNA (miRNA) are approximately 22 nucleotide single-stranded RNA that regulate the stability of target messenger RNA by selective binding to specific sites at the 3'-untranslated regions (UTR). This triggers repression in translation and mRNA degradation. It has been estimated that approximately 60% of all mRNA are under the control of miRNA. Among the known hundreds of miRNA, some are considered master regulators controlling either a single or multiple cellular pathways. Some miRNA are known to affect development and cell differentiation, while others are implicated in immunity and autoimmune diseases. A very interesting example is miR-146a, which has been reported to be downregulated in systemic lupus erythematosus and upregulated in rheumatoid arthritis (RA). Several groups have recently focused their attention on miRNA in the pathogenesis of RA. Interestingly, the expression of miR-146a is upregulated in different cell types and tissues in RA patients. miRNA in RA could also be considered as possible future targets for new therapeutic approaches. This discussion will focus on the current understanding in the function of miR-146a in endotoxin tolerance and cross-tolerance, and how it may contribute to modulate the overproduction of known pathogenic cytokines, such as tumour necrosis factor α.
Collapse
Affiliation(s)
- Edward K L Chan
- Correspondence to Professor Edward K L Chan, Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | |
Collapse
|
11
|
Reflections on ten years of history of, and future prospects for, GW182 and GW/P body research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:261-70. [PMID: 23224975 DOI: 10.1007/978-1-4614-5107-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kamiya Y, Ito A, Ito H, Urushihara M, Takai J, Fujii T, Liang X, Kashida H, Asanuma H. Selective labeling of mature RISC using a siRNA carrying fluorophore–quencher pair. Chem Sci 2013. [DOI: 10.1039/c3sc51197a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
13
|
Yao B, Li S, Chan EKL. Function of GW182 and GW bodies in siRNA and miRNA pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:71-96. [PMID: 23224966 DOI: 10.1007/978-1-4614-5107-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GW182 is an 182 kDa protein with multiple glycine/tryptophan repeats (GW or WG) playing a central role in siRNA- and miRNA-mediated gene silencing. GW182 interacts with its functional partner Argonaute proteins (AGO) via multiple domains to exert its silencing activity in both pathways. In siRNA-mediated silencing, knockdown either GW182 or Ago2 causes loss of silencing activity correlating with the disassembly of GWBs. In contrast, GW182 and its longer isoform TNGW1 appear to be downstream repressors that function independent of Ago2, whereas the Ago2-GW182 interaction is critical for the localization of Ago2 in the cytoplasmic foci and its repression function. GW182 contains two non-overlapping repression domains that can trigger translational repression with mild effect on mRNA decay. Collectively, GW182 plays a critical role in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
14
|
Ernoult-Lange M, Bénard M, Kress M, Weil D. P-bodies and mitochondria: which place in RNA interference? Biochimie 2012; 94:1572-7. [PMID: 22445682 DOI: 10.1016/j.biochi.2012.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
Abstract
Micro-RNAs (miRNAs) are major actors of RNA interference (RNAi), a regulation pathway which leads to translational repression and/or degradation of specific mRNAs. They provide target specificity by incorporating into the RISC complex and guiding its binding to mRNA. Since the discovery of RNAi, many progresses have been made on the mechanism of action of the RISC complex and on the identification of target mRNAs. However, the regulation of RNAi has been poorly investigated so far. Recently, various studies have revealed physical and functional relationships between RNAi, P-bodies and mitochondria. This review intends to recapitulate these data and discuss their potential importance in cell metabolism.
Collapse
|
15
|
Carcamo WC, Satoh M, Kasahara H, Terada N, Hamazaki T, Chan JYF, Yao B, Tamayo S, Covini G, von Mühlen CA, Chan EKL. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 2011; 6:e29690. [PMID: 22220215 PMCID: PMC3248424 DOI: 10.1371/journal.pone.0029690] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/02/2011] [Indexed: 12/25/2022] Open
Abstract
Background Cytoplasmic filamentous rods and rings (RR) structures were identified using human autoantibodies as probes. In the present study, the formation of these conserved structures in mammalian cells and functions linked to these structures were examined. Methodology/Principal Findings Distinct cytoplasmic rods (∼3–10 µm in length) and rings (∼2–5 µm in diameter) in HEp-2 cells were initially observed in immunofluorescence using human autoantibodies. Co-localization studies revealed that, although RR had filament-like features, they were not enriched in actin, tubulin, or vimentin, and not associated with centrosomes or other known cytoplasmic structures. Further independent studies revealed that two key enzymes in the nucleotide synthetic pathway cytidine triphosphate synthase 1 (CTPS1) and inosine monophosphate dehydrogenase 2 (IMPDH2) were highly enriched in RR. CTPS1 enzyme inhibitors 6-diazo-5-oxo-L-norleucine and Acivicin as well as the IMPDH2 inhibitor Ribavirin exhibited dose-dependent induction of RR in >95% of cells in all cancer cell lines tested as well as mouse primary cells. RR formation by lower concentration of Ribavirin was enhanced in IMPDH2-knockdown HeLa cells whereas it was inhibited in GFP-IMPDH2 overexpressed HeLa cells. Interestingly, RR were detected readily in untreated mouse embryonic stem cells (>95%); upon retinoic acid differentiation, RR disassembled in these cells but reformed when treated with Acivicin. Conclusions/Significance RR formation represented response to disturbances in the CTP or GTP synthetic pathways in cancer cell lines and mouse primary cells and RR are the convergence physical structures in these pathways. The availability of specific markers for these conserved structures and the ability to induce formation in vitro will allow further investigations in structure and function of RR in many biological systems in health and diseases.
Collapse
Affiliation(s)
- Wendy C. Carcamo
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Minoru Satoh
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Takashi Hamazaki
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jason Y. F. Chan
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Stephanie Tamayo
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Giovanni Covini
- Department of Gastroenterology, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | - Edward K. L. Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ceribelli A, Nahid MA, Satoh M, Chan EK. MicroRNAs in rheumatoid arthritis. FEBS Lett 2011; 585:3667-74. [PMID: 21600203 PMCID: PMC3168677 DOI: 10.1016/j.febslet.2011.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and severe autoimmune disease that affects joint tissues, bone, and cartilage. However, the pathogenesis of RA is still unclear. Autoantibodies such as rheumatoid factor and anti-cyclic citrullinated peptide are useful tools for early diagnosis, monitoring disease activity, and predicting prognosis. Recently, many groups have focused their attention on the role of microRNAs in the pathogenesis of RA, as well as a potential biomarker to monitor RA. In fact, the expression of some microRNAs, such as miR-146a, is upregulated in different cell types and tissues in RA patients. MicroRNAs in RA could also be considered as possible future targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Angela Ceribelli
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, Florida 32610-0424
| | - Md A. Nahid
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, Florida 32610-0424
| | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, 1395 Center Drive, Gainesville, Florida 32610-0221
| | - Edward K.L. Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, Florida 32610-0424
| |
Collapse
|
17
|
Berezhna SY, Supekova L, Sever MJ, Schultz PG, Deniz AA. Dual regulation of hepatitis C viral RNA by cellular RNAi requires partitioning of Ago2 to lipid droplets and P-bodies. RNA (NEW YORK, N.Y.) 2011; 17:1831-45. [PMID: 21868483 PMCID: PMC3185916 DOI: 10.1261/rna.2523911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.
Collapse
Affiliation(s)
- Svitlana Yu. Berezhna
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Lubica Supekova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Mary J. Sever
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ashok A. Deniz
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Corresponding author.E-mail .
| |
Collapse
|
18
|
Abstract
APOBEC3G (A3G) is packaged into human immunodeficiency virus type 1 (HIV-1) virions unless HIV-1 virion infectivity factor (Vif) counteracts it. Virion A3G restricts HIV-1 reverse transcription and integration in target cells. Some A3G in producer cells colocalizes with specific cytoplasmic structures, in what are called "A3G complexes" here. Functional effects of producer cell A3G complexes on HIV-1 replication were studied. HeLa cells were cotransfected with HIV-1 constructs producing pseudoviruses, as well as either wild-type (WT) A3G or a mutant A3G (C97A, Y124A, W127A, or D128K A3G). Pseudovirus particle production was decreased from cells expressing any of the A3Gs that formed complexes by 24 h after transfection, relative to cells with C97A A3G that did not form detectable A3G complexes by 24 h or A3G-negative cells. The intracellular HIV-1 Gag half-life was shorter in cells containing A3G complexes than in those lacking complexes. HIV-1 virion output was decreased in a single round of replication from a T cell line containing A3G complexes (CEM cells) after infection with Vif-negative HIV-1, compared to Vif-positive HIV-1 that depleted A3G. Levels of production of Vif-negative and Vif-positive virus were similar from cells not containing A3G (CEM-SS cells). Knockdown of the mRNA processing body (P-body) component RCK/p54, eliminated A3G complex formation, and increased HIV-1 production. We conclude that endogenous A3G complexes in producer cells decrease HIV-1 production if not degraded by Vif.
Collapse
|
19
|
Bloch DB, Nobre RA, Bernstein GA, Yang WH. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay. Exp Cell Res 2011; 317:2183-99. [PMID: 21672539 DOI: 10.1016/j.yexcr.2011.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 01/02/2023]
Abstract
Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species.
Collapse
Affiliation(s)
- Donald B Bloch
- Department of Medicine, Harvard Medical School, Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
20
|
Eulalio A, Fröhlich KS, Mano M, Giacca M, Vogel J. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PLoS One 2011; 6:e17296. [PMID: 21390246 PMCID: PMC3046968 DOI: 10.1371/journal.pone.0017296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/28/2011] [Indexed: 01/11/2023] Open
Abstract
P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
Collapse
Affiliation(s)
- Ana Eulalio
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (JV); (AE)
| | - Kathrin S. Fröhlich
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jörg Vogel
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
- * E-mail: (JV); (AE)
| |
Collapse
|
21
|
Lindsay AJ, McCaffrey MW. Myosin Va is required for P body but not stress granule formation. J Biol Chem 2011; 286:11519-28. [PMID: 21245139 DOI: 10.1074/jbc.m110.182808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we demonstrate an association between mammalian myosin Va and cytoplasmic P bodies, microscopic ribonucleoprotein granules that contain components of the 5'-3' mRNA degradation machinery. Myosin Va colocalizes with several P body markers and its RNAi-mediated knockdown results in the disassembly of P bodies. Overexpression of a dominant-negative mutant of myosin Va reduced the motility of P bodies in living cells. Co-immunoprecipitation experiments demonstrate that myosin Va physically associates with eIF4E, an mRNA binding protein that localizes to P bodies. In contrast, we find that myosin Va does not play a role in stress granule formation. Stress granules are ribonucleoprotein structures that are involved in translational silencing and are spatially, functionally, and compositionally linked to P bodies. Myosin Va is found adjacent to stress granules in stressed cells but displays minimal localization within stress granules, and myosin Va knockdown has no effect on stress granule assembly or disassembly. Combined with recently published reports demonstrating a role for Drosophila and mammalian class V myosins in mRNA transport and the involvement of the yeast myosin V orthologue Myo2p in P body assembly, our results provide further evidence that the class V myosins serve an important role in the transport and turnover of mRNA.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
22
|
Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EKL. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2010; 39:2534-47. [PMID: 21131274 PMCID: PMC3074120 DOI: 10.1093/nar/gkq1099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol Ther 2010; 19:386-94. [PMID: 21063391 DOI: 10.1038/mt.2010.243] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is a highly metastatic and lethal disease, making it imperative to find treatments that target late-stage malignant tumors. The packaging RNA (pRNA) of bacteriophage phi29 DNA-packaging motor has been reported to function as a highly versatile vehicle to carry small interference RNA (siRNA) for silencing of survivin. In this article, we explore the potential of pRNA as a vehicle to carry siRNA specifically targeted to metallothionein-IIa (MT-IIA) messenger RNA (mRNA), and compare it to survivin targeting pRNA. These two anti-apoptotic cell survival factors promote tumor cell viability, and are overexpressed in recurrent tumors. We find that pRNA chimeras targeting MT-IIA are processed into double-stranded siRNA by dicer, are localized within the GW/P-bodies, and are more potent than siRNA alone in silencing MT-IIA expression. Moreover, knockdown of both survivin and MT-IIA expression simultaneously results in more potent effects on cell proliferation in the aggressive ovarian tumor cell lines than either alone, suggesting that therapeutic approaches that target multiple genes are essential for molecular therapy. The folate receptor-targeted delivery of siRNA by the folate-pRNA dimer emphasizes the cancer cell-specific aspect of this system. The pRNA system, which has the capability to assemble into multivalent nanoparticles, has immense promise as a highly potent therapeutic agent.
Collapse
|
24
|
Moser JJ, Fritzler MJ. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One 2010; 5:e13445. [PMID: 20976148 PMCID: PMC2956662 DOI: 10.1371/journal.pone.0013445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 09/14/2010] [Indexed: 12/18/2022] Open
Abstract
Background GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. Methodology/Principal Findings RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. Conclusions/Significance The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.
Collapse
Affiliation(s)
- Joanna J. Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J. Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
25
|
Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21:1462-9. [PMID: 20237157 PMCID: PMC2861606 DOI: 10.1091/mbc.e09-10-0885] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cancer drug geldanamycin, an HSP90 inhibitor, decreases the stability of key components of the miRNA regulatory pathway, the efficacy of siRNAs, and the formation of P-bodies without affecting endogenous miRNA function. Key components of the miRNA-mediated gene regulation pathway are localized in cytoplasmic processing bodies (P-bodies). Mounting evidence suggests that the presence of microscopic P-bodies are not always required for miRNA-mediated gene regulation. Here we have shown that geldanamycin, a well-characterized HSP90 inhibitor, abolishes P-bodies and significantly reduces Argonaute and GW182 protein levels but does not affect the miRNA level and the efficiency of miRNA-mediated gene repression; however, it significantly impairs siRNA loading and the efficacy of exogenous siRNA. Our data suggests that HSP90 protein chaperones Argonautes before binding RNA and may facilitate efficient loading of small RNA.
Collapse
Affiliation(s)
- Michael Johnston
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Shen XH, Han YJ, Cui XS, Kim NH. Ago2 and GW182 expression in mouse preimplantation embryos: a link between microRNA biogenesis and GW182 protein synthesis. Reprod Fertil Dev 2010; 22:634-43. [DOI: 10.1071/rd09188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-mediated RNA interference appears to play a role in early development and differentiation processes in preimplantation embryos. However, the expression of its key effectors, including Ago2, a key component of the RNA-induced silencing complex, and GW182, a critical component of GW bodies (GWBs), has not been assessed in preimplantation embryos. To characterise the roles of Ago2 and GW182 in early embryo development, we determined their transcription and protein synthesis in mouse embryos. Transcript levels of Ago2 and GW182 increased steadily from the one-cell stage through to the blastocyst stage when data were not normalised against an internal reference. However, when normalised against the internal standard, transcript levels for both genes were highest in four-cell stage embryos and decreased steadily through to the blastocyst stage. Indirect immunocytochemistry showed that both AGO2 and GW182 proteins were expressed in each stage in the early embryo and were observed to colocalise in the morula and blastocyst stages. Specific silencing of mRNA expression by short interference (si) RNA against Ago2 or Dicer1 decreased the expression of selected apoptosis- and development-related microRNAs, but did not inhibit development up to the blastocyst stage. However, transcription levels of Oct3/4, Nanog and Sox2 were decreased in both Ago2- and Dicer1-knockdown embryos at the blastocyst stage. Furthermore, although knockdown of these genes did not change transcript levels of GW182, GW182 protein synthesis was decreased in blastocyst stage embryos. These results suggest that Ago2 and Dicer1 regulate GW182 protein expression in mouse embryos, which is linked to microRNA biogenesis and likely to be important for differentiation in the blastocyst stage.
Collapse
|
27
|
Suzuki Y, Minami M, Suzuki M, Abe K, Zenno S, Tsujimoto M, Matsumoto K, Minami Y. The Hsp90 inhibitor geldanamycin abrogates colocalization of eIF4E and eIF4E-transporter into stress granules and association of eIF4E with eIF4G. J Biol Chem 2009; 284:35597-604. [PMID: 19850929 PMCID: PMC2790990 DOI: 10.1074/jbc.m109.036285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/15/2009] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E plays a critical role in the control of translation initiation through binding to the mRNA 5' cap structure. eIF4E is also a component of processing bodies and stress granules, which are two types of cytoplasmic RNA granule in which translationally inactivated mRNAs accumulate. We found that treatment with the Hsp90 inhibitor geldanamycin leads to a substantial reduction in the number of HeLa cells that contain processing bodies. In contrast, stress granules are not disrupted but seem to be only partially affected by the inhibition of Hsp90. However, it is striking that eIF4E as well as its binding partner eIF4E transporter (4E-T), which mediates the import of eIF4E into the nucleus, are obviously lost from stress granules. Furthermore, the amount of eIF4G that is associated with the cap via eIF4E is reduced by geldanamycin treatment. Thus, the chaperone activity of Hsp90 probably contributes to the correct localization of eIF4E and 4E-T to stress granules and also to the interaction between eIF4E and eIF4G, both of which may be needed for eIF4E to acquire the physiological functionality that underlies the mechanism of translation initiation.
Collapse
Affiliation(s)
- Yukari Suzuki
- From the Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Michiko Minami
- the Department of Natural and Environmental Science, Faculty of Education, Tokyo Gakugei University, 1-1-4 Nukuikitamachi, Koganei, Tokyo 184-8501
| | - Miho Suzuki
- the Department of Natural and Environmental Science, Faculty of Education, Tokyo Gakugei University, 1-1-4 Nukuikitamachi, Koganei, Tokyo 184-8501
| | - Keiko Abe
- From the Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Shuhei Zenno
- the Department of Biotechnology, Maebashi Institute of Technology, 460-1 Kamisadori-cho, Maebashi, Gunma 371-0816
| | - Masafumi Tsujimoto
- the Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, and
| | - Ken Matsumoto
- the Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, and
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasufumi Minami
- the Department of Biotechnology, Maebashi Institute of Technology, 460-1 Kamisadori-cho, Maebashi, Gunma 371-0816
| |
Collapse
|
28
|
Pauley KM, Satoh M, Pauley BA, Dominguez-Gutierrez PR, Wallet SM, Holliday LS, Cha S, Reeves WH, Chan EKL. Formation of GW/P bodies as marker for microRNA-mediated regulation of innate immune signaling in THP-1 cells. Immunol Cell Biol 2009; 88:205-12. [PMID: 19918258 PMCID: PMC2824770 DOI: 10.1038/icb.2009.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GW bodies (GWB, or P bodies) are cytoplasmic foci thought to result from microRNA (miRNA) regulation of mRNA targets and subsequent mRNA degradation. The purpose of this study is to examine the effects of lipopolysaccharide (LPS) stimulation of human monocytes on GW body formation, miRNA induction, miRNA target regulation, and downstream cytokine and chemokine expression. In response to LPS stimulation, the number of GWB consistently increased by 2 fold at 8 hours after stimulation and this increase was abolished when the miRNA-effector proteins Rck/p54 or argonaute 2 (Ago2) were depleted. Since the level of miR-146a increased from 19 fold up to 100 fold during LPS stimulation, the transfection of a miR-146a-mimic into THP-1 cells was examined to determine whether miR-146a alone can induce similar changes in GWB. The results showed transfected miR-146a could produce a comparable increase in the number of GWB and this was accompanied by a reduction in major cytokines/chemokines induced by LPS. These data show that the increase in size and number of GWB may serve as a biomarker for miRNA mediated gene regulation, and miR-146a plays a significant role in the regulation of LPS-induced cytokine production in THP-1 cells.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pare JM, Tahbaz N, López-Orozco J, LaPointe P, Lasko P, Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 2009; 20:3273-84. [PMID: 19458189 DOI: 10.1091/mbc.e09-01-0082] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Argonaute proteins are effectors of RNA interference that function in the context of cytoplasmic ribonucleoprotein complexes to regulate gene expression. Processing bodies (PBs) and stress granules (SGs) are the two main types of ribonucleoprotein complexes with which Argonautes are associated. Targeting of Argonautes to these structures seems to be regulated by different factors. In the present study, we show that heat-shock protein (Hsp) 90 activity is required for efficient targeting of hAgo2 to PBs and SGs. Furthermore, pharmacological inhibition of Hsp90 was associated with reduced microRNA- and short interfering RNA-dependent gene silencing. Neither Dicer nor its cofactor TAR RNA binding protein (TRBP) associates with PBs or SGs, but interestingly, protein activator of the double-stranded RNA-activated protein kinase (PACT), another Dicer cofactor, is recruited to SGs. Formation of PBs and recruitment of hAgo2 to SGs were not dependent upon PACT (or TRBP) expression. Together, our data suggest that Hsp90 is a critical modulator of Argonaute function. Moreover, we propose that Ago2 and PACT form a complex that functions at the level of SGs.
Collapse
Affiliation(s)
- Justin M Pare
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EKL. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA (NEW YORK, N.Y.) 2009; 15:804-13. [PMID: 19324964 PMCID: PMC2673069 DOI: 10.1261/rna.1229409] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA (miRNA)-mediated silencing is a post-transcriptional mechanism that regulates translation of mRNAs primarily via their 3'-UTR. Ago2 binds miRNA directly and is the core component of miRNA-induced silencing complex. GW182 is another important factor in miRNA-mediated silencing, and its interaction with Ago2 is evolutionarily conserved. However, the GW182-Ago2 interaction in humans has not been characterized thoroughly, and the role of GW182 in the mammalian miRNA pathway remains unclear. In the current study, we generated a set of GST-, green fluorescence protein (GFP)-, or 3xFlag-tagged deletion constructs of GW182 and Ago2 to further analyze GW182-Ago2 interactions. The C-terminal half of Ago2 interacted with four nonoverlapping GW-rich regions of GW182, and this interaction recruited Ago2 to GWB. Furthermore, the interaction with GW182 was observed in all four human Ago proteins. Most interestingly, tethering the C-terminal half of Ago2 to the 3'-UTR of reporter mRNA recapitulated translational repression comparable to that of tethered Ago2, and this repression was greatly impaired upon GW182 knockdown. In comparison, the N-terminal half of Ago2 did not bind GW182 and did not retain the repression function of Ago2. Our data strongly support a model in which Ago2 recruits GW182 to the 3'-UTR of mRNA to mediate silencing, and suggest that GW182 may contribute to enhancement in translational repression by interacting with multiple Ago proteins from multiple miRNA target sites in the same or adjacent 3'UTR.
Collapse
Affiliation(s)
- Shang L Lian
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610-0424, USA
| | | | | | | | | | | |
Collapse
|
31
|
Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, Chan EKL. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 2009; 121:4134-44. [PMID: 19056672 DOI: 10.1242/jcs.036905] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference is triggered by small interfering RNA and microRNA, and is a potent mechanism in post-transcriptional regulation for gene expression. GW182 (also known as TNRC6A), an 182-kDa protein encoded by TNRC6A, is important for this process, although details of its function remain unclear. Here, we report a novel 210-kDa isoform of human GW182, provisionally named trinucleotide GW1 (TNGW1) because it contains trinucleotide repeats in its mRNA sequence. TNGW1 was expressed independently of GW182 and was present in human testis and various human cancer cells. Using polyclonal and monoclonal antibodies, we detected TNGW1 in only approximately 30% of GW bodies. Expression of EGFP-tagged TNGW1 in HeLa cells was colocalized to cytoplasmic foci enriched in Ago2 (also known as EIF2C2) and RNA decay factors. Tethering TNGW1 or GW182 to the 3'-UTR of a luciferase-reporter mRNA led to strong repression activity independent of Ago2, whereas the tethered Ago2-mediated suppression was completely dependent on TNGW1 and/or GW182. Our data demonstrated that GW182 and, probably, TNGW1 acted as a repressor in Ago2-mediated translational silencing. Furthermore, TNGW1 might contribute to diversity in the formation and function of GW and/or P bodies.
Collapse
Affiliation(s)
- Songqing Li
- Departments of Oral Biology and Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pauley KM, Chan EKL. MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci 2009; 1143:226-39. [PMID: 19076353 DOI: 10.1196/annals.1443.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs that post-transcriptionally regulate gene expression by targeting specific messenger RNAs (mRNAs) for degradation or translational repression. Recent evidence indicates that miRNA-mediated gene regulation is critical for normal cellular functions, and as much as one-third of human mRNAs may be miRNA targets. Emerging evidence suggests that miRNAs play a key role in the regulation of immunological functions including innate and adaptive immune responses, development and differentiation of immune cells, and the prevention of autoimmunity. Here, we review the mechanisms of miRNA maturation and function, the roles of several miRNAs in immunological functions, and the involvement of miRNAs in disease pathogenesis.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | |
Collapse
|
33
|
Moser JJ, Chan EKL, Fritzler MJ. Optimization of immunoprecipitation-western blot analysis in detecting GW182-associated components of GW/P bodies. Nat Protoc 2009; 4:674-85. [PMID: 19373232 PMCID: PMC2797048 DOI: 10.1038/nprot.2009.34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Characterizing the components of GW/processing bodies is key to elucidating RNA interference and messenger RNA processing pathways. This protocol addresses challenges in isolating a low-abundance protein GW182 and GW body (GWB)-associated proteins by building on previous reports that used polyclonal sera containing autoantibodies to GW/P body components. This protocol uses commercially available monoclonal antibodies to GW182 that are covalently coupled to Protein A or G sepharose beads and then used to immunoprecipitate GW182 and associated proteins from cell extracts. Immunoprecipitates are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes and probed by western blot with antibodies directed to proteins of interest. This protocol, which is expected to take 4-5 d, provides a biochemical approach for detecting GW182 and associated proteins in biological samples and thus facilitates the elucidation of the diverse functions of GWBs. It is expected that this protocol can be adapted to the detection of other RNA-binding complexes.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
34
|
Jagannath A, Wood MJ. Localization of double-stranded small interfering RNA to cytoplasmic processing bodies is Ago2 dependent and results in up-regulation of GW182 and Argonaute-2. Mol Biol Cell 2009; 20:521-9. [PMID: 18946079 PMCID: PMC2613116 DOI: 10.1091/mbc.e08-08-0796] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/22/2008] [Accepted: 10/09/2008] [Indexed: 11/11/2022] Open
Abstract
Processing bodies (P-bodies) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation. Key effectors of microRNA (miRNA)-mediated RNA interference (RNAi), such as Argonaute-2 (Ago2), miRNAs, and their cognate mRNAs, are localized to these structures; however, the precise role that P-bodies and their component proteins play in small interfering RNA (siRNA)-mediated RNAi remains unclear. Here, we investigate the relationship between siRNA-mediated RNAi, RNAi machinery proteins, and P-bodies. We show that upon transfection into cells, siRNAs rapidly localize to P-bodies in their native double-stranded conformation, as indicated by fluorescence resonance energy transfer imaging and that Ago2 is at least in part responsible for this siRNA localization pattern, indicating RISC involvement. Furthermore, siRNA transfection induces up-regulated expression of both GW182, a key P-body component, and Ago2, indicating that P-body localization and interaction with GW182 and Ago2 are important in siRNA-mediated RNAi. By virtue of being centers where these proteins and siRNAs aggregate, we propose that the P-body microenvironment, whether as microscopically visible foci or submicroscopic protein complexes, facilitates siRNA processing and siRNA-mediated silencing through the action of its component proteins.
Collapse
Affiliation(s)
- Aarti Jagannath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Matthew J.A. Wood
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
35
|
Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10:R101. [PMID: 18759964 PMCID: PMC2575615 DOI: 10.1186/ar2493] [Citation(s) in RCA: 534] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/08/2008] [Accepted: 08/29/2008] [Indexed: 01/15/2023] Open
Abstract
Introduction MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis. Methods Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR. Results Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production. Conclusions Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 2008; 413:429-36. [DOI: 10.1042/bj20080599] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.
Collapse
|
37
|
Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008; 20:214-21. [PMID: 18329869 DOI: 10.1016/j.ceb.2008.01.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/26/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Jidong Liu
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
38
|
Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008; 135:1201-14. [PMID: 18287206 DOI: 10.1242/dev.005629] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several distinct classes of small RNAs, some newly identified, have been discovered to play important regulatory roles in diverse cellular processes. These classes include siRNAs, miRNAs, rasiRNAs and piRNAs. Each class binds to distinct members of the Argonaute/Piwi protein family to form ribonucleoprotein complexes that recognize partially, or nearly perfect, complementary nucleic acid targets, and that mediate a variety of regulatory processes, including transcriptional and post-transcriptional gene silencing. Based on the known relationship of Argonaute/Piwi proteins with distinct classes of small RNAs, we can now predict how many new classes of small RNAs or silencing processes remain to be discovered.
Collapse
Affiliation(s)
- Thalia A Farazi
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | | | | |
Collapse
|
39
|
Herrera-Esparza R, Pacheco-Tovar D, Avalos-Diaz E. GW bodies: from RNA biology to clinical implications in autoimmunity. Expert Rev Clin Immunol 2008; 4:21-5. [PMID: 20477583 DOI: 10.1586/1744666x.4.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Lian S, Fritzler M, Katz J et al. Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies. Mol. Biol. Cell 18, 3375-3387 (2007). GW bodies (GWBs) are also known as mammalian processing bodies and are involved in 5 -3 mRNA degradation. Conversely, siRNA is a powerful tool for silencing genes. Recently, components of RNAi have been associated with GWBs, but as more components of this complex pathway become known, such relationships remain to be clarified. This paper evaluates the induction of GWBs by siRNA transfection. The main results of these studies indicate that siRNA increased the GWBs, such an increase is also dependent on the endogenous expression of the target mRNA; siRNA increases require GW182 or Ago-2 proteins, but not rck/p54 or LSm1. Results of the present studies propose a regulatory function of RNAi in GWB assembly; therefore, cell biology implications of GWBs may open a new area in pathogenic mechanisms of autoimmunity.
Collapse
Affiliation(s)
- Rafael Herrera-Esparza
- Universidad Autonoma de Zacatecas, Department of Immunology, Chepinque 206, Col Lomas de la Soledad, Zacatecas, 98040, Mexico.
| | | | | |
Collapse
|