1
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Lu Y, Walji T, Ravaux B, Pandey P, Yang C, Li B, Luvsanjav D, Lam KH, Zhang R, Luo Z, Zhou C, Habela CW, Snapper SB, Li R, Goldhamer DJ, Schmidtke DW, Pan D, Svitkina TM, Chen EH. Spatiotemporal coordination of actin regulators generates invasive protrusions in cell-cell fusion. Nat Cell Biol 2024; 26:1860-1877. [PMID: 39487253 DOI: 10.1038/s41556-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell-cell fusion.
Collapse
Affiliation(s)
- Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tezin Walji
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Delgermaa Luvsanjav
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christa W Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott B Snapper
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, Storrs, CT, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
5
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
6
|
Linder S, Barcelona B. Get a grip: Podosomes as potential players in phagocytosis. Eur J Cell Biol 2023; 102:151356. [PMID: 37625234 DOI: 10.1016/j.ejcb.2023.151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Podosomes have been known for several decades as micron-sized, F-actin-rich structures that play a pivotal role in cell migration and invasion, as they are able to mediate both cell-matrix attachment as well as extracellular matrix degradation. Particularly in monocytic cells, podosomes have been shown to fulfill a variety of additional functions such as sensing of substrate rigidity and topography, or cell-cell fusion. Increasing evidence now points to the involvement of podosome-like structures also during phagocytosis by immune cells such as macrophages, dendritic cells, and neutrophils. Here, we compare the different cell models and experimental set ups where "phagocytic podosomes" have been described. We also discuss the composition and architecture of these structures, their potential involvement in mechanosensing and particle disruption, as well as the pros and cons for addressing them as bona fide podosomes.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | - Bryan Barcelona
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Webber D, Cao J, Dominguez D, Gladman DD, Knight A, Levy DM, Liao F, Ng L, Paterson AD, Touma Z, Wither J, Urowitz M, Silverman ED, Hiraki LT. Genetics of osteonecrosis in children and adults with systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:3205-3212. [PMID: 36651668 DOI: 10.1093/rheumatology/kead016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Genetics plays an important role in SLE risk, as well as osteonecrosis (ON), a significant and often debilitating complication of SLE. We aimed to identify genetic risk loci for ON in people with childhood-onset (cSLE) and adult-onset (aSLE) SLE. METHODS We enrolled participants from two tertiary care centres who met classification criteria for SLE. Participants had prospectively collected clinical data and were genotyped on a multiethnic array. Un-genotyped single nucleotide polymorphisms (SNPs) were imputed, and ancestry was inferred using principal components (PCs). Our outcome was symptomatic ON confirmed by imaging. We completed time-to-ON and logistic regression of ON genome-wide association studies (GWASs) with covariates for sex, age of SLE diagnosis, five PCs for ancestry, corticosteroid use and selected SLE manifestations. We conducted separate analyses for cSLE and aSLE and meta-analysed results using inverse-variance weighting. Genome-wide significance was P < 5 × 10-8. RESULTS The study included 940 participants with SLE, 87% female and 56% with cSLE. ON was present in 7.6% (n = 71). Median age of SLE diagnosis was 16.9 years (interquartile range [IQR]: 13.5, 29.3), with median follow-up of 8.0 years (IQR: 4.2, 15.7). Meta-GWAS of cSLE and aSLE time-to-ON of 4 431 911 SNPs identified a significant Chr.2 SNP, rs34118383 (minor allele frequency = 0.18), intronic to WIPF1 (hazard ratio = 3.2 [95% CI: 2.2, 4.8]; P = 1.0 × 10-8). CONCLUSION We identified an intronic WIPF1 variant associated with a 3.2 times increased hazard for ON (95% CI: 2.2, 4.8; P = 1.0 × 10-8) during SLE follow-up, independent of corticosteroid exposure. The effect of the SNP on time-to-ON was similar in cSLE and aSLE. This novel discovery represents a potential ON risk locus. Our results warrant replication.
Collapse
Affiliation(s)
- Declan Webber
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingjing Cao
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniela Dominguez
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dafna D Gladman
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andrea Knight
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deborah M Levy
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Fangming Liao
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lawrence Ng
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew D Paterson
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joan Wither
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Murray Urowitz
- Schroeder Arthritis Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Earl D Silverman
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Shi S, Gu H, Xu J, Sun W, Liu C, Zhu T, Wang J, Gao F, Zhang J, Ou Q, Jin C, Xu J, Chen H, Li J, Xu G, Tian H, Lu L. Glia maturation factor beta deficiency protects against diabetic osteoporosis by suppressing osteoclast hyperactivity. Exp Mol Med 2023; 55:898-909. [PMID: 37121966 PMCID: PMC10238439 DOI: 10.1038/s12276-023-00980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 05/02/2023] Open
Abstract
Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.
Collapse
Affiliation(s)
- Si Shi
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jinyuan Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Wan Sun
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caiyin Liu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Tong Zhu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Juan Wang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Furong Gao
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jieping Zhang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Qingjian Ou
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caixia Jin
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jingying Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Hao Chen
- Department of Ophthalmology of Ten People Hospital Affiliated with Tongji University, School of Medicine, Shanghai, 200072, PR China
| | - Jiao Li
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Guotong Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, PR China.
| | - Haibin Tian
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Lixia Lu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
10
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
GSN synergies with actin-related transfer molecular chain to promote invasion and metastasis of HCC. Clin Transl Oncol 2023; 25:482-490. [PMID: 36192574 PMCID: PMC9873781 DOI: 10.1007/s12094-022-02961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Previous studies have shown that the ability of tumor cells to move and migrate is related to the molecular chain pathway mediated by actin. This study focused on the molecular mechanism of gelsolin (GSN) as an important actin-binding protein in promoting HCC invasion and metastasis. METHODS The relationship between GSN expression and clinical characteristics was observed by immunohistochemistry (IHC). In vitro and in vivo experiments confirmed the role of GSN in HCC metastasis. Dual-immunoprecipitation (IP), immunofluorescence (IF), western blotting, and the gelatinase activity assay were used to investigate the mechanism of GSN-promoting metastasis. PEX fusion proteins were used to intervene in the transfer molecular chain. RESULTS Our study found that GSN promoted HCC invasion and metastasis through its synergistic effect with actin-related transfer molecular chain (actin-CD44-MMPs). Concretely, as an important binding molecule of actin, GSN activated MMP2 by interacting with MMP14. Furthermore, CD44 might be a key node in the above-mentioned mechanism. The use of MMP14 domain (PEX fusion protein) to competitively bind to CD44 helped to inhibit the activation of downstream MMP2. CONCLUSIONS GSN played crucial roles in HCC metastatic process. An improved understanding of the multiple effects of GSN in HCC might facilitate a deeper appreciation of GSN as an important HCC regulator. The study identified GSN and its regulated transfer molecular chain as potential therapeutic targets for HCC.
Collapse
|
12
|
Portes M, Mangeat T, Escallier N, Dufrancais O, Raynaud-Messina B, Thibault C, Maridonneau-Parini I, Vérollet C, Poincloux R. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts. eLife 2022; 11:e75610. [PMID: 35727134 PMCID: PMC9255968 DOI: 10.7554/elife.75610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts are unique in their capacity to degrade bone tissue. To achieve this process, osteoclasts form a specific structure called the sealing zone, which creates a close contact with bone and confines the release of protons and hydrolases for bone degradation. The sealing zone is composed of actin structures called podosomes nested in a dense actin network. The organization of these actin structures inside the sealing zone at the nano scale is still unknown. Here, we combine cutting-edge microscopy methods to reveal the nanoscale architecture and dynamics of the sealing zone formed by human osteoclasts on bone surface. Random illumination microscopy allowed the identification and live imaging of densely packed actin cores within the sealing zone. A cross-correlation analysis of the fluctuations of actin content at these cores indicates that they are locally synchronized. Further examination shows that the sealing zone is composed of groups of synchronized cores linked by α-actinin1 positive filaments, and encircled by adhesion complexes. Thus, we propose that the confinement of bone degradation mediators is achieved through the coordination of islets of actin cores and not by the global coordination of all podosomal subunits forming the sealing zone.
Collapse
Affiliation(s)
- Marion Portes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Natacha Escallier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Ophélie Dufrancais
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | | | | | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| |
Collapse
|
13
|
Hyaluronidase 1 deficiency decreases bone mineral density in mice. Sci Rep 2022; 12:10142. [PMID: 35710820 PMCID: PMC9203814 DOI: 10.1038/s41598-022-14473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts. To investigate whether HYAL1 is involved in the differentiation and/or resorption activity of osteoclasts, and in bone remodeling in general, we analyzed several bone parameters in Hyal1 -/- mice and studied the differentiation and activity of their osteoclasts and osteoblasts when differentiated in vitro. These experiments revealed that, upon aging, HYAL1 deficient mice exhibit reduced femur length and a ~ 15% decrease in bone mineral density compared to wild-type mice. We found elevated osteoclast numbers in the femurs of these mice as well as an increase of the bone resorbing activity of Hyal1 -/- osteoclasts. Moreover, we detected decreased mineralization by Hyal1 -/- osteoblasts. Taken together with the observed accumulation of hyaluronic acid in Hyal1 -/- bones, these results support the premise that the catabolism of hyaluronic acid by osteoclasts and osteoblasts is an intrinsic part of bone remodeling.
Collapse
|
14
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Weber K, Hey S, Cervero P, Linder S. The circle of life: Phases of podosome formation, turnover and reemergence. Eur J Cell Biol 2022; 101:151218. [PMID: 35334303 DOI: 10.1016/j.ejcb.2022.151218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.
Collapse
Affiliation(s)
- Kathrin Weber
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
17
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
18
|
Yadav AM, Bagade MM, Ghumnani S, Raman S, Saha B, Kubatzky KF, Ashma R. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biol Chem 2021; 403:211-229. [PMID: 34882360 DOI: 10.1515/hsz-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.
Collapse
Affiliation(s)
- Avinash M Yadav
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Manali M Bagade
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Soni Ghumnani
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Sujatha Raman
- Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences (ISHS), Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Bhaskar Saha
- National Center for Cell Science, Pune-411007, Maharashtra, India
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| |
Collapse
|
19
|
The regulatory effect of hyaluronan on human mesenchymal stem cells' fate modulates their interaction with cancer cells in vitro. Sci Rep 2021; 11:21229. [PMID: 34707175 PMCID: PMC8551322 DOI: 10.1038/s41598-021-00754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic spread of cancer cells into a pre-metastatic niche is highly dependent on a supporting microenvironment. Human bone marrow-derived mesenchymal stem cells (bmMSCs) contribute to the tumor microenvironment and promote cancer metastasis by inducing epithelial-to-mesenchymal transition and immune evasion. The underlying mechanisms, however, are incompletely understood. The glycosaminoglycan hyaluronan (HA) is a central component of the extracellular matrix and has been shown to harbor pro-metastatic properties. In this study we investigated the highly disseminating breast cancer and glioblastoma multiforme cell lines MDA-MB-321 and U87-MG which strongly differ in their metastatic potential to evaluate the impact of HA on tumor promoting features of bmMSC and their interaction with tumor cells. We show that adipogenic differentiation of bmMSC is regulated by the HA-matrix. This study reveals that MDA-MB-231 cells inhibit this process by the induction of HA-synthesis in bmMSCs and thus preserve the pro-tumorigenic properties of bmMSC. Furthermore, we show that adhesion of MDA-MB-231 cells to bmMSC is facilitated by the tumor cell-induced HA-rich matrix and is mediated by the HA-receptor LAYN. We postulate that invasive breast cancer cells modulate the HA-matrix of bmMSC to adapt the pre-metastatic niche. Thus, the HA-matrix provides a potential novel therapeutic target to prevent cancer metastasis.
Collapse
|
20
|
Wang Q, Duan M, Liao J, Xie J, Zhou C. Are Osteoclasts Mechanosensitive Cells? J Biomed Nanotechnol 2021; 17:1917-1938. [PMID: 34706793 DOI: 10.1166/jbn.2021.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeleton metabolism is a process in which osteoclasts constantly remove old bone and osteoblasts form new osteoid and induce mineralization; disruption of this balance may cause diseases. Osteoclasts play a key role in bone metabolism, as osteoclastogenesis marks the beginning of each bone remodeling cycle. As the only cell capable of bone resorption, osteoclasts are derived from the monocyte/macrophage hematopoietic precursors that terminally adhere to mineralized extracellular matrix, and they subsequently break down the extracellular compartment. Bone is generally considered the load-burdening tissue, bone homeostasis is critically affected by mechanical conductions, and the bone cells are mechanosensitive. The functions of various bone cells under mechanical forces such as chondrocytes and osteoblasts have been reported; however, the unique bone-resorbing osteoclasts are less studied. The oversuppression of osteoclasts in mechanical studies may be because of its complicated differentiation progress and flexible structure, which increases difficulty in targeting mechanical structures. This paper will focus on recent findings regarding osteoclasts and attempt to uncover proposed candidate mechanosensing structures in osteoclasts including podosome-associated complexes, gap junctions and transient receptor potential family (ion channels). We will additionally describe possible mechanotransduction signaling pathways including GTPase ras homologue family member A (RhoA), Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ), Ca2+ signaling and non-canonical Wnt signaling. According to numerous studies, evaluating the possible influence of various physical environments on osteoclastogenesis is conducive to the study of bone homeostasis.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jingfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
21
|
Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci 2021; 78:6087-6104. [PMID: 34296319 PMCID: PMC8429379 DOI: 10.1007/s00018-021-03875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Sharma A, Sharma L, Goyal R. Molecular Signaling Pathways and Essential Metabolic Elements in Bone Remodeling: An Implication of Therapeutic Targets for Bone Diseases. Curr Drug Targets 2020; 22:77-104. [PMID: 32914712 DOI: 10.2174/1389450121666200910160404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors like, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help to design newer therapies for treating bone diseases.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
23
|
Akisaka T, Yoshida A. Surface distribution of heterogenous clathrin assemblies in resorbing osteoclasts. Exp Cell Res 2020; 399:112433. [PMID: 33359468 DOI: 10.1016/j.yexcr.2020.112433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Osteoclasts seeded on either glass coverslips or apatite pellets have at least two morphologically distinct substrate adhesion sites: actin-based adhesion structures including podosome belts and sealing zones, and adjacent clathrin sheets. Clathrin-coated structures are exclusively localized at the podosome belts and sealing zone, in both of which the plasma membrane forms a tight attachment to the substrate surface. When cultured on apatite osteoclasts can degrade the apatite leading to the formation of resorption lacunae. The sealing zone divides the ventral membrane into different domains, outside and inside of the sealing zones. The former facing the smooth-surfaced intact apatite contains relatively solitary or networks of larger flat clathrin structures; and the latter, facing the rough-surfaced degraded apatite in the resorption lacunae contain clathrin in various shapes and sizes. Clathrin assemblies on the membrane domain facing not only a resorption lacuna, or trails but also intact apatite indeed were observed to be heterogeneous in size and intensity, suggesting that they appeared to follow variations in the surface topography of the apatite surface. These results provide a detailed insight into the flat clathrin sheets that have been suggested to be the sites of adhesion and mechanosensing in co-operation with podosomes.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Japan.
| |
Collapse
|
24
|
Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G, Rousselle P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol 2020; 94:1-17. [PMID: 32621878 DOI: 10.1016/j.matbio.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.
Collapse
Affiliation(s)
- Anna Michopoulou
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
25
|
Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking. Int J Mol Sci 2020; 21:ijms21228581. [PMID: 33203061 PMCID: PMC7696459 DOI: 10.3390/ijms21228581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
For the optimal resorption of mineralized bone matrix, osteoclasts require the generation of the ruffled border and acidic resorption lacuna through lysosomal trafficking and exocytosis. Coumarin-type aesculetin is a naturally occurring compound with anti-inflammatory and antibacterial effects. However, the direct effects of aesculetin on osteoclastogenesis remain to be elucidated. This study found that aesculetin inhibited osteoclast activation and bone resorption through blocking formation and exocytosis of lysosomes. Raw 264.7 cells were differentiated in the presence of 50 ng/mL receptor activator of nuclear factor-κB ligand (RANKL) and treated with 1–10 μM aesculetin. Differentiation, bone resorption, and lysosome biogenesis of osteoclasts were determined by tartrate-resistance acid phosphatase (TRAP) staining, bone resorption assay, Western blotting, immunocytochemical analysis, and LysoTracker staining. Aesculetin inhibited RANKL-induced formation of multinucleated osteoclasts with a reduction of TRAP activity. Micromolar aesculetin deterred the actin ring formation through inhibition of induction of αvβ3 integrin and Cdc42 but not cluster of differentiation 44 (CD44) in RANKL-exposed osteoclasts. Administering aesculetin to RANKL-exposed osteoclasts attenuated the induction of autophagy-related proteins, microtubule-associated protein light chain 3, and small GTPase Rab7, hampering the lysosomal trafficking onto ruffled border crucial for bone resorption. In addition, aesculetin curtailed cellular induction of Pleckstrin homology domain-containing protein family member 1 and lissencephaly-1 involved in lysosome positioning to microtubules involved in the lysosomal transport within mature osteoclasts. These results demonstrate that aesculetin retarded osteoclast differentiation and impaired lysosomal trafficking and exocytosis for the formation of the putative ruffled border. Therefore, aesculetin may be a potential osteoprotective agent targeting RANKL-induced osteoclastic born resorption for medicinal use.
Collapse
|
26
|
Regulation of invadosomes by microtubules: Not only a matter of railways. Eur J Cell Biol 2020; 99:151109. [DOI: 10.1016/j.ejcb.2020.151109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
|
27
|
Sala M, Ros M, Saltel F. A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Front Oncol 2020; 10:1620. [PMID: 32984031 PMCID: PMC7485352 DOI: 10.3389/fonc.2020.01620] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment, including extracellular matrix (ECM) and stromal cells, is a key player during tumor development, from initiation, growth and progression to metastasis. During all of these steps, remodeling of matrix components occurs, changing its biochemical and physical properties. The global and basic cancer ECM model is that tumors are surrounded by activated stromal cells, that remodel physiological ECM to evolve into a stiffer and more crosslinked ECM than in normal conditions, thereby increasing invasive capacities of cancer cells. In this review, we show that this too simple model does not consider the complexity, specificity and heterogeneity of each organ and tumor. First, we describe the general ECM in context of cancer. Then, we go through five invasive and most frequent cancers from different origins (breast, liver, pancreas, colon, and skin), and show that each cancer has its own specific matrix, with different stromal cells, ECM components, biochemical properties and activated signaling pathways. Furthermore, in these five cancers, we describe the dual role of tumor ECM: as a protective barrier against tumor cell proliferation and invasion, and as a major player in tumor progression. Indeed, crosstalk between tumor and stromal cells induce changes in matrix organization by remodeling ECM through invadosome formation in order to degrade it, promoting tumor progression and cell invasion. To sum up, in this review, we highlight the specificities of matrix composition in five cancers and the necessity not to consider the ECM as one general and simple entity, but one complex, dynamic and specific entity for each cancer type and subtype.
Collapse
|
28
|
Zhou Y, Feng Z, Cao F, Liu X, Xia X, Yu CH. Abl-mediated PI3K activation regulates macrophage podosome formation. J Cell Sci 2020; 133:jcs234385. [PMID: 32393599 DOI: 10.1242/jcs.234385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Podosomes play crucial roles in macrophage adhesion and migration. Wiskott-Aldrich syndrome protein (WASP; also known as WAS)-mediated actin polymerization is one of the key events initiating podosome formation. Nevertheless, membrane signals to trigger WASP activation at macrophage podosomes remain unclear. Here, we show that phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] lipids are enriched at the podosome and stably recruit WASP rather than the WASP-5KE mutant. Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit β (PIK3CB) is spatially located at the podosome core. Inhibition of PIK3CB and overexpression of phosphatase and tensin homolog (PTEN) impede F-actin polymerization of the podosome. PIK3CB activation is regulated by Abl1 and Src family kinases. At the podosome core, Src and Hck promote the phosphorylation of Tyr488 in the consensus Y-x-x-M motif of Abl1, which enables the association of phosphoinositide 3-kinase (PI3K) regulatory subunits. Knockdown of Abl1 rather than Abl2 suppresses the PI3K/Akt pathway, regardless of Src and Hck activities. Reintroduction of wild-type Abl1 rather than the Abl1-Y488F mutant rescues PI3KR1 recruitment and PI3K activation. When PIK3CB, Abl1 or Src/Hck is suppressed, macrophage podosome formation, matrix degradation and chemotactic migration are inhibited. Thus, Src/Hck-mediated phosphorylation of Abl1 Tyr488 triggers PIK3CB-dependent PI(3,4,5)P3 production and orchestrates the assembly and function of macrophage podosomes.
Collapse
Affiliation(s)
- Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaoting Liu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaojie Xia
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
The podosome cap: past, present, perspective. Eur J Cell Biol 2020; 99:151087. [DOI: 10.1016/j.ejcb.2020.151087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022] Open
|
30
|
Kang IS, Jang JS, Kim C. Opposing roles of hematopoietic-specific small GTPase Rac2 and the guanine nucleotide exchange factor Vav1 in osteoclast differentiation. Sci Rep 2020; 10:7024. [PMID: 32341385 PMCID: PMC7184755 DOI: 10.1038/s41598-020-63673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Vav1 regulates Rac activation as a hematopoietic-specific Rho/Rac-family guanine nucleotide exchange factor. Rac is a subfamily of Rho GTPases that regulates the bone-resorbing capacity of osteoclasts (OCs). In this study, we show that hematopoietic-specific Rac2 and Vav1 play opposing roles by enhancing or attenuating OC differentiation, respectively. This was demonstrated by higher and lower bone density in the femurs from Rac2-deficient (Rac2-/-) and Vav1-deficient (Vav1-/-) mice, respectively, compared to the wild-type (WT) mice. Accordingly, Rac2-/- cells displayed low numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (41%) compared to WT cells, whereas, Vav1-/- cells showed high TRAP-positive cell numbers (150%), and the double-knockout Rac2-/-Vav1-/- mice nullified the effects on OC numbers achieved by the individual knockouts. These reciprocal roles of Rac2 and Vav1 in OC differentiation were confirmed by reduced and increased levels of OC-specific markers, such as TRAP, calcitonin receptor, cathepsin K, and DC-STAMP in the Rac2-/- and Vav1-/- OCs, respectively. Our findings of decrease and increase in actin ring formation and αvβ3 integrin-mediated adhesion in Rac2-/- and Vav1-/- mice, respectively, suggest that Vav1 and its downstream GTPase, Rac2, may counteract to fine-tune OC differentiation and bone resorption.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, Korea
| | - Jin Sun Jang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, 22212, Korea.
| |
Collapse
|
31
|
Mira-Pascual L, Tran AN, Andersson G, Näreoja T, Lång P. A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1. Int J Mol Sci 2020; 21:E538. [PMID: 31947698 PMCID: PMC7013577 DOI: 10.3390/ijms21020538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
The murine macrophage cell line RAW264.7 is extensively used as a progenitor to study osteoclast (OC) differentiation. RAW264.7 is a heterogeneous cell line, containing sub-clones with different abilities to form OCs. The aim of this study was to identify characteristics within the heterogeneous RAW264.7 cells that define sub-clones with an augmented ability to form bone-resorbing OCs (H9), as well as sub-clones representing non-OCs (J8). RAW264.7 sub-clones were isolated by single cell cloning. Selection was based on TRAP/cathepsin K expression in sub-clone cultures without added RANKL. Sub-clones before and after differentiation with RANKL were assayed for multiple OC-characteristics. Sub-clone H9 cells presented a higher expression of OC-markers in cultures without added RANKL compared to the parental RAW264.7. After 6 days of RANKL stimulation, sub-clone H9 cells had equal expression levels of OC-markers with RAW264.7 and formed OCs able to demineralize hydroxyapatite. However, sub-clone H9 cells displayed rapid differentiation of OC already at Day 2 compared to Day 4 from parental RAW264.7, and when cultured on plastic and on bone they were more efficient in resorption. This rapid differentiation was likely due to high initial expression/nuclear translocation of OC master transcription factor, NFATc1. In contrast to H9, J8 cells expressed initially very low levels of OC-markers, and they did not respond to RANKL-stimulation by developing OC-characteristics/OC-marker expression. Hence, H9 is an additional clone suitable for experimental setup requiring rapid differentiation of large numbers of OCs.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Anh N. Tran
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
- Musculoskeletal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB 252ZD, UK
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| |
Collapse
|
32
|
van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R. Probing the mechanical landscape – new insights into podosome architecture and mechanics. J Cell Sci 2019; 132:132/24/jcs236828. [DOI: 10.1242/jcs.236828] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell–matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin–actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture–function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| |
Collapse
|
33
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
34
|
Xiang B, Liu Y, Zhao W, Zhao H, Yu H. Extracellular calcium regulates the adhesion and migration of osteoclasts via integrin α v β 3 /Rho A/Cytoskeleton signaling. Cell Biol Int 2019; 43:1125-1136. [PMID: 30022569 DOI: 10.1002/cbin.11033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Integrin αv β3 is a transmembrane integrin, which can initiate osteoclasts' attachment on bones, leading to downward signaling pathways and subsequent bone resorption. Different calcium concentrations have been reported to have an influence on the activation of integrin αv β3 . To elucidate the regulatory mechanism of extracellular calcium concentrations on osteoclasts, a controlled micro flow plate (M04S) was utilized in the ONIX flow control system to observe the osteoclasts' adhesion and migration in different calcium concentration media. Fluorescent staining is conducted to show the distribution of integrin αv β3 and cytoskeleton reorganization. In addition, western blots were performed to detect the expression of integrin αv β3 and its downstream signaling pathways related to bone resorption. Also, real-time reverse-transcription polymerase chain reaction data of transcription co-activator (YAP/TAZ) and hydrolytic enzymes (the matrix metalloproteinase 9 and cathepsin K) are evaluated. Our findings suggest that osteoclasts' migration and adhesion is better promoted at 0.5 mM than 1.2 mM, which can be partly explained by the induced cytoskeleton organization via integrin αv β3 /Rho GTPase. But the activation and nuclear localization of YAP/TAZ, and the secretion of hydrolytic enzymes were upregulated when the calcium concentration is at a higher level (1.2 mM). According to our study, there is a high possibility that the migration and attachment of osteoclasts and subsequent osteoclastic bone resorption are regulated over a specific range of extracellular calcium concentration.
Collapse
Affiliation(s)
- Bilu Xiang
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Yang Liu
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Wei Zhao
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Hanchi Zhao
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| | - Haiyang Yu
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, 14S Renmin Road, 3rd sec, 610041, Chengdu, China
| |
Collapse
|
35
|
Sacks Suarez J, Gurler Main H, Muralidhar GG, Elfituri O, Xu HL, Kajdacsy-Balla AA, Barbolina MV. CD44 Regulates Formation of Spheroids and Controls Organ-Specific Metastatic Colonization in Epithelial Ovarian Carcinoma. Mol Cancer Res 2019; 17:1801-1814. [PMID: 31147393 DOI: 10.1158/1541-7786.mcr-18-1205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/27/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
Disseminating epithelial ovarian cancer cells often become assembled into spheroids prior to their arrival at metastatic sites within the peritoneal cavity. Although epithelial ovarian carcinoma (EOC) is the deadliest gynecologic malignancy, the mechanisms regulating formation and metastatic potential of spheroids are poorly understood. We show that expression of a cell surface glycoprotein CD44 is an important contributing factor for spheroid formation and spheroid adhesion to mesothelial cells, and its loss impairs mesenteric metastasis. In contrast, loss of CD44 resulted in significant increase of tumor burden at several locoregional sites, including liver, and unleashed distant metastases to the thoracic cavity. Altogether our studies suggest that CD44 regulates metastatic progression of EOC in an organ-specific manner. IMPLICATIONS: Expression of CD44 promotes spheroid formation, mesothelial adhesion, and formation of mesenteric metastasis, but it suppresses development of metastasis to several peritoneal sites, including liver, and the thoracic cavity.
Collapse
Affiliation(s)
- Joelle Sacks Suarez
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Hilal Gurler Main
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Goda G Muralidhar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Osama Elfituri
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hao-Liang Xu
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
37
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
38
|
Madel MB, Ibáñez L, Rouleau M, Wakkach A, Blin-Wakkach C. A Novel Reliable and Efficient Procedure for Purification of Mature Osteoclasts Allowing Functional Assays in Mouse Cells. Front Immunol 2018; 9:2567. [PMID: 30450105 PMCID: PMC6224441 DOI: 10.3389/fimmu.2018.02567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023] Open
Abstract
Osteoclasts (OCLs) are multinucleated phagocytes of monocytic origin responsible for physiological and pathological bone resorption including aging processes, chronic inflammation and cancer. Besides bone resorption, they are also involved in the modulation of immune responses and the regulation of hematopoietic niches. Accordingly, OCLs are the subject of an increasing number of studies. Due to their rarity and the difficulty to isolate them directly ex vivo, analyses on OCLs are usually performed on in vitro differentiated cells. In this state, however, OCLs represent a minority of differentiated cells. Since up to date a reliable purification procedure is still lacking for mature OCLs, all cells present in the culture are analyzed collectively to answer OCL-specific questions. With the development of in-depth transcriptomic and proteomic analyses, such global analyses on unsorted cells can induce severe bias effects in further results. In addition, for instance, analysis on OCL immune function requires working on purified OCLs to avoid contamination effects of monocytic precursors that may persist during the culture. This clearly highlights the need for a reliable OCL purification procedure. Here, we describe a novel and reliable method to sort OCLs based on cell multinucleation while preserving cell viability. Using this method, we successfully purified multinucleated murine cells. We showed that they expressed high levels of OCL markers and retained a high capacity of bone resorption, demonstrating that these are mature OCLs. The same approach was equally applied for the purification of human mature OCLs. Comparison of purified OCLs with mononucleated cells or unsorted cells revealed significant differences in the expression of OCL-specific markers at RNA and/or protein level. This exemplifies that substantially better outcomes for OCLs are achieved after the exclusion of mononucleated cells. Our results clearly demonstrate that the in here presented procedure for the analysis and sorting of pure OCLs represents a novel, robust and reliable method for the detailed examination of bona fide mature OCLs in a range that was previously impossible. Noteworthy, this procedure will open new perspectives into the biology of osteoclasts and osteoclast-related diseases.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Lidia Ibáñez
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Matthieu Rouleau
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Abdelilah Wakkach
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Faculty of Medicine, Nice, France.,University Nice Sophia Antipolis, Nice, France
| |
Collapse
|
39
|
Zur Y, Rosenfeld L, Keshelman CA, Dalal N, Guterman-Ram G, Orenbuch A, Einav Y, Levaot N, Papo N. A dual-specific macrophage colony-stimulating factor antagonist of c-FMS and αvβ3 integrin for osteoporosis therapy. PLoS Biol 2018; 16:e2002979. [PMID: 30142160 PMCID: PMC6126843 DOI: 10.1371/journal.pbio.2002979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/06/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
There is currently a demand for new highly efficient and specific drugs to treat osteoporosis, a chronic bone disease affecting millions of people worldwide. We have developed a combinatorial strategy for engineering bispecific inhibitors that simultaneously target the unique combination of c-FMS and αvβ3 integrin, which act in concert to facilitate bone resorption by osteoclasts. Using functional fluorescence-activated cell sorting (FACS)-based screening assays of random mutagenesis macrophage colony-stimulating factor (M-CSF) libraries against c-FMS and αvβ3 integrin, we engineered dual-specific M-CSF mutants with high affinity to both receptors. These bispecific mutants act as functional antagonists of c-FMS and αvβ3 integrin activation and hence of osteoclast differentiation in vitro and osteoclast activity in vivo. This study thus introduces a versatile platform for the creation of new-generation therapeutics with high efficacy and specificity for osteoporosis and other bone diseases. It also provides new tools for studying molecular mechanisms and the cell signaling pathways that mediate osteoclast differentiation and function. Many bone diseases—including osteoporosis, in which the bones become brittle and fragile from loss of tissue—are characterized by excessive and uncontrolled bone resorption by bone-destroying cells known as osteoclasts. Therefore, controlled and specific inhibition of osteoclast activity is a desired outcome in treatments for bone diseases. Osteoclast differentiation and function are coordinated by cell surface receptors, including c-FMS and αvβ3 integrin, which cooperate with one another to drive signals that are essential for osteoclast functions. Here, we describe the engineering, characterization, and testing of novel proteins that can target and inhibit both c-FMS and αvβ3 integrin at the same time, thereby providing a way of controlling osteoclast function. The study represents the first example of engineering a natural ligand, which acts as a signaling molecule, as a scaffold for binding not only its target protein but also a second target. We show that these engineered proteins inhibit osteoclast activity in a mouse model of osteoporosis. Our study describes potential inhibitors that target all the known functions resulting from c-FMS/integrin αvβ3 crosstalk and paves the way to create novel targeting proteins that could be used to treat osteoporosis. It also expands our understanding of the role of the c-FMS/αvβ3 integrin pathway in the regulation of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Yuval Zur
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chen Anna Keshelman
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Nofar Dalal
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ayelet Orenbuch
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Einav
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| |
Collapse
|
40
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Zhang Y, Rohatgi N, Veis DJ, Schilling J, Teitelbaum SL, Zou W. PGC1β Organizes the Osteoclast Cytoskeleton by Mitochondrial Biogenesis and Activation. J Bone Miner Res 2018; 33:1114-1125. [PMID: 29521005 PMCID: PMC6002881 DOI: 10.1002/jbmr.3398] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
Abstract
Osteoclasts are mitochondria-rich cells, but the role of these energy-producing organelles in bone resorption is poorly defined. To this end, we conditionally deleted the mitochondria-inducing co-activator, PGC1β, in myeloid lineage cells to generate PGC1βLysM mice. In contrast to previous reports, PGC1β-deficient macrophages differentiate normally into osteoclasts albeit with impaired resorptive function due to cytoskeletal disorganization. Consequently, bone mass of PGC1βLysM mice is double that of wild type. Mitochondrial biogenesis and function are diminished in PGC1βLysM osteoclasts. All abnormalities are normalized by PGC1β transduction. Furthermore, OXPHOS inhibitors reproduce the phenotype of PGC1β deletion. PGC1β's organization of the osteoclast cytoskeleton is mediated by expression of GIT1, which also promotes mitochondrial biogenesis. Thus, osteoclast mitochondria regulate the cell's resorptive activity by promoting cytoskeletal organization. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710061, People’s Republic of China
| | - Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Deborah J. Veis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Joel Schilling
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
42
|
Functional invadopodia formed in glioblastoma stem cells are important regulators of tumor angiogenesis. Oncotarget 2018; 9:20640-20657. [PMID: 29755678 PMCID: PMC5945526 DOI: 10.18632/oncotarget.25045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/22/2018] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and lethal brain tumor. High vascularization, necrosis and invasiveness are hallmarks of GBM aggressiveness with recent data suggesting the important role of glioblastoma stem cells (GSCs) in these processes. It is now well established that cancer cells employ specialized structures termed invadosomes to potentiate invasion. However, the role of these structures in GBM dissemination remains poorly investigated. In this study, we showed that GBM-isolated GSCs form invadopodia-like protrusions endowed with degradative action. Interestingly, their formation depends on extracellular matrix (ECM) sensing via the CD44 receptor. We also found that GSCs invasive migration occurring during tubes assembly is promoted through invadopodia-mediated-ECM remodeling and LIM kinases signaling. Moreover, our study demonstrates that GSCs are highly adaptable cells that are able not only to restore damaged endothelial-derived tubes but also to generate in cooperation with normal endothelial cells (ECs) intact vascular channels. Taken together, our data provide new insights in GBM microvasculature and suggest that GSCs targeting in combination with anti-VEGF therapy may block tumor progression.
Collapse
|
43
|
The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int J Mol Sci 2018; 19:ijms19040984. [PMID: 29587415 PMCID: PMC5979552 DOI: 10.3390/ijms19040984] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Osteoclasts form a specialized cell-matrix adhesion structure, known as the "sealing zone", during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the "podosome belt". Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone.
Collapse
|
44
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
45
|
Liu H, Li D, Liu S, Liu Z, Li M. Histochemical evidence of IGF2 mRNA-binding protein 2-mediated regulation of osteoclast function and adhesive ability. Histochem Cell Biol 2018; 149:343-351. [PMID: 29322325 DOI: 10.1007/s00418-017-1629-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 2 (IGF2) messenger RNA-binding proteins (IMPs) are a family of oncofetal RNA-binding proteins that play important roles in cell migration, renewal, and metabolism. IMP2 gene expression may be important in determining IGF2 levels and might, thereby, be central to bone metabolism. In our present study, IMP2-deficient mice exhibited more immature bone structures, characterized by abundant residual cartilage cores; growth plates containing more rich cartilage matrix, which was arranged irregularly; and a significantly thicker hypertrophic chondrocyte layer in the femoral metaphysis, compared with wild-type mice. These abnormalities were associated with profound effects on the size and morphology of osteoclasts. Specifically, the osteoclasts exhibited various polymorphisms, failed to form resorption lacunae, and were detached from the bone surface. Consistent with these findings, IMP2 deficiency reduced the expression of two important proteases (cathepsin K and matrix metallopeptidase 9) as well as that of C-SRC, a critical regulator of ruffled border formation in osteoclasts, indicating impaired osteoclastic activity. IMP2-deficient mice also displayed inhibited osteoclast adhesion owing to defects in the CD44-osteopontin signaling pathway. In summary, we used IMP2-deficient mice as a model to determine whether IMP2 plays a role during bone metabolism. Our results indicate that IMP2 deficiency delayed bone remodeling by significantly inhibiting the activity of osteoclasts and impairing their adhesion.
Collapse
Affiliation(s)
- Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | - Dongfang Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | - Shanshan Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | - Zhaopeng Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Institute of Medicinal Chemistry, Shandong University, Wenhua West Road 44, Jinan, 250012, China.
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Wenhua West Road 44-1, Jinan, 250012, China.
| |
Collapse
|
46
|
Luo T, Liu H, Feng W, Liu D, Du J, Sun J, Wang W, Han X, Guo J, Amizuka N, Li X, Li M. Adipocytes enhance expression of osteoclast adhesion-related molecules through the CXCL12/CXCR4 signalling pathway. Cell Prolif 2016; 50. [PMID: 27868262 DOI: 10.1111/cpr.12317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate effects of adipocytes on osteoclast adhesion-related molecules. MATERIALS AND METHODS ST2 cells, a cloned stromal cell line from mouse bone marrow, able to differentiate into adipocytes, were cultured in serum-free α-MEM which was then collected to be used as adipocyte-conditioned medium (ADIPO CM). RAW264.7 cells were cultured in ADIPO CM in the presence of RANKL, and bone marrow-derived macrophages were cultured in ADIPO CM in the presence of RANKL and macrophage-colony stimulating factor to induce osteoclast differentiation. TRAP staining, resorption pit assay, qRT-PCR and western blotting assays were performed. RESULTS ELISAs revealed that CXCL12 was abundant in ADIPO CM and CCK-8 assay revealed no proliferation of RAW264.7 cells after exogenous CXCL12 treatment. ADIPO CM enhanced osteoclast formation and resorption, both by RAW264.7 cells and BMMs. In addition, exogenous CXCL12 efficiently potentiated formation of TRAP-positive osteoclast and resorption by RAW264.7 cells. Western blotting and qRT-PCR suggested that ADIPO CM or combined treatment with exogenous CXCL12 caused significant increase in expression of NFAT2, src and osteoclast adhesion-related molecules, including β3 integrin, CD44 and osteopontin. However, these promotional effects were largely abrogated on treatment of AMD3100, a CXCR4 antagonist. CONCLUSIONS Adipocytes promoted osteoclast differentiation, function and expression of adhesion-related molecules through the CXCL12/CXCR4 signalling pathway.
Collapse
Affiliation(s)
- Tingting Luo
- School of Stomatology, Shanxi Medical University, Taiyuan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Wei Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Di Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Juan Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Jing Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Xiuchun Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Jie Guo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Xianqi Li
- School of Stomatology, Shanxi Medical University, Taiyuan, China.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology Shandong University, Jinan, China
| |
Collapse
|
47
|
Sondag GR, Mbimba TS, Moussa FM, Novak K, Yu B, Jaber FA, Abdelmagid SM, Geldenhuys WJ, Safadi FF. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp Mol Med 2016; 48:e257. [PMID: 27585719 PMCID: PMC5050297 DOI: 10.1038/emm.2016.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Thomas S Mbimba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Fatima A Jaber
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, King Abdulaziz University, Jeddah, KSA
| | - Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA.,Department of Orthopedics, Summa Health Systems, Akron, OH, USA
| |
Collapse
|
48
|
El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016; 213:109-25. [PMID: 27069022 PMCID: PMC4828691 DOI: 10.1083/jcb.201510043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
The authors find that matrix metalloproteinase MT1-MMP is enriched at the plasma membrane of macrophage podosomes, where it persists beyond podosome lifetime and, through binding to the subcortical actin cytoskeleton, forms subcellular signposts that facilitate podosome reformation. Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.
Collapse
Affiliation(s)
- Karim El Azzouzi
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
49
|
Rau LR, Tsao SW, Liaw JW, Tsai SW. Selective Targeting and Restrictive Damage for Nonspecific Cells by Pulsed Laser-Activated Hyaluronan-Gold Nanoparticles. Biomacromolecules 2016; 17:2514-21. [DOI: 10.1021/acs.biomac.6b00386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lih-Rou Rau
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Wei Tsao
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Jiunn-Woei Liaw
- Department
of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Center
for Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Institute
for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Center
for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Shiao-Wen Tsai
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Center
for Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| |
Collapse
|
50
|
Di Martino J, Henriet E, Ezzoukhry Z, Goetz JG, Moreau V, Saltel F. The microenvironment controls invadosome plasticity. J Cell Sci 2016; 129:1759-68. [PMID: 27029343 DOI: 10.1242/jcs.182329] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Invadosomes are actin-based structures involved in extracellular matrix degradation. Invadosomes is a term that includes podosomes and invadopodia, which decorate normal and tumour cells, respectively. They are mainly organised into dots or rosettes, and podosomes and invadopodia are often compared and contrasted. Various internal or external stimuli have been shown to induce their formation and/or activity. In this Commentary, we address the impact of the microenvironment and the role of matrix receptors on the formation, and dynamic and degradative activities of invadosomes. In particular, we highlight recent findings regarding the role of type I collagen fibrils in inducing the formation of a new linear organisation of invadosomes. We will also discuss invadosome plasticity more generally and emphasise its physio-pathological relevance.
Collapse
Affiliation(s)
- Julie Di Martino
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Elodie Henriet
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Zakaria Ezzoukhry
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Jacky G Goetz
- MN3T, Inserm U1109, Strasbourg 67200, France Université de Strasbourg, Strasbourg 67000, France LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Violaine Moreau
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Frederic Saltel
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| |
Collapse
|