1
|
Nguyen VB, Lu CA. Characterization of OsCAF1 Protein Function in Rice Response to Thermal Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1036. [PMID: 40219104 PMCID: PMC11990703 DOI: 10.3390/plants14071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Heat stress is a critical environmental challenge that disrupts rice growth, development, and productivity and poses a significant threat to global food security. The CCR4-NOT protein complex, particularly its CCR4-associated factor 1 (CAF1) subunit, plays a crucial role in the dynamic regulation of gene expression by mediating mRNA de-adenylation, a key step in mRNA degradation and turnover. However, the specific function of OsCAF1 proteins under heat stress in rice remains poorly understood. In this study, we investigated the dynamic subcellular localization of OsCAF1A in response to elevated temperatures and its role in heat stress tolerance. Under normal conditions, OsCAF1A is diffusely localized to the cytoplasm. However, OsCAF1A predominantly localizes to processing bodies (PBs) under heat stress. The results of interaction studies revealed that two DEAD-box RNA helicases, OseIF4AIIb and OsRH8, modulate the re-localization of OsCAF1A, by OseIF4AIIb inhibiting and OsRH8 promoting its association with PBs during heat stress. Furthermore, OsCAF1A mRNA was more abundantly expressed in rice seedlings than other OsCAF1 genes and is further upregulated by high temperature. The overexpression of OsCAF1A significantly enhanced heat tolerance, whereas mutants exhibited increased heat sensitivity. These findings underscore the potential of OsCAF1A as a tool to improve crop resilience to climate change.
Collapse
Affiliation(s)
- Vu-Bao Nguyen
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 320, Taiwan
| | - Chung-An Lu
- Correspondence: (V.-B.N.); (C.-A.L.); Tel.: +886-3-4227151 (ext. 65067) (V.-B.N. & C.-A.L.); Fax: +886-3-4228486 (V.-B.N. & C.-A.L.)
| |
Collapse
|
2
|
Fatti E, Khawaja S, Weis K. The dark side of fluorescent protein tagging-the impact of protein tags on biomolecular condensation. Mol Biol Cell 2025; 36:br10. [PMID: 39878648 PMCID: PMC11974960 DOI: 10.1091/mbc.e24-11-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Biomolecular condensation has emerged as an important mechanism to control various cellular processes through the formation of membraneless organelles. Fluorescent protein tags have been extensively used to study the formation and the properties of condensates in vitro and in vivo, but there is evidence that tags may perturb the condensation properties of proteins. In this study, we carefully assess the effects of protein tags on the yeast DEAD-box ATPase Dhh1, a central regulator of processing bodies (P-bodies), which are biomolecular condensates involved in mRNA metabolism. We show that fluorescent tags as well as a polyhistidine tag greatly affect Dhh1 condensation in vitro and lead to condensates with different dynamic properties. Tagging of Dhh1 with various fluorescent proteins in vivo alters the number of P-bodies upon glucose starvation and some tags even show constitutive P-bodies in nonstressed cells. These data raise concerns about the accuracy of tagged protein condensation experiments, highlighting the need for caution when interpreting the results.
Collapse
Affiliation(s)
- Edoardo Fatti
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| | - Sarah Khawaja
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Cooper KF. Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast. Autophagy 2025; 21:500-512. [PMID: 39757721 PMCID: PMC11849947 DOI: 10.1080/15548627.2024.2447207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, Saccharomyces cerevisiae is a valuable model organism for deciphering molecular details that define macroautophagy pathways. In yeast, macroautophagic pathways fall into two subclasses: selective and nonselective (bulk) autophagy. Bulk autophagy is predominantly upregulated following TORC1 inhibition, triggered by nutrient stress, and degrades superfluous random cytosolic proteins and organelles. In contrast, selective autophagy pathways maintain cellular homeostasis when TORC1 is active by degrading damaged organelles and dysfunctional proteins. Here, selective autophagy receptors mediate cargo delivery to the vacuole. Now, two groups have discovered a new hybrid autophagy mechanism, coined cargo hitchhiking autophagy (CHA), that uses autophagic receptor proteins to deliver selected cargo to phagophores built in response to nutrient stress for the random destruction of cytosolic contents. In CHA, various autophagic receptors link their cargos to lipidated Atg8, located on growing phagophores. In addition, the sorting nexin heterodimer Snx4-Atg20 assists in the degradation of cargo during CHA, possibly by aiding the delivery of cytoplasmic cargos to phagophores and/or by delaying the closure of expanding phagophores. This review will outline this new mechanism, also known as Snx4-assisted autophagy, that degrades an assortment of cargos in yeast, including transcription factors, glycogen, and a subset of ribosomal proteins.
Collapse
Affiliation(s)
- Katrina F. Cooper
- Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| |
Collapse
|
4
|
Schnepper AP, Kubo AMS, Pinto CM, Gomes RHM, Fioretto MN, Justulin LA, Braz AMM, Golim MDA, Grotto RMT, Valente GT. Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity. Genes (Basel) 2025; 16:170. [PMID: 40004499 PMCID: PMC11854924 DOI: 10.3390/genes16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, we investigate whether the ethanol responsiveness of transcr_9136 and transcr_10027 and their role in ethanol stress are associated with protein biogenesis and membraneless organelle assembly. Methods: SEY6210 transcr_9136∆ and BY4742 transcr_10027∆ and their wild-type counterparts were subjected to their maximum ethanol-tolerant stress. The expression of the transcr_9136, transcr_10027, ILT1, RRP1, 27S, 25S, TIR3, and FAA3 genes was accessed by qPCR. The level of DCP1a, PABP, and eIF4E proteins was evaluated by Western blotting. Bioinformatics analyses allowed us to check whether transcr_9136 may regulate the expression of RRP1 and predict the interaction between transcr_10027 and Tel1p. The cell death rate of SEY6210 strains under control and ethanol stress conditions was assessed by flow cytometry. Finally, we evaluated the total protein yield of all strains analyzed. Results: The results demonstrated that transcr_9136 of SEY6210 seems to control the expression of RRP1 and 27S rRNA and reduce the general translation. Furthermore, transcr_9136 seems to act on cell membrane integrity. Transcr_10027 of BY4742 appears to inhibit processing body formation and induce a general translation level. Conclusions: This is the first report on the effect of lncRNAs on yeast protein synthesis and new mechanisms of stress-responsive lncRNAs in yeast, with potential industrial applications such as ethanol production.
Collapse
Affiliation(s)
- Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Agatha M. S. Kubo
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Camila Moreira Pinto
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ramon Hernany Martins Gomes
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Luís Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Aline M. M. Braz
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marjorie de Assis Golim
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rejane M. T. Grotto
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Guilherme Targino Valente
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
5
|
Pfannenstein J, Tyryshkin M, Gulden ME, Doud EH, Mosley AL, Reese JC. Characterization of BioID tagging systems in budding yeast and exploring the interactome of the Ccr4-Not complex. G3 (BETHESDA, MD.) 2024; 14:jkae221. [PMID: 39271111 PMCID: PMC11540327 DOI: 10.1093/g3journal/jkae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The modified Escherichia coli biotin ligase BirA* was the first developed for proximity labeling of proteins (BioID). However, it has low activity at temperatures below 37°C, which reduces its effectiveness in organisms growing at lower temperatures, such as budding yeast. Multiple derivatives of the enzymes have been engineered, but a thorough comparison of these variations of biotin ligases and the development of versatile tools for conducting these experiments in Saccharomyces cerevisiae would benefit the community. Here, we designed a suite of vectors to compare the activities of biotin ligase enzymes in yeast. We found that the newer TurboID versions were the most effective at labeling proteins, but they displayed low constitutive labeling of proteins even in the absence of exogenous biotin, due to biotin contained in the culture medium. We describe a simple strategy to express free BioID enzymes in cells that can be used as an appropriate control in BioID studies to account for the promiscuous labeling of proteins caused by random interactions between bait-BioID enzymes in cells. We also describe chemically induced BioID systems exploiting the rapamycin-stabilized FRB-FKBP interaction. Finally, we used the TurboID version of the enzyme to explore the interactome of different subunits of the Ccr4-Not gene regulatory complex. We find that Ccr4-Not predominantly labeled cytoplasmic mRNA regulators, consistent with its function in mRNA decay and translation quality control in this cell compartment.
Collapse
Affiliation(s)
- Jeffrey Pfannenstein
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Misha Tyryshkin
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Moira E Gulden
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma H Doud
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Amber L Mosley
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Joseph C Reese
- Center for Eukaryotic Gene Regulation and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Makino‐Itou H, Yamatani N, Okubo A, Kiso M, Ajima R, Kanemaki MT, Saga Y. Establishment and characterization of mouse lines useful for endogenous protein degradation via an improved auxin-inducible degron system (AID2). Dev Growth Differ 2024; 66:384-393. [PMID: 39305158 PMCID: PMC11482630 DOI: 10.1111/dgd.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.
Collapse
Affiliation(s)
- Hatsune Makino‐Itou
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Noriko Yamatani
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Makoto Kiso
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Rieko Ajima
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| | - Masato T. Kanemaki
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
- Department of Chromosome ScienceNational Institute of Genetics, ROISMishimaJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| |
Collapse
|
7
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
8
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
9
|
Pulido V, Rodríguez-Peña JM, Alonso G, Sanz AB, Arroyo J, García R. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 2024; 436:168570. [PMID: 38604529 DOI: 10.1016/j.jmb.2024.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.
Collapse
Affiliation(s)
- Verónica Pulido
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Jose M Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Graciela Alonso
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
10
|
Pfannenstein J, Tyryshkin M, Gulden ME, Doud EH, Mosley AL, Reese JC. Characterization of BioID tagging systems in budding yeast and exploring the interactome of the Ccr4-Not complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593354. [PMID: 38766143 PMCID: PMC11100836 DOI: 10.1101/2024.05.09.593354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The modified E. coli biotin ligase BirA* was the first developed for proximity labeling of proteins (BioID). However, it has low activity at temperatures below 37°C, which reduces its effectiveness in organisms growing at lower temperatures, such as budding yeast. Multiple derivatives of the enzymes have been engineered, but a comparison of these variations of biotin ligases has not been reported in Saccharomyces cerevisiae. Here, we designed a suite of vectors to compare the activities of biotin ligase enzymes in yeast. We found that the newer TurboID versions were the most effective at labeling proteins, but they displayed low constitutive activity from biotin contained in the culture medium. We describe a simple strategy to express free BioID enzymes in cells that can be used as an appropriate control in BioID studies to account for the promiscuous labeling of proteins caused by random interactions between bait-BioID enzymes in cells. We also describe chemically-induced BioID systems exploiting the rapamycin-stabilized FRB-FKBP interaction. Finally, we used the TurboID version of the enzyme to explore the interactome of different subunits of the Ccr4-Not gene regulatory complex. We find that Ccr4-Not predominantly labeled cytoplasmic mRNA regulators, consistent with its function in mRNA decay and translation quality control in this cell compartment.
Collapse
|
11
|
Kearly A, Nelson ADL, Skirycz A, Chodasiewicz M. Composition and function of stress granules and P-bodies in plants. Semin Cell Dev Biol 2024; 156:167-175. [PMID: 36464613 DOI: 10.1016/j.semcdb.2022.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.
Collapse
Affiliation(s)
- Alyssa Kearly
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | | | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
13
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559793. [PMID: 37808677 PMCID: PMC10557687 DOI: 10.1101/2023.09.27.559793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y. Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Grimes B, Jacob W, Liberman AR, Kim N, Zhao X, Masison DC, Greene LE. The Properties and Domain Requirements for Phase Separation of the Sup35 Prion Protein In Vivo. Biomolecules 2023; 13:1370. [PMID: 37759770 PMCID: PMC10526957 DOI: 10.3390/biom13091370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The Sup35 prion protein of budding yeast has been reported to undergo phase separation to form liquid droplets both at low pH in vitro and when energy depletion decreases the intracellular pH in vivo. It also has been shown using purified proteins that this phase separation is driven by the prion domain of Sup35 and does not re-quire its C-terminal domain. In contrast, we now find that a Sup35 fragment consisting of only the N-terminal prion domain and the M-domain does not phase separate in vivo; this phase separation of Sup35 requires the C-terminal domain, which binds Sup45 to form the translation termination complex. The phase-separated Sup35 not only colocalizes with Sup45 but also with Pub1, a stress granule marker protein. In addition, like stress granules, phase separation of Sup35 appears to require mRNA since cycloheximide treatment, which inhibits mRNA release from ribosomes, prevents phase separation of Sup35. Finally, unlike Sup35 in vitro, Sup35 condensates do not disassemble in vivo when the intracellular pH is increased. These results suggest that, in energy-depleted cells, Sup35 forms supramolecular assemblies that differ from the Sup35 liquid droplets that form in vitro.
Collapse
Affiliation(s)
- Bryan Grimes
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Walter Jacob
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda R. Liberman
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Courtin B, Namane A, Gomard M, Meyer L, Jacquier A, Fromont-Racine M. Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000926. [PMID: 37746059 PMCID: PMC10514700 DOI: 10.17912/micropub.biology.000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
mRNA degradation is one of the main steps of gene expression, and a key player is the 5'-3' exonuclease Xrn1. In Saccharomyces cerevisiae , it was previously shown, by a microscopy approach, that Xrn1 is located to different cellular compartments, depending on physiological state. During exponential growth, Xrn1 is distributed in the cytoplasm, while it co-localizes with eisosomes after the post-diauxic shift (PDS). Here, we biochemically characterize the Xrn1-associated complexes in different cellular states. We demonstrate that, after PDS, Xrn1 but not the decapping nor Lsm1-7/Pat1 complexes associates with eisosomal proteins, strengthening the model that sequestration of Xrn1 in eisosomes preserves mRNAs from degradation during PDS.
Collapse
Affiliation(s)
- Baptiste Courtin
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Abdelkader Namane
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Maite Gomard
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Laura Meyer
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Alain Jacquier
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Cytoplasmic mRNA surveillance in yeast, Centre National de la Recherche Scientifique, UMR 3525, 75724 Paris Cedex 15, France
| |
Collapse
|
16
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
17
|
Vijjamarri AK, Niu X, Vandermeulen MD, Onu C, Zhang F, Qiu H, Gupta N, Gaikwad S, Greenberg ML, Cullen PJ, Lin Z, Hinnebusch AG. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. eLife 2023; 12:e85545. [PMID: 37266577 PMCID: PMC10287164 DOI: 10.7554/elife.85545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3, or Scd6; whereas most of the remaining transcripts utilize nonsense-mediated mRNA decay factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are upregulated, and both mitochondrial function and cell filamentation are elevated in dcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Xiao Niu
- Department of Biology, Saint Louis UniversitySt. LouisUnited States
| | | | - Chisom Onu
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Hongfang Qiu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Paul J Cullen
- Department of Biological Sciences, State University of New YorkBuffaloUnited States
| | - Zhenguo Lin
- Department of Biology, Saint Louis UniversitySt. LouisUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
18
|
DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci 2023; 48:244-258. [PMID: 36344372 DOI: 10.1016/j.tibs.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.
Collapse
|
19
|
Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, Bell-Pedersen D. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep 2022; 41:111879. [PMID: 36577368 PMCID: PMC10241597 DOI: 10.1016/j.celrep.2022.111879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/13/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of Neurospora crassa eukaryotic initiation factor 2 α (eIF2α), a conserved translation initiation factor, is clock controlled. To determine the impact of rhythmic eIF2α phosphorylation on translation, we performed temporal ribosome profiling and RNA sequencing (RNA-seq) in wild-type (WT), clock mutant Δfrq, eIF2α kinase mutant Δcpc-3, and constitutively active cpc-3c cells. About 14% of mRNAs are rhythmically translated in WT cells, and translation rhythms for ∼30% of these mRNAs, which we named circadian translation-initiation-controlled genes (cTICs), are dependent on the clock and CPC-3. Most cTICs are expressed from arrhythmic mRNAs and contain a P-body (PB) localization motif in their 5' leader sequence. Deletion of SNR-1, a component of cytoplasmic messenger ribonucleoprotein granules (cmRNPgs) that include PBs and stress granules (SGs), and the PB motif on one of the cTIC mRNAs, zip-1, significantly alters zip-1 rhythmic translation. These results reveal that the clock regulates rhythmic translation of specific mRNAs through rhythmic eIF2α activity and cmRNPg metabolism.
Collapse
Affiliation(s)
- Kathrina D Castillo
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Zhaolan Ding
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Emma Rowlinson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
20
|
Dhaliwal JS, Panozzo C, Benard L, Zerges W. An RNA granule for translation quality control in Saccharomyces cerevisiae. J Cell Sci 2022; 135:285862. [PMID: 36373798 DOI: 10.1242/jcs.260388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role for ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent-chain complex, localizes to ORBs. Translation quality control mutants have altered ORB numbers, sizes or both. In addition, we identify 68 ORB proteins by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.
Collapse
Affiliation(s)
- James S Dhaliwal
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - William Zerges
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
21
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
22
|
Maciej VD, Mateva N, Schwarz J, Dittmers T, Mallick M, Urlaub H, Chakrabarti S. Intrinsically disordered regions of tristetraprolin and DCP2 directly interact to mediate decay of ARE-mRNA. Nucleic Acids Res 2022; 50:10665-10679. [PMID: 36130271 PMCID: PMC9561381 DOI: 10.1093/nar/gkac797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) is a potent activator of mRNA decay, specifically for transcripts bearing AU-rich elements (AREs) in their 3′-untranslated regions. TTP functions as a mediator for mRNA decay by interacting with the decay machinery and recruiting it to the target ARE-mRNA. In this study, we report a weak, but direct interaction between TTP and the human decapping enzyme DCP2, which impacts the stability of ARE transcripts. The TTP–DCP2 interaction is unusual as it involves intrinsically disordered regions (IDRs) of both binding partners. We show that the IDR of DCP2 has a propensity for oligomerization and liquid–liquid phase separation in vitro. Binding of TTP to DCP2 leads to its partitioning into phase-separated droplets formed by DCP2, suggesting that molecular crowding might facilitate the weak interaction between the two proteins and enable assembly of a decapping-competent mRNA–protein complex on TTP-bound transcripts in cells. Our studies underline the role of weak interactions in the cellular interaction network and their contribution towards cellular functionality.
Collapse
Affiliation(s)
- Vincent D Maciej
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Nevena Mateva
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Theresa Dittmers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| |
Collapse
|
23
|
Hwang J, Jung D, Kim J. Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression. J Microbiol 2022; 60:843-848. [DOI: 10.1007/s12275-022-2213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/09/2022]
|
24
|
Hurst Z, Liu W, Shi Q, Herman PK. A distinct P-body-like granule is induced in response to the disruption of microtubule integrity in Saccharomyces cerevisiae. Genetics 2022; 222:6649695. [PMID: 35876801 PMCID: PMC9434292 DOI: 10.1093/genetics/iyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Processing-body (P-body) is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although P-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of P-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein (RNP) granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition and the manner in which their induction is regulated. Of particular note, several key P-body constituents are absent from these Benomyl-Induced Granules (BIGs), including the Pat1 protein that is normally required for efficient P-body assembly. However, these novel RNP structures still contain many known P-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of P-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these BIGs and to determine, in turn, whether these P-body-like granules have any role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Zachary Hurst
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Wenfang Liu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Qian Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Paul K Herman
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
25
|
Choi YJ, Lee Y, Lin Y, Heo Y, Lee YH, Song K. The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components. Int J Mol Sci 2022; 23:ijms23137380. [PMID: 35806385 PMCID: PMC9266425 DOI: 10.3390/ijms23137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid–liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.
Collapse
Affiliation(s)
- Yoon-Jeong Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
| | - Yujin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
| | - Kiwon Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
- Correspondence: ; Tel.: +82-2-2123-2705; Fax: +82-2-362-9897
| |
Collapse
|
26
|
Lsm7 phase-separated condensates trigger stress granule formation. Nat Commun 2022; 13:3701. [PMID: 35764627 PMCID: PMC9240020 DOI: 10.1038/s41467-022-31282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
|
27
|
Nst1, Densely Associated to P-Body in the Post-Exponential Phases of Saccharomyces cerevisiae, Shows an Intrinsic Potential of Producing Liquid-Like Condensates of P-Body Components in Cells. Int J Mol Sci 2022; 23:ijms23052501. [PMID: 35269643 PMCID: PMC8910029 DOI: 10.3390/ijms23052501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Membrane-less biomolecular compartmentalization is a core phenomenon involved in many physiological activities that occur ubiquitously in cells. Condensates, such as promyelocytic leukemia (PML) bodies, stress granules, and P-bodies (PBs), have been investigated to understand the process of membrane-less cellular compartmentalization. In budding yeast, PBs dispersed in the cytoplasm of exponentially growing cells rapidly accumulate in response to various stresses such as osmotic stress, glucose deficiency, and heat stress. In addition, cells start to accumulate PBs chronically in post-exponential phases. Specific protein-protein interactions are involved in accelerating PB accumulation in each circumstance, and discovering the regulatory mechanism for each is the key to understanding cellular condensation. Here, we demonstrate that Nst1 of budding yeast Saccharomyces cerevisiae is far more densely associated with PBs in post-exponentially growing phases from the diauxic shift to the stationary phase than during glucose deprivation of exponentially growing cells, while the PB marker Dcp2 exhibits a similar degree of condensation under these conditions. Similar to Edc3, ectopic Nst1 overexpression induces self-condensation and the condensation of other PB components, such as Dcp2 and Dhh1, which exhibit liquid-like properties. Altogether, these results suggest that Nst1 has the intrinsic potential for self-condensation and the condensation of other PB components, specifically in post-exponential phases.
Collapse
|
28
|
Buddika K, Huang YT, Ariyapala IS, Butrum-Griffith A, Norrell SA, O'Connor AM, Patel VK, Rector SA, Slovan M, Sokolowski M, Kato Y, Nakamura A, Sokol NS. Coordinated repression of pro-differentiation genes via P-bodies and transcription maintains Drosophila intestinal stem cell identity. Curr Biol 2022; 32:386-397.e6. [PMID: 34875230 PMCID: PMC8792327 DOI: 10.1016/j.cub.2021.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
Abstract
The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly. Loss of Patr-1-dependent P-bodies leads to a loss of stem cells that is associated with inappropriate expression of EC-fate gene nubbin. Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a P-body-dependent repression activity that coordinates with known transcriptional repression programs to maintain a population of in vivo stem cells in a state primed for differentiation.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Sam A Norrell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alex M O'Connor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Viraj K Patel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Samuel A Rector
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Mark Slovan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
29
|
Currie SL, Rosen MK. Using quantitative reconstitution to investigate multicomponent condensates. RNA (NEW YORK, N.Y.) 2022; 28:27-35. [PMID: 34772789 PMCID: PMC8675290 DOI: 10.1261/rna.079008.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many biomolecular condensates are thought to form via liquid-liquid phase separation (LLPS) of multivalent macromolecules. For those that form through this mechanism, our understanding has benefitted significantly from biochemical reconstitutions of key components and activities. Reconstitutions of RNA-based condensates to date have mostly been based on relatively simple collections of molecules. However, proteomics and sequencing data indicate that natural RNA-based condensates are enriched in hundreds to thousands of different components, and genetic data suggest multiple interactions can contribute to condensate formation to varying degrees. In this Perspective, we describe recent progress in understanding RNA-based condensates through different levels of biochemical reconstitutions as a means to bridge the gap between simple in vitro reconstitution and cellular analyses. Complex reconstitutions provide insight into the formation, regulation, and functions of multicomponent condensates. We focus on two RNA-protein condensate case studies: stress granules and RNA processing bodies (P bodies), and examine the evidence for cooperative interactions among multiple components promoting LLPS. An important concept emerging from these studies is that composition and stoichiometry regulate biochemical activities within condensates. Based on the lessons learned from stress granules and P bodies, we discuss forward-looking approaches to understand the thermodynamic relationships between condensate components, with the goal of developing predictive models of composition and material properties, and their effects on biochemical activities. We anticipate that quantitative reconstitutions will facilitate understanding of the complex thermodynamics and functions of diverse RNA-protein condensates.
Collapse
Affiliation(s)
- Simon L Currie
- Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
30
|
Cheng CL, Wong MK, Hochstrasser M. Yeast Nst1 is a novel component of P-bodies and is a specific suppressor of proteasome base assembly defects. Mol Biol Cell 2021; 32:ar6. [PMID: 34347506 PMCID: PMC8684758 DOI: 10.1091/mbc.e21-04-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022] Open
Abstract
Proteasome assembly utilizes multiple dedicated assembly chaperones and is regulated by signaling pathways that respond to diverse stress conditions. To discover new factors influencing proteasome base assembly, we screened a tiled high-copy yeast genomic library to identify dosage suppressors of a temperature-sensitive proteasome regulatory particle (RP) base mutant. The screen identified negative salt tolerance 1 (Nst1), a protein that when overexpressed specifically suppressed the temperature sensitivity and proteasome-assembly defects of multiple base mutants. Nst1 overexpression reduced cytosolic RP ATPase (Rpt) aggregates in nas6Δ rpn14Δ cells, which lack two RP assembly chaperones. Nst1 is highly polar and predicted to have numerous intrinsically disordered regions, characteristics commonly found in proteins that can segregate into membraneless condensates. In agreement with this, both endogenous and overexpressed Nst1 could form cytosolic puncta that colocalized with processing body (P-body) components. Consistent with the accumulation of translationally inactive mRNAs in P-bodies, Nst1 overexpression inhibited global protein translation in nas6Δ rpn14Δ cells. Translational inhibition is known to suppress aggregation and proteasome assembly defects in base mutants under heat stress. Our data indicate that Nst1 is a previously overlooked P-body component that, when expressed at elevated levels inhibits translation, prevents Rpt subunit aggregation and rescues proteasome assembly under stress conditions.
Collapse
Affiliation(s)
| | | | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry and
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
31
|
Tishinov K, Spang A. The mRNA decapping complex is buffered by nuclear localization. J Cell Sci 2021; 134:272313. [PMID: 34435633 DOI: 10.1242/jcs.259156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
mRNA decay is a key step in regulating the cellular proteome. Processing bodies (P-bodies) are thought to be sites of mRNA decay and/or storage. P-body units assemble into P-body granules under stress conditions. How this assembly is regulated, however, remains poorly understood. Here, we show, in the yeast Saccharomyces cerevisiae, that the translational repressor Scd6 and the decapping stimulator Edc3 act partially redundantly in P-body assembly by sequestering the Dcp1-Dcp2 (denoted Dcp1/2) decapping complex in the cytoplasm and preventing it from becoming imported into the nucleus by the karyopherin β protein Kap95. One of two nuclear localization signals in Dcp2 overlaps with the RNA-binding site, suggesting an additional mechanism to regulate Dcp1/2 localization. Nuclear Dcp1/2 does not drive mRNA decay and might be stored there as a readily releasable pool, indicating a dynamic equilibrium between cytoplasmic and nuclear Dcp1/2. Cytoplasmic Dcp1/2 is linked to Dhh1 via Edc3. Functional P-bodies are present at the endoplasmic reticulum where Dcp2 potentially acts to increase the local concentration of Dhh1 through interaction with Edc3 to drive phase separation and hence P-body formation.
Collapse
Affiliation(s)
- Kiril Tishinov
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
32
|
Mo N, Zhang X, Shi W, Yu G, Chen X, Yang JR. Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance. Mol Biol Evol 2021; 38:1874-1887. [PMID: 33355660 PMCID: PMC8097262 DOI: 10.1093/molbev/msaa332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Negative genetic regulators of phenotypic heterogeneity, or phenotypic capacitors/stabilizers, elevate population average fitness by limiting deviation from the optimal phenotype and increase the efficacy of natural selection by enhancing the phenotypic differences among genotypes. Stabilizers can presumably be switched off to release phenotypic heterogeneity in the face of extreme or fluctuating environments to ensure population survival. This task could, however, also be achieved by positive genetic regulators of phenotypic heterogeneity, or "phenotypic diversifiers," as shown by recently reported evidence that a bacterial divisome factor enhances antibiotic resistance. We hypothesized that such active creation of phenotypic heterogeneity by diversifiers, which is functionally independent of stabilizers, is more common than previously recognized. Using morphological phenotypic data from 4,718 single-gene knockout strains of Saccharomyces cerevisiae, we systematically identified 324 stabilizers and 160 diversifiers and constructed a bipartite network between these genes and the morphological traits they control. Further analyses showed that, compared with stabilizers, diversifiers tended to be weaker and more promiscuous (regulating more traits) regulators targeting traits unrelated to fitness. Moreover, there is a general division of labor between stabilizers and diversifiers. Finally, by incorporating NCI-60 human cancer cell line anticancer drug screening data, we found that human one-to-one orthologs of yeast diversifiers/stabilizers likely regulate the anticancer drug resistance of human cancer cell lines, suggesting that these orthologs are potential targets for auxiliary treatments. Our study therefore highlights stabilizers and diversifiers as the genetic regulators for the bidirectional control of phenotypic heterogeneity as well as their distinct evolutionary roles and functional independence.
Collapse
Affiliation(s)
- Ning Mo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Shi
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gongwang Yu
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Corresponding authors: E-mails: ;
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding authors: E-mails: ;
| |
Collapse
|
33
|
Malcova I, Senohrabkova L, Novakova L, Hasek J. eIF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules. Int J Mol Sci 2021; 22:ijms22105164. [PMID: 34068231 PMCID: PMC8153170 DOI: 10.3390/ijms22105164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Stress granules (SGs) are membrane-less assemblies arising upon various stresses in eukaryotic cells. They sequester mRNAs and proteins from stressful conditions and modulate gene expression to enable cells to resume translation and growth after stress relief. SGs containing the translation initiation factor eIF3a/Rpg1 arise in yeast cells upon robust heat shock (HS) at 46 °C only. We demonstrate that the destabilization of Rpg1 within the PCI domain in the Rpg1-3 variant leads to SGs assembly already at moderate HS at 42 °C. These are bona fide SGs arising upon translation arrest containing mRNAs, which are components of the translation machinery, and associating with P-bodies. HS SGs associate with endoplasmatic reticulum and mitochondria and their contact sites ERMES. Although Rpg1-3-labeled SGs arise at a lower temperature, their disassembly is delayed after HS at 46 °C. Remarkably, the delayed disassembly of HS SGs after the robust HS is reversed by TDP-43, which is a human protein connected with amyotrophic lateral sclerosis. TDP-43 colocalizes with HS SGs in yeast cells and facilitates cell regrowth after the stress relief. Based on our results, we propose yeast HS SGs labeled by Rpg1 and its variants as a novel model system to study functions of TDP-43 in stress granules disassembly.
Collapse
Affiliation(s)
- Ivana Malcova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- Correspondence: ; Tel.: +420-241062769
| | - Lenka Senohrabkova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- First Faculty of Medicine, Charles University, Katerinska 42, 12108 Prague, Czech Republic
| | - Lenka Novakova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| | - Jiri Hasek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| |
Collapse
|
34
|
Poornima G, Srivastava G, Roy B, Kuttanda IA, Kurbah I, Rajyaguru PI. RGG-motif containing mRNA export factor Gbp2 acts as a translation repressor. RNA Biol 2021; 18:2342-2353. [PMID: 33910495 DOI: 10.1080/15476286.2021.1910403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex cascades of RNA-binding proteins regulate the mRNA metabolism and influence gene expression. Several distinct proteins act at different stages of mRNA life cycle. SR family proteins in yeast are implicated in mRNA processing and nuclear export. In this report, we uncover the role of an SR/RGG-motif containing mRNA export factor Gbp2 in mRNA translation regulation. We demonstrate that Gbp2 localizes to cytoplasmic granules upon heat shock and oxidative stress. Our pull-down assays demonstrate that Gbp2 directly binds to the conserved translation factor eIF4G1 via its RGG motif. We further mapped the region on eIF4G1 to which Gbp2 binds and observed that the binding region overlaps with another translation repressor Sbp1. We found that the RGG-motif deletion mutant is defective in localizing to polysome fractions. Upon tethering Gbp2 to a GFP reporter mRNA in vivo, translation of GFP reporter decreased significantly indicating that Gbp2 acts as a translation repressor. Consistent with these results, we show that Gbp2 can directly repress mRNA translation in the in vitro translation systems in an RGG-motif dependent manner. Taken together, our results establish that the mRNA export factor Gbp2 has a vital role in repressing translation of mRNA. We propose that Gbp2 is a multifaceted RGG-motif protein responsible for translational repression without affecting mRNA levels.
Collapse
Affiliation(s)
| | - Gaurav Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Brinta Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Iladeiti Kurbah
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
35
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
36
|
Matsumoto S, Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top Curr Chem (Cham) 2021; 379:17. [PMID: 33782792 DOI: 10.1007/s41061-021-00329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
37
|
Ford LK, Fioriti L. Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Front Cell Dev Biol 2020; 8:607947. [PMID: 33330512 PMCID: PMC7710910 DOI: 10.3389/fcell.2020.607947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Neuronal granules are biomolecular condensates that concentrate high quantities of RNAs and RNA-related proteins within neurons. These dense packets of information are trafficked from the soma to distal sites rich in polysomes, where local protein synthesis can occur. Movement of neuronal granules to distal sites, and local protein synthesis, play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing; these granules lack a membrane and instead phase separate due to protein and RNA interactions. Low complexity motifs and RNA binding domains are highly prevalent in these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule proteins, and investigate the structure-function relationship of coiled-coil proteins in RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly dynamic, allowing for increased functional response to environmental influences. Finally, biomolecular condensates have been suggested to drive the formation of toxic, neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play in coiled-coil to amyloid conversions of neurodegenerative proteins.
Collapse
Affiliation(s)
- Lenzie K Ford
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Laboratory of Molecular Mechanisms of Polyglutamine Disorders, Department of Neuroscience, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS), Milan, Italy
| |
Collapse
|
38
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
39
|
Lobel JH, Gross JD. Pdc2/Pat1 increases the range of decay factors and RNA bound by the Lsm1-7 complex. RNA (NEW YORK, N.Y.) 2020; 26:1380-1388. [PMID: 32513655 PMCID: PMC7491320 DOI: 10.1261/rna.075812.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 05/31/2023]
Abstract
Pat1, known as Pdc2 in fission yeast, promotes the activation and assembly of multiple proteins during mRNA decay. After deadenylation, the Pat1/Lsm1-7 complex binds to transcripts containing oligo(A) tails, which can be modified by the addition of several terminal uridine residues. Pat1 enhances Lsm1-7 binding to the 3' end, but it is unknown how this interaction is influenced by nucleotide composition. Here we examine Pat1/Lsm1-7 binding to a series of oligoribonucleotides containing different A/U contents using recombinant purified proteins from fission yeast. We observe a positive correlation between fractional uridine content and Lsm1-7 binding affinity. Addition of Pat1 broadens RNA specificity of Lsm1-7 by enhancing binding to A-rich RNAs and increases cooperativity on all oligonucleotides tested. Consistent with increased cooperativity, Pat1 promotes multimerization of the Lsm1-7 complex, which is potentiated by RNA binding. Furthermore, the inherent ability of Pat1 to multimerize drives liquid-liquid phase separation with multivalent decapping enzyme complexes of Dcp1/Dcp2. Our results uncover how Pat1 regulates RNA binding and higher order assembly by mRNA decay factors.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
40
|
Lee E, Jung D, Kim J. Roles of Dhh1 RNA helicase in yeast filamentous growth: Analysis of N-terminal phosphorylation residues and ATPase domains. J Microbiol 2020; 58:853-858. [PMID: 32989641 DOI: 10.1007/s12275-020-0431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
In yeast Saccharomyces cerevisiae, the Dhh1 protein, a member of the DEAD-box RNA helicase, stimulates Dcp2/Dcp1-mediated mRNA decapping and functions as a general translation repressor. Dhh1 also positively regulates translation of a selected set of mRNAs, including Ste12, a transcription factor for yeast mating and pseudohyphal growth. Given the diverse functions of Dhh1, we investigated whether the putative phosphorylation sites or the conserved motifs for the DEAD-box RNA helicases were crucial in the regulatory roles of Dhh1 during pseudohyphal growth. Mutations in the ATPase A or B motif (DHH1-K96R or DHH1-D195A) showed significant defects in pseudohyphal colony morphology and agar invasive phenotypes. The N-terminal phospho-mimetic mutation, DHH1-T16E, showed defects in pseudohyphal phenotypes. Decreased levels of Ste12 protein were also observed in these pseudohyphal-defective mutant cells under filamentous-inducing low nitrogen conditions. We suggest that the ATPase motifs and the Thr16 phosphorylation site of Dhh1 are crucial to its regulatory roles in pseudohyphal growth under low nitrogen conditions.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Jung
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
41
|
Getz MA, Weinberg DE, Drinnenberg IA, Fink GR, Bartel DP. Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing. Nucleic Acids Res 2020; 48:7404-7420. [PMID: 32501509 PMCID: PMC7528652 DOI: 10.1093/nar/gkaa468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 01/12/2023] Open
Abstract
RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5'-to-3' exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.
Collapse
Affiliation(s)
- Matthew A Getz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - David E Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Ines A Drinnenberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Tauber D, Tauber G, Parker R. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem Sci 2020; 45:764-778. [PMID: 32475683 PMCID: PMC7211619 DOI: 10.1016/j.tibs.2020.05.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein (RNP) granules are RNA-protein assemblies that are involved in multiple aspects of RNA metabolism and are linked to memory, development, and disease. Some RNP granules form, in part, through the formation of intermolecular RNA-RNA interactions. In vitro, such trans RNA condensation occurs readily, suggesting that cells require mechanisms to modulate RNA-based condensation. We assess the mechanisms of RNA condensation and how cells modulate this phenomenon. We propose that cells control RNA condensation through ATP-dependent processes, static RNA buffering, and dynamic post-translational mechanisms. Moreover, perturbations in these mechanisms can be involved in disease. This reveals multiple cellular mechanisms of kinetic and thermodynamic control that maintain the proper distribution of RNA molecules between dispersed and condensed forms.
Collapse
Affiliation(s)
- Devin Tauber
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Gabriel Tauber
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80308, USA.
| |
Collapse
|
43
|
Xing W, Muhlrad D, Parker R, Rosen MK. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. eLife 2020; 9:56525. [PMID: 32553117 PMCID: PMC7373430 DOI: 10.7554/elife.56525] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
P bodies are archetypal biomolecular condensates that concentrate proteins and RNA without a surrounding membrane. While dozens of P body proteins are known, the concentrations of components in the compartment have not been measured. We used live cell imaging to generate a quantitative inventory of the major proteins in yeast P bodies. Only seven proteins are highly concentrated in P bodies (5.1–15µM); the 24 others examined are appreciably lower (most ≤ 2.6µM). P body concentration correlates inversely with cytoplasmic exchange rate. Sequence elements driving Dcp2 concentration into P bodies are distributed across the protein and act synergistically. Our data indicate that P bodies, and probably other condensates, are compositionally simpler than suggested by proteomic analyses, with implications for specificity, reconstitution and evolution.
Collapse
Affiliation(s)
- Wenmin Xing
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| | - Denise Muhlrad
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Roy Parker
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
44
|
Corbet GA, Parker R. RNP Granule Formation: Lessons from P-Bodies and Stress Granules. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:203-215. [PMID: 32482896 DOI: 10.1101/sqb.2019.84.040329] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is now clear that cells form a wide collection of large RNA-protein assemblies, referred to as RNP granules. RNP granules exist in bacterial cells and can be found in both the cytosol and nucleus of eukaryotic cells. Recent approaches have begun to define the RNA and protein composition of a number of RNP granules. Herein, we review the composition and assembly of RNP granules, as well as how RNPs are targeted to RNP granules using stress granules and P-bodies as model systems. Taken together, these reveal that RNP granules form through the summative effects of a combination of protein-protein, protein-RNA, and RNA-RNA interactions. Similarly, the partitioning of individual RNPs into stress granules is determined by the combinatorial effects of multiple elements. Thus, RNP granules are assemblies generally dominated by combinatorial effects, thereby providing rich opportunities for biological regulation.
Collapse
Affiliation(s)
- Giulia Ada Corbet
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
45
|
Ghosh A, Williams LD, Pestov DG, Shcherbik N. Proteotoxic stress promotes entrapment of ribosomes and misfolded proteins in a shared cytosolic compartment. Nucleic Acids Res 2020; 48:3888-3905. [PMID: 32030400 PMCID: PMC7144922 DOI: 10.1093/nar/gkaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dimitri G Pestov
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
46
|
Kozlova NV, Pichon C, Rahmouni AR. mRNA with Mammalian Codon Bias Accumulates in Yeast Mutants with Constitutive Stress Granules. Int J Mol Sci 2020; 21:ijms21041234. [PMID: 32059599 PMCID: PMC7072924 DOI: 10.3390/ijms21041234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Stress granules and P bodies are cytoplasmic structures assembled in response to various stress factors and represent sites of temporary storage or decay of mRNAs. Depending on the source of stress, the formation of these structures may be driven by distinct mechanisms, but several stresses have been shown to stabilize mRNAs via inhibition of deadenylation. A recent study identified yeast gene deletion mutants with constitutive stress granules and elevated P bodies; however, the mechanisms which trigger its formation remain poorly understood. Here, we investigate the possibility of accumulating mRNA with mammalian codon bias, which we termed the model RNA, in these mutants. We found that the model RNA accumulates in dcp2 and xrn1 mutants and in four mutants with constitutive stress granules overlapping with P bodies. However, in eight other mutants with constitutive stress granules, the model RNA is downregulated, or its steady state levels vary. We further suggest that the accumulation of the model RNA is linked to its protection from the main mRNA surveillance path. However, there is no obvious targeting of the model RNA to stress granules or P bodies. Thus, accumulation of the model RNA and formation of constitutive stress granules occur independently and only some paths inducing formation of constitutive stress granules will stabilize mRNA as well.
Collapse
Affiliation(s)
- Natalia V. Kozlova
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Colléguim Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| |
Collapse
|
47
|
Tang NH, Kim KW, Xu S, Blazie SM, Yee BA, Yeo GW, Jin Y, Chisholm AD. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics. Curr Biol 2020; 30:865-876.e7. [PMID: 31983639 DOI: 10.1016/j.cub.2019.12.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
mRNA decay factors regulate mRNA turnover by recruiting non-translating mRNAs and targeting them for translational repression and mRNA degradation. How mRNA decay pathways regulate cellular function in vivo with specificity is poorly understood. Here, we show that C. elegans mRNA decay factors, including the translational repressors CAR-1/LSM14 and CGH-1/DDX6, and the decapping enzymes DCAP-1/DCP1, function in neurons to differentially regulate axon development, maintenance, and regrowth following injury. In neuronal cell bodies, CAR-1 fully colocalizes with CGH-1 and partially colocalizes with DCAP-1, suggesting that mRNA decay components form at least two types of cytoplasmic granules. Following axon injury in adult neurons, loss of CAR-1 or CGH-1 results in increased axon regrowth and growth cone formation, whereas loss of DCAP-1 or DCAP-2 results in reduced regrowth. To determine how CAR-1 inhibits regrowth, we analyzed mRNAs bound to pan-neuronally expressed GFP::CAR-1 using a crosslinking and immunoprecipitation-based approach. Among the putative mRNA targets of CAR-1, we characterized the roles of micu-1, a regulator of the mitochondrial calcium uniporter MCU-1, in axon injury. We show that loss of car-1 results increased MICU-1 protein levels, and that enhanced axon regrowth in car-1 mutants is dependent on micu-1 and mcu-1. Moreover, axon injury induces transient calcium influx into axonal mitochondria, dependent on MCU-1. In car-1 loss-of-function mutants and in micu-1 overexpressing animals, the axonal mitochondrial calcium influx is more sustained, which likely underlies enhanced axon regrowth. Our data uncover a novel pathway that controls axon regrowth through axonal mitochondrial calcium uptake.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Suhong Xu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Blazie
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
49
|
Lobel JH, Tibble RW, Gross JD. Pat1 activates late steps in mRNA decay by multiple mechanisms. Proc Natl Acad Sci U S A 2019; 116:23512-23517. [PMID: 31690658 PMCID: PMC6876151 DOI: 10.1073/pnas.1905455116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Ryan W Tibble
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
50
|
van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 2019; 20:623-638. [PMID: 31152627 PMCID: PMC6771618 DOI: 10.1111/tra.12669] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
Abstract
In cells at steady state, two forms of cell compartmentalization coexist: membrane-bound organelles and phase-separated membraneless organelles that are present in both the nucleus and the cytoplasm. Strikingly, cellular stress is a strong inducer of the reversible membraneless compartments referred to as stress assemblies. Stress assemblies play key roles in survival during cell stress and in thriving of cells upon stress relief. The two best studied stress assemblies are the RNA-based processing-bodies (P-bodies) and stress granules that form in response to oxidative, endoplasmic reticulum (ER), osmotic and nutrient stress as well as many others. Interestingly, P-bodies and stress granules are heterogeneous with respect to both the pathways that lead to their formation and their protein and RNA content. Furthermore, in yeast and Drosophila, nutrient stress also leads to the formation of many other types of prosurvival cytoplasmic stress assemblies, such as metabolic enzymes foci, proteasome storage granules, EIF2B bodies, U-bodies and Sec bodies, some of which are not RNA-based. Nutrient stress leads to a drop in cytoplasmic pH, which combined with posttranslational modifications of granule contents, induces phase separation.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
- Department of Biomedical Science of Cells and SystemsUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|