1
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
3
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Roussaki M, Magoulas GE, Fotopoulou T, Santarem N, Barrias E, Pöhner I, Luelmo S, Afroudakis P, Georgikopoulou K, Nevado PT, Eick J, Bifeld E, Corral MJ, Jiménez-Antón MD, Ellinger B, Kuzikov M, Fragiadaki I, Scoulica E, Gul S, Clos J, Prousis KC, Torrado JJ, Alunda JM, Wade RC, de Souza W, Cordeiro da Silva A, Calogeropoulou T. Design, synthesis and biological evaluation of antiparasitic dinitroaniline-ether phospholipid hybrids. Bioorg Chem 2023; 138:106615. [PMID: 37244229 DOI: 10.1016/j.bioorg.2023.106615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 μM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.
Collapse
Affiliation(s)
- Marina Roussaki
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - George E Magoulas
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Theano Fotopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nuno Santarem
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal.
| | - Emile Barrias
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Sara Luelmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Pantelis Afroudakis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Kalliopi Georgikopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Paloma Tejera Nevado
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Julia Eick
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Eugenia Bifeld
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - María J Corral
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María Dolores Jiménez-Antón
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Irini Fragiadaki
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Effie Scoulica
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Kyriakos C Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Juan J Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28240 Madrid, Spain.
| | - José María Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany.
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Anabela Cordeiro da Silva
- IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departmento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
5
|
Flores-León CD, Dominguez L, Aguayo-Ortiz R. Molecular basis of Toxoplasma gondii oryzalin resistance from a novel α-tubulin binding site model. Arch Biochem Biophys 2022; 730:109398. [PMID: 36116504 DOI: 10.1016/j.abb.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.
Collapse
Affiliation(s)
- Carlos D Flores-León
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
6
|
Bera A, Gupta ML. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol 2022; 10:913809. [PMID: 35865635 PMCID: PMC9294176 DOI: 10.3389/fcell.2022.913809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The cellular functions of the microtubule (MT) cytoskeleton range from relatively simple to amazingly complex. Assembled from tubulin, a heterodimeric protein with α- and β-tubulin subunits, microtubules are long, hollow cylindrical filaments with inherent polarity. They are intrinsically dynamic polymers that utilize GTP binding by tubulin, and subsequent hydrolysis, to drive spontaneous assembly and disassembly. Early studies indicated that cellular MTs are composed of multiple variants, or isotypes, of α- and β-tubulins, and that these multi-isotype polymers are further diversified by a range of posttranslational modifications (PTMs) to tubulin. These findings support the multi-tubulin hypothesis whereby individual, or combinations of tubulin isotypes possess unique properties needed to support diverse MT structures and/or cellular processes. Beginning 40 years ago researchers have sought to address this hypothesis, and the role of tubulin isotypes, by exploiting experimentally accessible, genetically tractable and functionally conserved model systems. Among these systems, important insights have been gained from eukaryotic microbial models. In this review, we illustrate how using microorganisms yielded among the earliest evidence that tubulin isotypes harbor distinct properties, as well as recent insights as to how they facilitate specific cellular processes. Ongoing and future research in microorganisms will likely continue to reveal basic mechanisms for how tubulin isotypes facilitate MT functions, along with valuable perspectives on how they mediate the range of conserved and diverse processes observed across eukaryotic microbes.
Collapse
|
7
|
Aguayo-Ortiz R, Dominguez L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS OMEGA 2022; 7:18434-18442. [PMID: 35694483 PMCID: PMC9178734 DOI: 10.1021/acsomega.2c00729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
Dinitroaniline derivatives have been widely used as herbicidal agents to control weeds and grass. Previous studies demonstrated that these compounds also exhibit good antiparasitic activity against some protozoan parasites. Oryzalin (ORY), a representative dinitroaniline derivative, exerts its antiprotozoal activity against Toxoplasma gondii by inhibiting the microtubule polymerization process. Moreover, the identification of ORY-resistant T. gondii lines obtained by chemical mutagenesis confirmed that this compound binds selectively to α-tubulin. Based on experimental information reported so far and a multiple sequence analysis carried out in this work, we propose that the pironetin (PIR) site is the potential ORY-binding site. Therefore, we employed state-of-the-art computational approaches to characterize the interaction profile of ORY at the proposed site in the α-tubulin of T. gondii. An exhaustive search for other possible binding sites was performed using the Wrap "N" Shake method, which showed that ORY exhibits highest stability and affinity for the PIR site. Moreover, our molecular dynamics simulations revealed that the dipropylamine substituent of ORY interacts with a hydrophobic pocket, while the sulfonamide group formed hydrogen bonds with water molecules at the site entrance. Overall, our results suggest that ORY binds to the PIR site on the α-tubulin of the protozoan parasite T. gondii. This information will be very useful for designing less toxic and more potent antiprotozoal agents.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento
de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Wang Y, Han H, Chen J, Yu Q, Vila-Aiub M, Beckie HJ, Powles SB. A dinitroaniline herbicide resistance mutation can be nearly lethal to plants. PEST MANAGEMENT SCIENCE 2022; 78:1547-1554. [PMID: 34981627 DOI: 10.1002/ps.6773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lolium rigidum is the most important weed in Australian agriculture and pre-emergence dinitroaniline herbicides (e.g., trifluralin) are widely and persistently used for Lolium control. Consequently, evolution of resistance to dinitroaniline herbicides has been increasingly reported. Resistance-endowing target-site α-tubulin gene mutations are identified with varying frequency. This study investigated the putative fitness cost associated with the common resistance mutation Val-202-Phe and the rare resistance mutation Arg-243-Met causing helical plant growth. RESULTS Results showed a deleterious effect of Arg-243-Met on fitness when plants are homozygous for this mutation. This was evidenced as high plant mortality, severely diminished root and aboveground vegetative growth (lower relative growth rate), and very poor fecundity compared with the wild-type, which led to a nearly lethal fitness cost of >99.9% in competition with a wheat crop. A fitness penalty in vegetative growth was evident, but to a much lesser extent, in plants heterozygous for the Arg-243-Met mutation. By contrast, plants possessing the Val-202-Phe mutation exhibited a fitness advantage in vegetative and reproductive growth. CONCLUSION The α-tubulin mutations Arg-243-Met and Val-202-Phe have contrasting effects on fitness. These results help understand the absence of plants homozygous for the Arg-243-Met mutation and the high frequency of plants carrying the Val-202-Phe mutation in dinitroaniline-resistant L. rigidum populations. The α-tubulin Arg-243-Met mutation can have an exceptional fitness cost with nearly lethal effects on resistant L. rigidum plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Martin Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
- IFEVA - CONICET - Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Hugh J Beckie
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| |
Collapse
|
9
|
Chen J, Yu Q, Owen M, Han H, Patterson E, Sayer C, Powles S. Target-site resistance to trifluralin is more prevalent in annual ryegrass populations from Western Australia. PEST MANAGEMENT SCIENCE 2022; 78:1206-1212. [PMID: 34837476 DOI: 10.1002/ps.6737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trifluralin is widely used in Australia as one of the important pre-emergence herbicides to control annual ryegrass (Lolium rigidum Gaud.) populations. Trifluralin resistance evolution and mechanisms have been identified in some ryegrass populations. RESULTS In this study, 21 putative resistant field survey populations from Western Australian were screened with trifluralin, and 90% (19 of 21) contained individuals surviving 480 g ha-1 trifluralin treatment. Twelve populations contained individuals possessing the known α-tubulin resistance mutations at Val-202, Thr-239 and Arg-243 in TUA4 (alpha-tubulin 4 n), plus multiple potential resistance mutations in TUA4 pending genetic confirmation. Three populations had only individuals carrying newly identified (but uncharacterized) mutations in TUA3/TUA4. Radioactive work found that six populations evolved metabolic resistance to trifluralin, and at least four of them also possessed the known and/or putative target-site mutations. CONCLUSION These results confirm that a high incidence of resistance to the dinitroaniline herbicide (trifluralin) is present, and target-site tubulin mutations make a major contribution to resistance in these annual ryegrass populations. Co-evolution of both target-site and non-target-site resistance to per-emergence herbicides warrants diverse management tactics.
Collapse
Affiliation(s)
- Jinyi Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Mechelle Owen
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| |
Collapse
|
10
|
Khabudaev KV, Petrova DP, Bedoshvili YD, Likhoshway YV, Grachev MA. Molecular Evolution of Tubulins in Diatoms. Int J Mol Sci 2022; 23:618. [PMID: 35054799 PMCID: PMC8776100 DOI: 10.3390/ijms23020618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/29/2023] Open
Abstract
Microtubules are formed by α- and β-tubulin heterodimers nucleated with γ-tubulin. Tubulins are conserved eukaryotic proteins. Previously, it was shown that microtubules are involved in diatom silica frustule morphogenesis. Diatom frustules are varied, and their morphology is species-specific. Despite the attractiveness of the problem of elucidating the molecular mechanisms of genetically programmed morphogenesis, the structure and evolution of diatom tubulins have not been studied previously. Based on available genomic and transcriptome data, we analyzed the phylogeny of the predicted amino acid sequences of diatom α-, β- and γ-tubulins and identified five groups for α-tubulins, six for β-tubulins and four for γ-tubulins. We identified characteristic amino acids of each of these groups and also analyzed possible posttranslational modification sites of diatom tubulins. According to our results, we assumed what changes occurred in the diatom tubulin structures during their evolution. We also identified which tubulin groups are inherent in large diatom taxa. The similarity between the evolution of diatom tubulins and the evolution of diatoms suggests that molecular changes in α-, β- and γ-tubulins could be one of the factors in the formation of a high morphological diversity of diatoms.
Collapse
Affiliation(s)
| | | | - Yekaterina D. Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (K.V.K.); (D.P.P.); (Y.V.L.); (M.A.G.)
| | | | | |
Collapse
|
11
|
Gaillard N, Sharma A, Abbaali I, Liu T, Shilliday F, Cook AD, Ehrhard V, Bangera M, Roberts AJ, Moores CA, Morrissette N, Steinmetz MO. Inhibiting parasite proliferation using a rationally designed anti-tubulin agent. EMBO Mol Med 2021; 13:e13818. [PMID: 34661376 PMCID: PMC8573600 DOI: 10.15252/emmm.202013818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.
Collapse
Affiliation(s)
- Natacha Gaillard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Ashwani Sharma
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Izra Abbaali
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tianyang Liu
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Fiona Shilliday
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Alexander D Cook
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Valentin Ehrhard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Mamata Bangera
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Anthony J Roberts
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Carolyn A Moores
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Naomi Morrissette
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michel O Steinmetz
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
- Biozentrum University of BaselBaselSwitzerland
| |
Collapse
|
12
|
Chen J, Yu Q, Patterson E, Sayer C, Powles S. Dinitroaniline Herbicide Resistance and Mechanisms in Weeds. FRONTIERS IN PLANT SCIENCE 2021; 12:634018. [PMID: 33841462 PMCID: PMC8027333 DOI: 10.3389/fpls.2021.634018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species (e.g., Eleusine indica, Setaria viridis, and recently in Lolium rigidum). Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation. The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- *Correspondence: Qin Yu,
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chad Sayer
- Nufarm Limited, Melbourne, VIC, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
| |
Collapse
|
13
|
Chlamydomonas reinhardtii tubulin-gene disruptants for efficient isolation of strains bearing tubulin mutations. PLoS One 2020; 15:e0242694. [PMID: 33227038 PMCID: PMC7682851 DOI: 10.1371/journal.pone.0242694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/08/2020] [Indexed: 11/24/2022] Open
Abstract
The single-cell green alga Chlamydomonas reinhardtii possesses two α-tubulin genes (tua1 and tua2) and two β-tubulin genes (tub1 and tub2), with the two genes in each pair encoding identical amino acid sequences. Here, we screened an insertional library to establish eight disruptants with defective tua2, tub1, or tub2 expression. Most of the disruptants did not exhibit major defects in cell growth, flagellar length, or flagellar regeneration after amputation. Because few tubulin mutants of C. reinhardtii have been reported to date, we then used our disruptants, together with a tua1 disruptant obtained from the Chlamydomonas Library Project (CLiP), to isolate tubulin-mutants resistant to the anti-tubulin agents propyzamide (pronamide) or oryzalin. As a result of several trials, we obtained 8 strains bearing 7 different α-tubulin mutations and 12 strains bearing 7 different β-tubulin mutations. One of the mutations is at a residue similar to that of a mutation site known to confer drug resistance in human cancer cells. Some strains had the same amino acid substitutions as those reported previously in C. reinhardtii; however, the mutants with single tubulin genes showed slightly stronger drug-resistance than the previous mutants that express the mutated tubulin in addition to the wild-type tubulin. Such increased drug-resistance may have facilitated sensitive detection of tubulin mutation. Single-tubulin-gene disruptants are thus an efficient background of generating tubulin mutants for the study of the structure–function relationship of tubulin.
Collapse
|
14
|
Harding CR, Gow M, Kang JH, Shortt E, Manalis SR, Meissner M, Lourido S. Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii. Nat Commun 2019; 10:401. [PMID: 30674885 PMCID: PMC6344517 DOI: 10.1038/s41467-019-08318-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depolymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites. Cortical microtubules of Toxoplasma gondii are exceptionally stable, but it isn’t known how they are anchored along membranes. Here, Harding et al. show that GAPM proteins localize to the inner membrane complex and are essential for maintaining the structural stability of parasites.
Collapse
Affiliation(s)
- Clare R Harding
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA.
| | - Matthew Gow
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Joon Ho Kang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Markus Meissner
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Munich, 80539, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA. .,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
15
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA, Daryani A. Drug Resistance in Toxoplasma gondii. Front Microbiol 2018; 9:2587. [PMID: 30420849 PMCID: PMC6215853 DOI: 10.3389/fmicb.2018.02587] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a global protozoan parasite infecting up to one-third of the world population. Pyrimethamine (PYR) and sulfadiazine (SDZ) are the most widely used drugs for treatment of toxoplasmosis; however, several failure cases have been recorded as well; suggesting the existence of drug resistant strains. This review aims to give a systematic and comprehensive understanding of drug resistance in T. gondii including mechanisms of resistance and sites of drug action in parasite. Analogous amino acid substitutions in the Toxoplasma enzyme were identified to confer PYR resistance. Moreover, resistance to clindamycin, spiramycin, and azithromycin is encoded in the rRNA genes of T. gondii. However, T. gondii SDZ resistance mechanism has not been proved yet. Recently there has been a slight increase in SDZ resistance. That is why the majority of studies were carried out using SDZ. Six strains resistant to SDZ were found in clinical cases between 2013 and 2017 which among Brazilian T. gondii isolates, TgCTBr11, Ck3, and Pg1 were identified in human toxoplasmosis, as well as in livestock intended for human consumption. In conclusion, recent experimental studies in clinical cases have clearly shown that drug resistance in Toxoplasma is ongoing. Thus, establishing a more effective therapeutic scheme in the treatment of toxoplasmosis is critically needed. The emergence of T. gondii strains resistant to current drugs, reviewed here, represents a concern not only for treatment failure but also for increased clinical severity in immunocompromised patients. To improve the therapeutic outcome in patients, a greater understanding of the exact mechanisms of drug resistance in T. gondii should be developed. Thus, monitoring the presence of resistant parasites, in food products, would seem a prudent public health program.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asal Tanzifi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Chu Z, Chen J, Nyporko A, Han H, Yu Q, Powles S. Novel α-Tubulin Mutations Conferring Resistance to Dinitroaniline Herbicides in Lolium rigidum. FRONTIERS IN PLANT SCIENCE 2018; 9:97. [PMID: 29472938 PMCID: PMC5810296 DOI: 10.3389/fpls.2018.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 05/24/2023]
Abstract
The dinitroaniline herbicides (particularly trifluralin) have been globally used in many crops for selective grass weed control. Consequently, trifluralin resistance has been documented in several important crop weed species and has recently reached a level of concern in Australian Lolium rigidum populations. Here, we report novel mutations in the L. rigidum α-tubulin gene which confer resistance to trifluralin and other dinitroaniline herbicides. Nucleotide mutations at the highly conserved codon Arg-243 resulted in amino acid substitutions of Met or Lys. Rice calli transformed with the mutant 243-Met or 243-Lys α-tubulin genes were 4- to 8-fold more resistant to trifluralin and other dinitroaniline herbicides (e.g., ethalfluralin and pendimethalin) compared to calli transformed with the wild type α-tubulin gene from L. rigidum. Comprehensive modeling of molecular docking predicts that Arg-243 is close to the trifluralin binding site on the α-tubulin surface and that replacement of Arg-243 by Met/Lys-243 results in a spatial shift of the trifluralin binding domain, reduction of trifluralin-tubulin contacts, and unfavorable interactions. The major effect of these substitutions is a significant rise of free interaction energy between α-tubulin and trifluralin, as well as between trifluralin and its whole molecular environment. These results demonstrate that the Arg-243 residue in α-tubulin is a determinant for trifluralin sensitivity, and the novel Arg-243-Met/Lys mutations may confer trifluralin resistance in L. rigidum.
Collapse
Affiliation(s)
- Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Jinyi Chen
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Alex Nyporko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Kumbhar BV, Borogaon A, Panda D, Kunwar A. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations. PLoS One 2016; 11:e0156048. [PMID: 27227832 PMCID: PMC4882049 DOI: 10.1371/journal.pone.0156048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes.
Collapse
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Anubhaw Borogaon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| |
Collapse
|
18
|
TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii. mSphere 2016; 1:mSphere00088-15. [PMID: 27303695 PMCID: PMC4863603 DOI: 10.1128/msphere.00088-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023] Open
Abstract
Toxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target. Toxoplasma gondii is a widespread protozoan parasite that causes potentially life-threatening opportunistic disease. New inhibitors of parasite replication are urgently needed, as the current antifolate treatment is also toxic to patients. Microtubules are essential cytoskeletal components that have been selectively targeted in microbial pathogens; further study of tubulin in Toxoplasma may reveal novel therapeutic opportunities. It has been noted that α-tubulin acetylation at lysine 40 (K40) is enriched during daughter parasite formation, but the impact of this modification on Toxoplasma division and the enzyme mediating its delivery have not been identified. We performed mutational analyses to provide evidence that K40 acetylation stabilizes Toxoplasma microtubules and is required for parasite replication. We also show that an unusual Toxoplasma homologue of α-tubulin acetyltransferase (TgATAT) is expressed in a cell cycle-regulated manner and that its expression peaks during division. Disruption of TgATAT with CRISPR/Cas9 ablates K40 acetylation and induces replication defects; parasites appear to initiate mitosis yet exhibit incomplete or improper nuclear division. Together, these findings establish the importance of tubulin acetylation, exposing a new vulnerability in Toxoplasma that could be pharmacologically targeted. IMPORTANCEToxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target.
Collapse
|
19
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
20
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
21
|
Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. PLoS One 2014; 9:e85763. [PMID: 24489670 PMCID: PMC3906025 DOI: 10.1371/journal.pone.0085763] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/30/2013] [Indexed: 01/15/2023] Open
Abstract
T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility.
Collapse
|
22
|
Abstract
Leishmania donovaniis a parasite that causes visceral leishmaniasis, a severe form of leishmaniasis that affects vital organs. An important target for the treatment of this disease is the proteinα-βtubulin, which was modeled in this paper and proposed as a target for the treatment of visceral leishmaniasis. Two classes of compounds were studied, dinitroanilines and oxadiazoles. According to the docking results, dinitroanilines interact better with the L loop domain and oxadiazoles interact better with the colchicine domain.
Collapse
|
23
|
Hashimoto T. Dissecting the cellular functions of plant microtubules using mutant tubulins. Cytoskeleton (Hoboken) 2013; 70:191-200. [PMID: 23585382 DOI: 10.1002/cm.21099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 12/22/2022]
Abstract
α- and β-tubulins, the building blocks of the microtubule (MT) polymer, are encoded by multiple genes that are largely functionally redundant in plants. Null tubulin mutants are thus phenotypically indistinguishable from the wild type, but miss-sense or deletion mutations of critical amino acid residues that are important for the assembly, stability, or dynamics of the polymer disrupt the proper organization and function of the resultant MT arrays. Mutant tubulins co-assemble with wild-type tubulins into mutant MTs with compromised functions, and thus mechanistically act as dominant-negative MT poisons. Cortical MT arrays in interphase plant cells are most sensitive to tubulin mutations, and are transformed into helical structures or random orientation, which produce twisted or radially swollen cells. Mutant plants resistant to MT-targeted herbicides may possess tubulin mutations at the binding sites of the herbicides. Tubulin mutants are valuable tools for investigating how individual MTs are organized into particular patterns in cortical arrays, and for defining the functional contribution of MTs to various MT-dependent or -assisted cellular processes in plant cells.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
24
|
Dempsey E, Prudêncio M, Fennell BJ, Gomes-Santos CS, Barlow JW, Bell A. Antimitotic herbicides bind to an unidentified site on malarial parasite tubulin and block development of liver-stage Plasmodium parasites. Mol Biochem Parasitol 2013; 188:116-27. [PMID: 23523992 DOI: 10.1016/j.molbiopara.2013.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 02/04/2023]
Abstract
Malarial parasites are exquisitely susceptible to a number of microtubule inhibitors but most of these compounds also affect human microtubules. Herbicides of the dinitroaniline and phosphorothioamidate classes however affect some plant and protozoal cells but not mammalian ones. We have previously shown that these herbicides block schizogony in erythrocytic parasites of the most lethal human malaria, Plasmodium falciparum, disrupt their mitotic spindles, and bind selectively to parasite tubulin. Here we show for the first time that the antimitotic herbicides also block the development of malarial parasites in the liver stage. Structure-based design of novel antimalarial agents binding to tubulin at the herbicide site, which presumably exists on (some) parasite and plant tubulins but not mammalian ones, can therefore constitute an important transmission blocking approach. The nature of this binding site is controversial, with three overlapping but non-identical locations on α-tubulin proposed in the literature. We tested the validity of the three sites by (i) using site-directed mutagenesis to introduce six amino acid changes designed to occlude them, (ii) producing the resulting tubulins recombinantly in Escherichia coli and (iii) measuring the affinity of the herbicides amiprophosmethyl and oryzalin for these proteins in comparison with wild-type tubulins by fluorescence quenching. The changes had little or no effect, with dissociation constants (Kd) no more than 1.3-fold (amiprophosmethyl) or 1.6-fold (oryzalin) higher than wild-type. We conclude that the herbicides impair Plasmodium liver stage as well as blood stage development but that the location of their binding site on malarial parasite tubulin remains to be proven.
Collapse
Affiliation(s)
- Enda Dempsey
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
25
|
SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. EUKARYOTIC CELL 2011; 11:206-16. [PMID: 22021240 DOI: 10.1128/ec.05161-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.
Collapse
|
26
|
Darmency H, Picard JC, Wang T. Fitness costs linked to dinitroaniline resistance mutation in Setaria. Heredity (Edinb) 2011; 107:80-6. [PMID: 21245896 DOI: 10.1038/hdy.2010.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A mutant Thr-239-Ileu at the α2-tubulin gene was found to confer resistance to dinitroanilines, a family of mitosis-disrupting herbicides. However, mutations affecting microtubule polymerization and cell division are expected to impact growth and reproduction, that is, the fitness of a resistant weed or the yield of a tolerant crop, although it has not been demonstrated yet. This study was designed to test this hypothesis for the growth and reproduction of near-isogenic resistant and susceptible materials that were created in F(2) and F(3) generations after a Setaria viridis x S. italica cross. Differential growth was noticeable at the very onset of seedling growth. The homozygous resistant plants, grown both in a greenhouse cabinet and in the field, were smaller and had lower 1000-grain weight and therefore a lower yield. This fitness penalty is certainly due to modified cell division kinetics. Although the presence of the mutant allele accounted for 20% yield losses, there were also measurable benefits of dinitroaniline resistance, and these benefits are discussed.
Collapse
Affiliation(s)
- H Darmency
- INRA, UMR 1210 Biologie et Gestion des Adventices, Dijon, France.
| | | | | |
Collapse
|
27
|
Ghawanmeh T, Thunberg U, Castro J, Murray F, Laytragoon-Lewin N. miR-34a Expression, Cell Cycle Arrest and Cell Death of Malignant Mesothelioma Cells upon Treatment with Radiation, Docetaxel or Combination Treatment. Oncology 2011; 81:330-5. [DOI: 10.1159/000334237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/05/2011] [Indexed: 01/07/2023]
|
28
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|
29
|
Dinitroaniline activity in Toxoplasma gondii expressing wild-type or mutant alpha-tubulin. Antimicrob Agents Chemother 2010; 54:1453-60. [PMID: 20145086 DOI: 10.1128/aac.01150-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human parasite Toxoplasma gondii is sensitive to dinitroaniline compounds which selectively disrupt microtubules in diverse protozoa but which have no detectable effect on vertebrate host cell microtubules or other functions. Replication of wild-type T. gondii is inhibited by 0.5 to 2.5 microM oryzalin, but mutant parasites harboring amino acid substitutions in the predicted dinitroaniline binding site confer resistance up to 40 microM oryzalin. However, the precise interaction between dinitroanilines and the binding site in alpha-tubulin remains unclear. We have investigated the activity of 12 dinitroanilines and the related compound amiprophos methyl on wild-type and dinitroaniline-resistant parasite lines that contain proposed binding site mutations. These data indicate that dinitramine is the most effective dinitroaniline to inhibit Toxoplasma growth in wild-type parasites and most resistant lines. Dinitramine has an amine group at the meta position not present in any of the other dinitroanilines tested here that is predicted to form hydrogen bonds with residues Arg2 and Gln133 according to docking data. Remarkably, although the binding site mutation Ile235Val confers increased resistance to most dinitroanilines, it confers increased sensitivity to GB-II-5, a compound optimized for activity against kinetoplastid tubulin. Kinetoplastid parasites have a valine at position 235 of alpha-tubulin, whereas apicomplexan parasites have an isoleucine at this site. We suggest that this heterogeneity in binding site environment influences relative dinitroaniline sensitivity in distinct protozoan lineages and hypothesize that a mutation that makes the apicomplexan dinitroaniline binding site more like the kinetoplastid site increases sensitivity to a dinitroaniline optimized for activity in the latter parasites.
Collapse
|
30
|
|
31
|
Babiker HA, Hastings IM, Swedberg G. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther 2009; 7:581-93. [PMID: 19485798 DOI: 10.1586/eri.09.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria, a leading parasitic disease, inflicts an enormous toll on human lives and is caused by protozoal parasites belonging to the genus Plasmodium. Antimalarial drugs targeting essential biochemical processes in the parasite are the primary resources for management and control. However, the parasite has established mutations, substantially reducing the efficacy of these drugs. First-line therapy is faced the with the consistent evolution of drug-resistant genotypes carrying these mutations. However, drug-resistant genotypes are likely to be less fit than the wild-type, suggesting that they might disappear by reducing the volume of drug pressure. A substantial body of epidemiological evidence confirmed that the frequency of resistant genotypes wanes when active drug selection declines. Drug selection on the parasite genome that removes genetic variation in the vicinity of drug-resistant genes (hitch-hiking) is common among resistant parasites in the field. This can further disadvantage drug-resistant strains and limit their variability in the face of a mounting immune response. Attempts to provide unequivocal evidence for the fitness cost of drug resistance have monitored the outcomes of laboratory competition experiments of deliberate mixtures of sensitive and resistant strains, in the absence of drug pressure, using isogenic clones produced either by drug selection or gene manipulation. Some of these experiments provided inconclusive results, but they all suggested reduced fitness of drug-resistant clones in the absence of drug pressure. In addition, biochemical analyses provided clearer information demonstrating that the mutation of some antimalarial-targeted enzymes lowers their activity compared with the wild-type enzyme. Here, we review current evidences for the disadvantage of drug-resistance mutations, and discuss some strategies of drug deployment to maximize the cost of resistance and limit its spread.
Collapse
Affiliation(s)
- Hamza A Babiker
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Alkhod, Muscat, Oman.
| | | | | |
Collapse
|
32
|
Secondary mutations correct fitness defects in Toxoplasma gondii with dinitroaniline resistance mutations. Genetics 2008; 180:845-56. [PMID: 18780736 DOI: 10.1534/genetics.108.092494] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dinitroanilines (oryzalin, trifluralin, ethafluralin) disrupt microtubules in protozoa but not in vertebrate cells, causing selective death of intracellular Toxoplasma gondii parasites without affecting host cells. Parasites containing alpha1-tubulin point mutations are dinitroaniline resistant but show increased rates of aberrant replication relative to wild-type parasites. T. gondii parasites bearing the F52Y mutation were previously demonstrated to spontaneously acquire two intragenic mutations that decrease both resistance levels and replication defects. Parasites bearing the G142S mutation are largely dependent on oryzalin for viable growth in culture. We isolated 46 T. gondii lines that have suppressed microtubule defects associated with the G142S or the F52Y mutations by acquiring secondary mutations. These compensatory mutations were alpha1-tubulin pseudorevertants or extragenic suppressors (the majority alter the beta1-tubulin gene). Many secondary mutations were located in tubulin domains that suggest that they function by destabilizing microtubules. Most strikingly, we identified seven novel mutations that localize to an eight-amino-acid insert that stabilizes the alpha1-tubulin M loop, including one (P364R) that acts as a compensatory mutation in both F52Y and G142S lines. These lines have reduced dinitroaniline resistance but most perform better than parental lines in competition assays, indicating that there is a trade-off between resistance and replication fitness.
Collapse
|
33
|
Fennell BJ, Naughton JA, Barlow J, Brennan G, Fairweather I, Hoey E, McFerran N, Trudgett A, Bell A. Microtubules as antiparasitic drug targets. Expert Opin Drug Discov 2008; 3:501-18. [DOI: 10.1517/17460441.3.5.501] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|