1
|
Ott DP, Desai S, Solinger JA, Kaech A, Spang A. Coordination between ESCRT function and Rab conversion during endosome maturation. EMBO J 2025; 44:1574-1607. [PMID: 39910226 PMCID: PMC11914609 DOI: 10.1038/s44318-025-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
The endosomal pathway is essential for regulating cell signaling and cellular homeostasis. Rab5 positive early endosomes receive proteins from the plasma membrane. Dependent on a ubiquitin mark on the protein, they will be either recycled or sorted into intraluminal vesicles (ILVs) by endosomal sorting complex required for transport (ESCRT) proteins. During endosome maturation Rab5 is replaced by Rab7 on endosomes that are able to fuse with lysosomes to form endolysosomes. However, whether ESCRT-driven ILV formation and Rab5-to-Rab7 conversion are coordinated remains unknown. Here we show that loss of early ESCRTs led to enlarged Rab5 positive endosomes and prohibited Rab conversion. Reduction of ubiquitinated cargo alleviated this phenotype. Moreover, ubiquitinated proteins on the endosomal limiting membrane prevented the displacement of the Rab5 guanine nucleotide exchange factor (GEF) RABX-5 by the GEF for Rab7, SAND-1/CCZ-1. Overexpression of Rab7 could partially overcome this block, even in the absence of SAND-1 or CCZ1, suggesting the presence of a second Rab7 GEF. Our data reveal a hierarchy of events in which cargo corralling by ESCRTs is upstream of Rab conversion, suggesting that ESCRT-0 and ubiquitinated cargo could act as timers that determine the onset of Rab conversion.
Collapse
Affiliation(s)
- Daniel P Ott
- Biozentrum, University of Basel, Basel, Switzerland
| | - Samit Desai
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Miao Y, Du Y, Wang B, Liang J, Liang Y, Dang S, Liu J, Li D, He K, Ding M. Spatiotemporal recruitment of the ubiquitin-specific protease USP8 directs endosome maturation. eLife 2024; 13:RP96353. [PMID: 39576689 PMCID: PMC11584181 DOI: 10.7554/elife.96353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.
Collapse
Affiliation(s)
- Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Liu
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Nakashima S, Matsui T, Fukuda M. Vps9d1 regulates tubular endosome formation through specific activation of Rab22A. J Cell Sci 2023; 136:286994. [PMID: 36762583 DOI: 10.1242/jcs.260522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The small GTPase Rab22A is an important regulator of the formation of tubular endosomes, which are one of the types of recycling endosome compartments of the clathrin-independent endocytosis pathway. In order to regulate tubular endosome formation, Rab22A must be activated by a specific guanine-nucleotide-exchange factor (GEF); however, all of the GEFs that have been reported to exhibit Rab22A-GEF activity in vitro also activate Rab5A, an essential regulator of the clathrin-mediated endocytosis pathway, and no Rab22A-specific GEF has ever been identified. Here, we identified Vps9d1, a previously uncharacterized vacuolar protein sorting 9 (VPS9) domain-containing protein, as a novel Rab22A-GEF. The formation of tubular endosome structures was found to be severely impaired in Vps9d1-depleted HeLa cells, but Rab5A localization was unaffected. Expression of a constitutively active Rab22A mutant in Vps9d1-depleted HeLa cells restored tubular endosomes, but expression of a GEF-activity-deficient Vps9d1 mutant did not. Moreover, Vps9d1 depletion altered the distribution of clathrin-independent endocytosed cargos and impaired their recycling. Our findings indicate that Vps9d1 promotes tubular endosome formation by specifically activating Rab22A.
Collapse
Affiliation(s)
- Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
4
|
Pensalfini A, Kim S, Subbanna S, Bleiwas C, Goulbourne CN, Stavrides PH, Jiang Y, Lee JH, Darji S, Pawlik M, Huo C, Peddy J, Berg MJ, Smiley JF, Basavarajappa BS, Nixon RA. Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Rep 2020; 33:108420. [PMID: 33238112 DOI: 10.1016/j.celrep.2020.108420] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Pensalfini
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Seonil Kim
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO 80523, USA; Cellular and Molecular Biology Training Program, New York University Langone Health, New York, NY 10003, USA
| | - Shivakumar Subbanna
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Cynthia Bleiwas
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Martin J Berg
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John F Smiley
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Health, New York, NY 10003, USA; NYU Neuroscience Institute, New York, NY 10003, USA.
| |
Collapse
|
5
|
Taefehshokr N, Yin C, Heit B. Rab GTPases in the differential processing of phagocytosed pathogens versus efferocytosed apoptotic cells. Histol Histopathol 2020; 36:123-135. [PMID: 32990320 DOI: 10.14670/hh-18-252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phagocytosis is an important feature of innate immunity in which invading microorganisms are engulfed, killed and degraded - and in some immune cells, their antigens presented to adaptive immune system. A closely related process, efferocytosis, removes apoptotic cells, and is essential for the maintenance of homeostasis. Both phagocytosis and efferocytosis are tightly regulated processes that involve target recognition and uptake through specific receptors, followed by endolysosomal trafficking and processing of the internalized target. Central to the uptake and trafficking of these targets are the Rab family of small GTPases, which coordinate the engulfment and trafficking of both phagocytosed and efferocytosed materials through the endolysosomal system. Because of this regulatory function, Rab GTPases are often targeted by pathogens to escape phagocytosis. In this review, we will discuss the shared and differential roles of Rab GTPases in phagocytosis and efferocytosis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Charles Yin
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada. .,Associate Scientist, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Bezeljak U, Loya H, Kaczmarek B, Saunders TE, Loose M. Stochastic activation and bistability in a Rab GTPase regulatory network. Proc Natl Acad Sci U S A 2020; 117:6540-6549. [PMID: 32161136 PMCID: PMC7104049 DOI: 10.1073/pnas.1921027117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.
Collapse
Affiliation(s)
- Urban Bezeljak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Hrushikesh Loya
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Beata Kaczmarek
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 119077;
- Department of Biological Sciences, National University of Singapore, Singapore 119077
| | - Martin Loose
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| |
Collapse
|
7
|
Herman EK, Ali M, Field MC, Dacks JB. Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic 2018; 19:546-563. [PMID: 29603841 PMCID: PMC6032885 DOI: 10.1111/tra.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate endocytosis are ancient eukaryotic features and all available evidence suggests retained conserved function. In animals and fungi, these GTPases are regulated in part by proteins possessing Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of GTPase regulators, combining molecular evolutionary data with functional characterization in the non-opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of regulation of endocytic Rab protein function. There are examples of lineage-specific Vps9 subfamily member expansions and novel domain combinations, suggesting diversity in precise regulatory mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating conservation of function. These data demonstrate that, for the Vps9-domain family at least, modulation of Rab function is mediated by evolutionarily conserved protein-protein interactions.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| | - Moazzam Ali
- School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Joel B. Dacks
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
8
|
Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S. Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. eLife 2017; 6. [PMID: 28968219 PMCID: PMC5624781 DOI: 10.7554/elife.29154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Rab GTPases, which are involved in intracellular trafficking pathways, have recently been reported to be ubiquitinated. However, the functions of ubiquitinated Rab proteins remain unexplored. Here we show that Rab5 is monoubiquitinated on K116, K140, and K165. Upon co-transfection with ubiquitin, Rab5 exhibited abnormalities in endosomal localization and EGF-induced EGF receptor degradation. Rab5 K140R and K165R mutants restored these abnormalities, whereas K116R did not. We derived structural models of individual monoubiquitinated Rab5 proteins (mUbRab5s) by solution scattering and observed different conformational flexibilities in a site-specific manner. Structural analysis combined with biochemical data revealed that interactions with downstream effectors were impeded in mUbRab5K140, whereas GDP release and GTP loading activities were altered in mUbRab5K165. By contrast, mUbRab5K116 apparently had no effect. We propose a regulatory mechanism of Rab5 where monoubiquitination downregulates effector recruitment and GDP/GTP conversion in a site-specific manner.
Collapse
Affiliation(s)
- Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Wooju Na
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
9
|
Abstract
Rab GTPases act as organizers of protein networks defining identities and functions of organelles of the endocytic and secretory pathways. Various modes of coordination between different Rabs drive the timely maturation and conversion of membranes. Endosomal Rab5 has been known as the prime example for self-activation via a feedback loop recruiting Rabaptin5, which is complexed with the Rab5 exchange factor Rabex5, and couples to Rab4-GTP. Among other effectors, Rab5 also recruits the Mon1/SAND1-Ccz1 complex that both activates Rab7 and dissociates Rabex5 for Rab5-to-Rab7 conversion of early-to-late endosomes. A detailed deletion analysis now revealed 2 separate binding sites each for Rab4-GTP and Rab5-GTP and indicates a feedforward mechanism of Rab5 activation. Rabaptin5/Rabex5 is recruited to endosomal membranes positive for Rab4-GTP and ubiquitinated cargo (binding to the ubiquitin binding site of Rabex5). This mechanism also suggests additional criteria for Rab5 inactivation concomitant with increasing Rab7-GTP levels. The disappearance of ubiquitinated cargo upon ESCRT-mediated formation of intraluminal vesicles and inactivation of Rab4 may also contribute to loss of Rab5 activation. Rabaptin5/Rabex5 thus may integrate several cues of maturation to perform Rab conversion. Furthermore Rab5 binding to Rabaptin5 appears to prevent uncontrolled progression to late endosomes.
Collapse
Affiliation(s)
- Simone Kälin
- a Biozentrum, University of Basel , Basel, Switzerland
| | | | - Martin Spiess
- a Biozentrum, University of Basel , Basel, Switzerland
| |
Collapse
|
10
|
Wen MH, Wang JY, Chiu YT, Wang MP, Lee SP, Tai CY. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic 2016; 17:769-85. [DOI: 10.1111/tra.12402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Meng-Hsuan Wen
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
| | - Mei-Pin Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Chin-Yin Tai
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| |
Collapse
|
11
|
Kälin S, Hirschmann DT, Buser DP, Spiess M. Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation. J Cell Sci 2015; 128:4126-37. [PMID: 26430212 DOI: 10.1242/jcs.174664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Rab GTPases control membrane identity, fusion and transport by interaction with effector proteins. Effectors that influence the activation-inactivation cycle of their own or other Rab proteins contribute to the timely conversion of Rab membrane identities. Rab5 and its effector rabaptin5 (Rbpt5, also known as RABEP1) are generally considered the prime example for a positive-feedback loop in which Rab5-GTP recruits Rbpt5 in complex with Rabex5 (also known as RABGEF1), the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the Rab5 membrane identity. By deletion analysis, we found that the membrane recruitment of Rabaptin5 required binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of the two Rab5-binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict the model of feedback activation of Rab5 and instead indicate that Rbpt5 is recruited by both Rabex5 recognizing ubiquitylated cargo and by Rab4 to activate Rab5 in a feed-forward manner.
Collapse
Affiliation(s)
- Simone Kälin
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - David T Hirschmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Dominik P Buser
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
12
|
Zhang F, Jia Y, Kong F, Hu G, Cai Q, Xu T. Elevated RABEX-5 expression predicts poor prognosis in non-small-cell lung cancer. Am J Cancer Res 2015; 5:2849-2855. [PMID: 26609490 PMCID: PMC4633911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/19/2015] [Indexed: 06/05/2023] Open
Abstract
RABEX-5 has been studied in various solid tumors, but its role in non-small-cell lung cancer (NSCLC) remains unknown. This study is aimed to investigate the expression, the potential relevance to clinicopathological characters and prognostic significance of RABEX-5 in patients with NSCLC. A total of 120 NSCLC patients who underwent radical surgery between 2005 and 2010 were enrolled in the study. The clinicopathological data and survival time were reviewed. The mRNA and protein expression of RABEX-5 from the paired tumor specimens and adjacent normal tissues were determined, and its relationship with clinicopathological variables and prognosis was analyzed. Univariate and multivariate analyses were performed to investigate the prognostic significance of RABEX-5 for NSCLC. We found the mRNA and protein expression levels of RABEX-5 were significantly elevated in NSCLC tissues. The increased RABEX-5 expression was correlated strongly with tumor recurrence (P=0.005). The 5-year median OS and DFS were significantly shorter in the higher RABEX-5 expression group compared to that in the lower RABEX-5 expression group. Multivariate Cox analysis indicated that high RABEX-5 expression was an independent prognostic factor for OS and DFS (P<0.001). This data suggests that RABEX-5 is a potentially useful indicator for a poor prognosis for NSCLC.
Collapse
Affiliation(s)
- Fuliang Zhang
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai HospitalSanwei Road, Nankai District, Tianjin 300100, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of TCMAnshanxi Road, Nankai District, Tianjin 300193, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of TCMAnshanxi Road, Nankai District, Tianjin 300193, China
| | - Guohua Hu
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai HospitalSanwei Road, Nankai District, Tianjin 300100, China
| | - Qiling Cai
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai HospitalSanwei Road, Nankai District, Tianjin 300100, China
| | - Tongbai Xu
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai HospitalSanwei Road, Nankai District, Tianjin 300100, China
| |
Collapse
|
13
|
Zhang F, Zhang M, Hu G, Cai Q, Xu T. Elevated RABEX-5 protein expression predicts poor prognosis in combined small cell lung cancer. Tumour Biol 2015; 36:8287-93. [PMID: 26002576 DOI: 10.1007/s13277-015-3562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
RABEX-5 has been studied in various solid tumors, but its role in combined small cell lung cancer (C-SCLC) remains unknown. This study aimed to investigate the expression, the potential relevance to clinicopathological characters and prognostic significance of RABEX-5 in patients with C-SCLC. Fifty-two C-SCLC patients who received radical surgery were enrolled in our study. The clinicalpathological data and survival time were reviewed. The mRNA and protein expression of RABEX-5 from the paired tumor tissues and adjacent normal tissues were determined, and its relationship with clinicalpathological variables and prognosis was analyzed. Univariate and multivariate analyses were performed to investigate the prognostic significance of RABEX-5 for C-SCLC. The mRNA and protein expression level of RABEX-5 was significantly elevated in C-SCLC tissues. The increased RABEX-5 protein expression was correlated with clinical stage (p = 0.011) and tumor recurrence (p = 0.006). The median OS and DFS was significantly shorter in the high RABEX-5 expression group compared to low RABEX-5 expression group (OS: 12.0 vs. 21.7 months, p = 0.014; DFS: 6.7 vs. 11.8 months, p = 0.005). Multivariate Cox analysis indicated that high RABEX-5 protein expression was an independent prognostic factor for OS and DFS (p < 0.001). RABEX-5 is a potential useful indicator and predicts a poor long-term prognosis for C-SCLC, which should be considered in defining the prognosis with other well-known prognosticators in C-SCLC patients.
Collapse
Affiliation(s)
- Fuliang Zhang
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai Hospital, Sanwei Road, Nankai District, Tianjin, 300100, China.
| | - Meng Zhang
- Department of ICU, First Teaching Hospital of Tianjin University of TCM, Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Guohua Hu
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai Hospital, Sanwei Road, Nankai District, Tianjin, 300100, China
| | - Qiling Cai
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai Hospital, Sanwei Road, Nankai District, Tianjin, 300100, China
| | - Tongbai Xu
- Department of Respiratory Medicine, Tianjin Hospital of ITCWM, Nankai Hospital, Sanwei Road, Nankai District, Tianjin, 300100, China
| |
Collapse
|
14
|
Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Do Heo W, Jung JU, Rigden DJ, Oh BH. Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One 2015; 10:e0118683. [PMID: 25821953 PMCID: PMC4379102 DOI: 10.1371/journal.pone.0118683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella.
Collapse
Affiliation(s)
- Young-Sik Sohn
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-600, Korea
| | - Wei Sun Park
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Jianning Ge
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chan-Hee Kim
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Korea
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel John Rigden
- Institute of Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 7ZB, United Kingdom
- * E-mail: (BHO); (DJR)
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
- * E-mail: (BHO); (DJR)
| |
Collapse
|
15
|
Zhang Z, Zhang T, Wang S, Gong Z, Tang C, Chen J, Ding J. Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. eLife 2014; 3. [PMID: 24957337 PMCID: PMC4102244 DOI: 10.7554/elife.02687] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023] Open
Abstract
Rabex-5 and Rabaptin-5 function together to activate Rab5 and further promote early endosomal fusion in endocytosis. The Rabex-5 GEF activity is autoinhibited by the Rabex-5 CC domain (Rabex-5CC) and activated by the Rabaptin-5 C2-1 domain (Rabaptin-5C21) with yet unknown mechanism. We report here the crystal structures of Rabex-5 in complex with the dimeric Rabaptin-5C21 (Rabaptin-5C212) and in complex with Rabaptin-5C212 and Rab5, along with biophysical and biochemical analyses. We show that Rabex-5CC assumes an amphipathic α-helix which binds weakly to the substrate-binding site of the GEF domain, leading to weak autoinhibition of the GEF activity. Binding of Rabaptin-5C21 to Rabex-5 displaces Rabex-5CC to yield a largely exposed substrate-binding site, leading to release of the GEF activity. In the ternary complex the substrate-binding site of Rabex-5 is completely exposed to bind and activate Rab5. Our results reveal the molecular mechanism for the regulation of the Rabex-5 GEF activity. DOI:http://dx.doi.org/10.7554/eLife.02687.001 Cells need to allow various molecules to pass through the plasma membrane on their surface. Some molecules have to enter the cell, whereas others have to leave. Cells rely on a process called endocytosis to move large molecules into the cell. This involves part of the membrane engulfing the molecule to form a ‘bubble’ around it. This bubble, which is called an endosome, then moves the molecule to final destination inside the cell. A protein called Rab5 controls how a new endosome is produced. However, before this can happen, various other molecules—including two proteins called Rabex-5 and Rabaptin-5—must activate the Rab5 protein. Exactly how these three proteins interact with each other was unknown. Zhang et al. used X-ray crystallography to examine the structures of the complexes formed when Rabex-5 and Rabaptin-5 bind to each other, both when Rab5 is present, and also when it is absent. Biochemical and biophysical experiments confirmed that the Rabex-5/Rabaptin-5 complex is able to activate Rab5. Zhang et al. also found that Rabex-5, on its own, folds so that the site that normally binds to Rab5 instead binds to a different part of Rabex-5, thus preventing endocytosis. However, when Rabaptin-5 forms a complex with Rabex-5, the Rab5 binding site is freed up. The Rabex-5/Rabaptin-5 complex can switch between a V shape and a linear structure. Binding to Rab5 stabilizes the linear form of the complex, which then helps activate Rab5, and subsequently the activated Rab5 can interact with other downstream molecules, triggering endocytosis. DOI:http://dx.doi.org/10.7554/eLife.02687.002
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Khan AR, Ménétrey J. Structural biology of Arf and Rab GTPases' effector recruitment and specificity. Structure 2014; 21:1284-97. [PMID: 23931141 DOI: 10.1016/j.str.2013.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Arf and Rab proteins, members of small GTPases superfamily, localize to specific subcellular compartments and regulate intracellular trafficking. To carry out their cellular functions, Arfs/Rabs interact with numerous and structurally diverse effector proteins. Over the years, a number of Arf/Rab:effector complexes have been crystallized and their structures reveal shared binding modes including α-helical packing, β-β complementation, and heterotetrameric assemblies. We review available structural information and provide a framework for in-depth analysis of complexes. The unifying features that we identify are organized into a classification scheme for different modes of Arf/Rab:effector interactions, which includes "all-α-helical," "mixed α-helical," "β-β zipping," and "bivalent" modes of binding. Additionally, we highlight structural determinants that are the basis of effector specificity. We conclude by expanding on functional implications that are emerging from available structural information under our proposed classification scheme.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
17
|
Thomas C, Strutt D. Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol 2013; 385:107-21. [PMID: 24104056 PMCID: PMC3858806 DOI: 10.1016/j.ydbio.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 01/08/2023]
Abstract
Endocytosis plays an important role in the regulation of tumour growth and metastasis. In Drosophila, a number of endocytic neoplastic tumour suppressor genes have been identified that when mutated cause epithelial disruption and over-proliferation. Here we characterise the Drosophila homologue of the Rab5 effector Rabaptin-5, and show that it is a novel neoplastic tumour suppressor. Its ability to bind Rab5 and modulate early endosomal dynamics is conserved in Drosophila, as is its interaction with the Rab5 GEF Rabex5, for which we also demonstrate neoplastic tumour suppressor characteristics. Surprisingly, we do not observe disruption of apico-basal polarity in Rabaptin-5 and Rabex-5 mutant tissues; instead the tumour phenotype is associated with upregulation of Jun N-terminal Kinase (JNK) and Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signalling. Drosophila Rabaptin-5 and Rabex-5 are endocytic neoplastic tumour suppressor genes. The Rab5 effector function of Rabaptin-5 is highly conserved in Drosophila. Rabaptin-5 interacts with Rabex-5 to modulate early endosomal dynamics in vivo. Tumour phenotypes are associated with upregulation of JNK and JAK/STAT signalling.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
18
|
Aikawa Y, Lee S. Role of Rabex-5 in the sorting of ubiquitinated cargo at an early stage in the endocytic pathway. Commun Integr Biol 2013; 6:e24463. [PMID: 23986801 PMCID: PMC3737748 DOI: 10.4161/cib.24463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/22/2023] Open
Abstract
The covalent modification of transmembrane receptors by ubiquitin (Ub) is a key biological mechanism controlling their internalization and endocytic sorting to recycling and degradative pathways to attenuate their signaling potential. In this Ub-dependent endocytic trafficking pathway, Ub-binding proteins (UBPs) play a critical role in the sorting of these ubiquitinated transmembrane proteins at the plasma membrane, early endosomes, and multivesicular bodies. We recently reported that Rabex-5, a UBP and guanine nucleotide exchange factor for Rab5, is translocated to the plasma membrane in an extracellular ligand-dependent manner to regulate the internalization of ligand-induced ubiquitinated transmembrane proteins upon stimulation with extracellular ligands. Here, we show that Rabex-5 predominantly localizes on Rab5- and syntaxin 13-positive endosomes, but not on Rab11-positive recycling endosomes before stimulation with extracellular ligands. We further discuss the significance of Rabex-5-mediated sorting of ubiquitinated transmembrane proteins as cargo at an early stage of the endocytic pathway.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Laboratory of Neural Membrane Biology; Graduate School of Brain Science; Doshisha University; Kyoto, Japan,* Correspondence to: Yoshikatsu Aikawa;
| | - Sangho Lee
- Department of Biological Sciences; Sungkyunkwan University; Suwon, Korea
| |
Collapse
|
19
|
Abstract
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER-Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.
Collapse
|
20
|
Blümer J, Rey J, Dehmelt L, Mazel T, Wu YW, Bastiaens P, Goody RS, Itzen A. RabGEFs are a major determinant for specific Rab membrane targeting. ACTA ACUST UNITED AC 2013; 200:287-300. [PMID: 23382462 PMCID: PMC3563681 DOI: 10.1083/jcb.201209113] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analysis of three different Rab-RabGEF pairs reveals that RabGEFs contain the minimal targeting machinery for recruiting Rabs to specific membranes. Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via posttranslationally attached geranylgeranyl lipids. Each member of the manifold Rab family localizes specifically to a distinct membrane, but it is unclear how this specific membrane recruitment is achieved. Here, we demonstrate that Rab-activating guanosine diphosphate/guanosine triphosphate exchange factors (GEFs) display the minimal targeting machinery for recruiting Rabs from the cytosol to the correct membrane using the Rab-GEF pairs Rab5A–Rabex-5, Rab1A-DrrA, and Rab8-Rabin8 as model systems. Specific mistargeting of Rabex-5/DrrA/Rabin8 to mitochondria led to catalytic recruitment of Rab5A/Rab1A/Rab8A in a time-dependent manner that required the catalytic activity of the GEF. Therefore, RabGEFs are major determinants for specific Rab membrane targeting.
Collapse
Affiliation(s)
- Julia Blümer
- Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF, Chaudhry TA, Horne-Badovinac S. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 2013; 24:159-68. [PMID: 23369713 DOI: 10.1016/j.devcel.2012.12.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
Abstract
Basement membranes (BMs) are specialized extracellular matrices that are essential for epithelial structure and morphogenesis. However, little is known about how BM proteins are delivered to the basal cell surface or how this process is regulated during development. Here, we identify a mechanism for polarized BM secretion in the Drosophila follicle cells. BM proteins are synthesized in a basal endoplasmic reticulum (ER) compartment from localized mRNAs and are then exported through Tango1-positive ER exit sites to basal Golgi clusters. Next, Crag targets Rab10 to structures in the basal cytoplasm, where it restricts protein delivery to the basal surface. These events occur during egg chamber elongation, a morphogenetic process that depends on follicle cell planar polarity and BM remodeling. Significantly, Tango1 and Rab10 are also planar polarized at the basal epithelial surface. We propose that the spatial control of BM production along two tissue axes promotes exocytic efficiency, BM remodeling, and organ morphogenesis.
Collapse
Affiliation(s)
- David W Lerner
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Centre deRecherche de Gif, Gif-sur-Yvette, France
| | | |
Collapse
|
23
|
Nabavi N, Pustylnik S, Harrison RE. Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts. PLoS One 2012; 7:e46265. [PMID: 23050002 PMCID: PMC3458846 DOI: 10.1371/journal.pone.0046265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/30/2012] [Indexed: 12/24/2022] Open
Abstract
Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.
Collapse
Affiliation(s)
- Noushin Nabavi
- Department of Cell and Systems Biology, University of Tronto Scarborought, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sofia Pustylnik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E. Harrison
- Department of Cell and Systems Biology, University of Tronto Scarborought, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Jozic I, Saliba SC, Barbieri MA. Effect of EGF-receptor tyrosine kinase inhibitor on Rab5 function during endocytosis. Arch Biochem Biophys 2012; 525:16-24. [PMID: 22683472 DOI: 10.1016/j.abb.2012.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/05/2012] [Accepted: 05/24/2012] [Indexed: 01/08/2023]
Abstract
Tyrosine autophosphorylation within the cytoplasmic tail of EGF-receptor is a key event, which in turn recruits several factors including Shc, Grb2 and Rin1 that are essential activities for receptor-mediated endocytosis and signaling. In this study, we demonstrated that treatment with AG1478, an EGF-receptor kinase inhibitor, blocked the formation of Rab5-positive endosomes as well as the activation of Rab5 upon addition of EGF. We also found that EGF-receptor catalytically inactive mutant failed to activate Rab5 upon EGF stimulation. Additionally, endosomal co-localization of Rab5 and EGF-receptor was inhibited by AG1478. Interestingly, AG1478 inhibitor did not block the formation of enlarged Rab5-positive endosomes in cells expressing Rab5 GTP hydrolysis defective mutant (Rab5:Q79L). AG1478 inhibitor also blocked the in vitro endosome fusion in a concentration-dependent manner, and more importantly, Rab5:Q79L mutant rescued it. Furthermore, addition of Rin1, a Rab5 guanine nucleotide exchange factor, partially restored endosome fusion in the presence of AG1478 inhibitor. Consistent with these observations, we also observed that Rin1 was unable to localize to membranes upon EGF-stimulation in the presence of AG1478 inhibitor. These results constitute first evidence that the enzymatic activity of a tyrosine kinase receptor is required endosome fusion via the activation of Rab5.
Collapse
Affiliation(s)
- Ivan Jozic
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | |
Collapse
|
25
|
Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A. Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling. Mol Biol Cell 2012; 23:2723-40. [PMID: 22648168 PMCID: PMC3395661 DOI: 10.1091/mbc.e12-05-0375] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The MTM phosphatases include poorly defined, catalytically inactive members. Drosophila Sbf, an MTM pseudophosphatase, physically and functionally interacts with class II PI3-kinase, Mtm PI3-phosphatase, and Rab21, each required for macrophage remodeling. Sbf plays dual roles in Mtm PI(3)P turnover and as a Rab21 GEF to coordinate endosomal dynamics. Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila MTM pseudophosphatase Sbf coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. Sbf dynamically interacts with class II phosphatidylinositol 3-kinase and stably recruits Mtm to promote turnover of a PI(3)P subpool essential for endosomal trafficking. Sbf also functions as a guanine nucleotide exchange factor that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Of importance, Sbf, Mtm, and Rab21 function together, along with Rab11-mediated endosomal trafficking, to control macrophage protrusion formation. This identifies Sbf as a critical coordinator of PI(3)P and Rab21 regulation, which specifies an endosomal pathway and cortical control.
Collapse
Affiliation(s)
- Steve Jean
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
26
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
27
|
Leclerc EA, Gazeilles L, Serre G, Guerrin M, Jonca N. The ubiquitous dermokine delta activates Rab5 function in the early endocytic pathway. PLoS One 2011; 6:e17816. [PMID: 21423773 PMCID: PMC3053396 DOI: 10.1371/journal.pone.0017816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
The expression of the recently identified dermokine (Dmkn) gene leads to four families of proteins with as yet unknown functions. The secreted α, β and γ isoforms share an epidermis-restricted expression pattern, whereas the δ isoform is intracellular and ubiquitous. To get an insight into Dmknδ function, we performed yeast two-hybrid screening and identified the small GTPases Rab5 as partners for Dmknδ. The Rab5 proteins are known to regulate membrane docking and fusion in the early endocytic pathway. GST pull-down assays confirmed the direct interaction between Rab5 and Dmknδ. Transient expression of Dmknδ in HeLa cells led to the formation of punctate structures colocalized with endogenous Rab5 and clathrin, indicating Dmknδ involvement in the early steps of endocytosis. Dmknδ indeed colocalized with transferrin at early stages of endocytosis, but did not modulate its endocytosis or recycling kinetics. We also showed that Dmknδ was able to bind both inactive (GDP-bound) and active (GTP-bound) forms of Rab5 in vitro but preferentially targeted GDP-bound form in HeLa cells. Interestingly, Dmknδ expression rescued the Rab5S34N-mediated inhibition of endosome fusion. Moreover, Dmknδ caused the enlargement of vesicles positive for Rab5 by promoting GTP loading onto the small GTPase. Together our data reveal that Dmknδ activates Rab5 function and thus is involved in the early endosomal trafficking.
Collapse
Affiliation(s)
- Emilie A. Leclerc
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Leila Gazeilles
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Guy Serre
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Marina Guerrin
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Nathalie Jonca
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
28
|
Abstract
RAS proteins conduct signaling from surface receptors to cytoplasmic effectors, and RAS gain-of-function mutations are pervasive in cancer. A new mechanism for RAS signal attenuation with implications for receptor trafficking has been uncovered.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Xu L, Lubkov V, Taylor LJ, Bar-Sagi D. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol 2010; 20:1372-7. [PMID: 20655225 DOI: 10.1016/j.cub.2010.06.051] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Ras proteins play a central role in transducing signals that control cell proliferation, differentiation, motility, and survival. The location-specific signaling activity of Ras has been previously shown to be regulated by ubiquitination [1]. However, the molecular machinery that controls Ras ubiquitination has not been defined. Here we demonstrate through biochemical and functional analyses that Rabex-5 (also known as RabGEF1) [2, 3] functions as an E3 ligase for Ras. Rabex-5-mediated Ras ubiquitination promotes Ras endosomal localization and leads to the suppression of ERK activation. Moreover, the Ras effector RIN1 [4, 5] is required for Rabex-5-dependent Ras ubiquitination, suggesting a feedback mechanism by which Ras activation can be coupled to ubiquitination. These findings define new elements in the regulatory circuitry that link Ras compartmentalization to signaling output.
Collapse
Affiliation(s)
- Lizhong Xu
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
30
|
Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS. Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol 2010; 6:534-40. [PMID: 20512138 DOI: 10.1038/nchembio.386] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 05/30/2010] [Indexed: 12/31/2022]
Abstract
Post-translationally isoprenylated proteins represent major hubs in most membrane-connected signaling networks. GDP dissociation inhibitors (GDIs) are molecular chaperones that shuttle geranylgeranylated GTPases between membranes and the cytosol. Despite numerous studies, the mechanism of targeted membrane delivery of GTPases remains unknown. Here we have combined chemical synthesis and expressed protein ligation to generate fluorescent lipidated RabGTPase-based sensor molecules. Using these protein probes, we have demonstrated that RabGDI and the related Rab escort protein REP show a three-order-of-magnitude greater affinity for GDP-bound Rab GTPase than for the GTP-bound state. Combined with a relatively high dissociation rate of the Rab-GDI complex, this would enable guanine nucleotide exchange factors (GEFs) to efficiently dissociate the complex and promote membrane attachment of the GTPase. The findings suggest strongly that GEFs are necessary and sufficient for membrane targeting of GTPases and that the previously proposed GDI displacement factors (GDFs) are not thermodynamically required for this process.
Collapse
Affiliation(s)
- Yao-Wen Wu
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497-508. [PMID: 20434987 DOI: 10.1016/j.cell.2010.03.011] [Citation(s) in RCA: 539] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/26/2009] [Accepted: 02/25/2010] [Indexed: 11/16/2022]
Abstract
Sequential transport from early to late endosomes requires the coordinated activities of the small GTPases Rab5 and Rab7. The transition between early and late endosomes could be mediated either through transport carriers or by Rab conversion, a process in which the loss of Rab5 from an endosome occurs concomitantly to the acquisition of Rab7. We demonstrate that Rab conversion is the mechanism by which proteins pass from early to late endosomes in Caenorhabditis elegans coelomocytes. Moreover, we identified SAND-1/Mon1 as the critical switch for Rab conversion in metazoa. SAND-1 serves a dual role in this process. First, it interrupts the positive feedback loop of RAB-5 activation by displacing RABX-5 from endosomal membranes; second, it times the recruitment of RAB-7, probably through interaction with the HOPS complex to the same membranes. SAND-1/Mon1 thus acts as a switch by controlling the localization of RAB-5 and RAB-7 GEFs.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Allaire PD, Marat AL, Dall'Armi C, Di Paolo G, McPherson PS, Ritter B. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 2010; 37:370-82. [PMID: 20159556 DOI: 10.1016/j.molcel.2009.12.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/08/2009] [Accepted: 12/08/2009] [Indexed: 12/26/2022]
Abstract
The DENN domain is an evolutionarily ancient protein module. Mutations in the DENN domain cause developmental defects in plants and human diseases, yet the function of this common module is unknown. We now demonstrate that the connecdenn/DENND1A DENN domain functions as a guanine nucleotide exchange factor (GEF) for Rab35 to regulate endosomal membrane trafficking. Loss of Rab35 activity causes an enlargement of early endosomes and inhibits MHC class I recycling. Moreover, it prevents early endosomal recruitment of EHD1, a common component of tubules involved in endosomal cargo recycling. Our data reveal an enzymatic activity for a DENN domain and demonstrate that distinct Rab GTPases can recruit a common protein machinery to various sites within the endosomal network to establish cargo-selective recycling pathways.
Collapse
Affiliation(s)
- Patrick D Allaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Zhu H, Qian H, Li G. Delayed onset of positive feedback activation of Rab5 by Rabex-5 and Rabaptin-5 in endocytosis. PLoS One 2010; 5:e9226. [PMID: 20169068 PMCID: PMC2821916 DOI: 10.1371/journal.pone.0009226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/26/2010] [Indexed: 12/01/2022] Open
Abstract
Background Rabex-5 is a guanine nucleotide exchange factor (GEF) that specifically activates Rab5, i.e., converting Rab5-GDP to Rab5-GTP, through two distinct pathways to promote endosome fusion and endocytosis. The direct pathway involves a pool of membrane-associated Rabex-5 that targets to the membrane via an early endosomal targeting (EET) domain. The indirect pathway, on the other hand, involves a cytosolic pool of Rabex-5/Rabaptin-5 complex. The complex is recruited to the membrane via Rabaptin-5 binding to Rab5-GTP, suggesting a positive feedback mechanism. The relationship of these two pathways for Rab5 activation in the cell is unclear. Methodology/Principal Findings We dissect the relative contribution of each pathway to Rab5 activation via mathematical modeling and kinetic analysis in the cell. These studies show that the indirect pathway constitutes a positive feedback loop for converting Rab5-GDP to Rab5-GTP on the endosomal membrane and allows sensitive regulation of endosome fusion activity by the levels of Rab5 and Rabex-5 in the cell. The onset of this positive feedback effect, however, contains a threshold, which requires above endogenous levels of Rab5 or Rabex-5 in the cell. We term this novel phenomenon “delayed response”. The presence of the direct pathway reduces the delay by increasing the basal level of Rab5-GTP, thus facilitates the function of the Rabex-5/Rabaptin-5-mediated positive feedback loop. Conclusion Our data support the mathematical model. With the model's guidance, the data reveal the affinity of Rabex-5/Rabaptin-5/Rab5-GTP interaction in the cell, which is quantitatively related to the Rabex-5 concentration for the onset of the indirect positive feedback pathway. The presence of the direct pathway and increased Rab5 concentration can reduce the Rabex-5 concentration required for the onset of the positive feedback loop. Thus the direct and indirect pathways cooperate in the regulation of early endosome fusion.
Collapse
Affiliation(s)
- Huaiping Zhu
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zhu H, Liang Z, Li G. Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 2009; 20:4720-9. [PMID: 19759177 DOI: 10.1091/mbc.e09-06-0453] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rabex-5 targets to early endosomes and functions as a guanine nucleotide exchange factor for Rab5. Membrane targeting is critical for Rabex-5 to activate Rab5 on early endosomes in the cell. Here, we report the identification of Rab22 as a binding site on early endosomes for direct recruitment of Rabex-5 and activation of Rab5, establishing a Rab22-Rab5 signaling relay to promote early endosome fusion. Rab22 in guanosine 5'-O-(3-thio)triphosphate-loaded form, but not guanosine diphosphate-loaded form, binds to the early endosomal targeting domain (residues 81-230) of Rabex-5 in pull-down assays. Rabex-5 targets to Rab22-containing early endosomes, and Rab22 knockdown by short hairpin RNA abrogates the membrane targeting of Rabex-5 in the cell. In addition, coexpression of Rab22 and Rab5 shows synergistic enlargement of early endosomes, and this synergy is dependent on Rabex-5, providing further support for the collaboration of the two Rab GTPases in regulation of endosome dynamics. This novel Rab22-Rabex-5-Rab5 cascade is functionally important for the endocytosis and degradation of epidermal growth factor.
Collapse
Affiliation(s)
- Huaiping Zhu
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
35
|
Semerdjieva S, Shortt B, Maxwell E, Singh S, Fonarev P, Hansen J, Schiavo G, Grant BD, Smythe E. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. ACTA ACUST UNITED AC 2008; 183:499-511. [PMID: 18981233 PMCID: PMC2575790 DOI: 10.1083/jcb.200806016] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we investigate the role of rab5 and its cognate exchange factors rabex-5 and hRME-6 in the regulation of AP2 uncoating from endocytic clathrin-coated vesicles (CCVs). In vitro, we show that the rate of AP2 uncoating from CCVs is dependent on the level of functional rab5. In vivo, overexpression of dominant-negative rab5(S34N), or small interfering RNA (siRNA)-mediated depletion of hRME-6, but not rabex-5, resulted in increased steady-state levels of AP2 associated with endocytic vesicles, which is consistent with reduced uncoating efficiency. hRME-6 guanine nucleotide exchange factor activity requires hRME-6 binding to alpha-adaptin ear, which displaces the ear-associated mu2 kinase AAK1. siRNA-mediated depletion of hRME-6 increases phospho-mu2 levels, and expression of a phosphomimetic mu2 mutant increases levels of endocytic vesicle-associated AP2. Depletion of hRME-6 or rab5(S35N) expression also increases the levels of phosphoinositide 4,5-bisphosphate (PtdIns(4,5)P(2)) associated with endocytic vesicles. These data are consistent with a model in which hRME-6 and rab5 regulate AP2 uncoating in vivo by coordinately regulating mu2 dephosphorylation and PtdIns(4,5)P(2) levels in CCVs.
Collapse
Affiliation(s)
- Sophia Semerdjieva
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mattera R, Bonifacino JS. Ubiquitin binding and conjugation regulate the recruitment of Rabex-5 to early endosomes. EMBO J 2008; 27:2484-94. [PMID: 18772883 DOI: 10.1038/emboj.2008.177] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/12/2008] [Indexed: 01/17/2023] Open
Abstract
Rab GTPases and ubiquitination are critical regulators of transmembrane cargo sorting in endocytic and lysosomal targeting pathways. The endosomal protein Rabex-5 intersects these two layers of regulation by being both a guanine nucleotide exchange factor (GEF) for Rab5 and a substrate for ubiquitin (Ub) binding and conjugation. The ability of trafficking machinery components to bind ubiquitinated proteins is known to have a function in cargo sorting. Here, we demonstrate that Ub binding is essential for the recruitment of Rabex-5 from the cytosol to endosomes, independently of its GEF activity and of Rab5. We also show that monoubiquitinated Rabex-5 is enriched in the cytosol. These observations are consistent with a model whereby a cycle of Ub binding and monoubiquitination regulates the association of Rabex-5 with endosomes.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Abstract
Rab5 is a small GTPase that regulates early endocytic events and is activated by RabGEF1/Rabex-5. Rabaptin-5, a Rab5 interacting protein, was identified as a protein critical for potentiating RabGEF1/Rabex-5's activation of Rab5. Using Rabaptin-5 shRNA knockdown, we show that Rabaptin-5 is dispensable for Rab5-dependent processes in intact mast cells, including high affinity IgE receptor (FcepsilonRI) internalization and endosome fusion. However, Rabaptin-5 deficiency markedly diminished expression of FcepsilonRI and beta1 integrin on the mast cell surface by diminishing receptor surface stability. This in turn reduced the ability of mast cells to bind IgE and significantly diminished both mast cell sensitivity to antigen (Ag)-induced mediator release and Ag-induced mast cell adhesion and migration. These findings show that, although dispensable for canonical Rab5 processes in mast cells, Rabaptin-5 importantly contributes to mast cell IgE-dependent immunologic function by enhancing mast cell receptor surface stability.
Collapse
|