1
|
Guan X, Li H, Zhang L, Zhi H. Mechanisms of mitochondrial damage-associated molecular patterns associated with inflammatory response in cardiovascular diseases. Inflamm Res 2025; 74:18. [PMID: 39806203 DOI: 10.1007/s00011-025-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart. In cardiovascular illnesses, mitochondrial homeostasis is disrupted, accompanied by structural and functional impairments. During mitochondrial stress or injury, mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA, cardiolipin, N-formyl peptide, and adenosine triphosphate, are released to activate pattern recognition receptors and trigger immunological responses. Inflammatory responses mediated by mtDAMPs substantially contribute to the pathophysiology of cardiovascular illnesses. In this review, we discuss the molecular mechanisms by which different mtDAMPs control the inflammatory response, address the pathological consequences of mtDAMPs in inducing or exacerbating the inflammatory response in CVDs, and summarize potential therapeutic targets in relevant experimental studies. Preventing or reducing mtDAMP release may play a role in CVD progression by alleviating the inflammatory response.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Haitao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Lijuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| | - Hongwei Zhi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
3
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
5
|
Harris AL, Dinopoulou V, Loutradis D, Drakakis P, Kiessling AA. Microarray evidence that 8-cell human embryos express some hormone family members including oxytocin. J Assist Reprod Genet 2024; 41:323-332. [PMID: 38133877 PMCID: PMC10894797 DOI: 10.1007/s10815-023-03002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE This study is to discover hormone pathways active in early cleaving human embryos. METHODS A list of 152 hormones and receptors were compiled to query the microarray database of mRNAs in 8-cell human embryos, two lines of human embryonic stem cells plus human fibroblasts before and after induced pluripotency. RESULTS Over half of the 152 hormones and receptors were silent on the arrays of all cell types, and more were detected at high or moderate levels on the 8-cell arrays than on the pluripotent cell or fibroblast arrays. Eight hormone family genes were uniquely detected at least 22-fold higher on the 8-cell arrays than the stem cell arrays: AVPI1, CCK, CORT, FSTL4, GIP, GPHA2, OXT, and PPY suggesting novel roles for these proteins in early development. Oxytocin was detected by pilot immunoassay in culture media collected from Day 3 embryos. Robust detection of CRHR1 and EPOR suggests the 8-cell embryo may be responsive to maternal CRH and EPO. The over-expression of POMC and GHITM suggests POMP peptide products may have undiscovered roles in early development and GHITM may contribute to mitochondrial remodeling. Under-detected on the 8-cell arrays at least tenfold were two key enzymes in steroid biosynthesis, DHCR24 and FDPS. CONCLUSIONS The 8-cell human embryo may be secreting oxytocin, which could stimulate its own progress down the fallopian tube as well as play a role in early neural precursor development. The 8-cell embryo does not synthesize reproductive steroid hormones. As previously reported for growth factor families, the early embryo over-expresses more hormones than hormone receptors.
Collapse
Affiliation(s)
- Amy Lee Harris
- Department of Obstetrics and Gynecology, Harvard Medical School, Massachusetts General Hospital Fertility Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Fairborn, OH, USA
| | - Vasiliki Dinopoulou
- 1St Department of Obstetrics and Gynecology, Alexandra Hospital, Athens University Medical School, Lourou 4-2, 115 28, Athina, Greece
| | - Dimitris Loutradis
- 1St Department of Obstetrics and Gynecology, Alexandra Hospital, Athens University Medical School, Lourou 4-2, 115 28, Athina, Greece
| | - Peter Drakakis
- 1St Department of Obstetrics and Gynecology, Alexandra Hospital, Athens University Medical School, Lourou 4-2, 115 28, Athina, Greece
| | | |
Collapse
|
6
|
Akabane S, Watanabe K, Kosako H, Yamashita SI, Nishino K, Kato M, Sekine S, Kanki T, Matsuda N, Endo T, Oka T. TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria. Cell Rep 2023:112454. [PMID: 37160114 DOI: 10.1016/j.celrep.2023.112454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kiyona Watanabe
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Masahiro Kato
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Noriyuki Matsuda
- Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
7
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
8
|
Ma L, Liao L, Zhou N, Tao H, Zhou H, Tan Y, Chen W, Cao F, Chen X. Transmembrane BAX inhibitor motif containing 6 suppresses presenilin-2 to preserve mitochondrial integrity after myocardial ischemia-reperfusion injury. Int J Biol Sci 2023; 19:1228-1240. [PMID: 36923943 PMCID: PMC10008687 DOI: 10.7150/ijbs.81100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/21/2023] [Indexed: 03/13/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) damage is characterized by mitochondrial damage in cardiomyocytes. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) and presenilin-2 (PS2) participate in multiple mitochondrial pathways; thus, we investigated the impact of these proteins on mitochondrial homeostasis during an acute reperfusion injury. Myocardial post-ischemic reperfusion stress impaired myocardial function, induced structural abnormalities and promoted cardiomyocyte death by disrupting the mitochondrial integrity in wild-type mice, but not in TMBIM6 transgenic mice. We found that TMBIM6 bound directly to PS2 and promoted its post-transcriptional degradation. Knocking out PS2 in mice reduced I/R injury-induced cardiac dysfunction, inflammatory responses, myocardial swelling and cardiomyocyte death by improving the mitochondrial integrity. These findings demonstrate that sufficient TMBIM6 expression can prevent PS2 accumulation during cardiac I/R injury, thus suppressing reperfusion-induced mitochondrial damage. Therefore, TMBIM6 and PS2 are promising therapeutic targets for the treatment of cardiac reperfusion damage.
Collapse
Affiliation(s)
- Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lihan Liao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huikang Tao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Ying Tan
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Weidan Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Cao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Austin S, Mekis R, Mohammed SEM, Scalise M, Wang W, Galluccio M, Pfeiffer C, Borovec T, Parapatics K, Vitko D, Dinhopl N, Demaurex N, Bennett KL, Indiveri C, Nowikovsky K. TMBIM5 is the Ca 2+ /H + antiporter of mammalian mitochondria. EMBO Rep 2022; 23:e54978. [PMID: 36321428 PMCID: PMC9724676 DOI: 10.15252/embr.202254978] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial Ca2+ ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca2+ content and cytosolic Ca2+ homeostasis strictly depend on Ca2+ transporters. In recent decades, the major players responsible for mitochondrial Ca2+ uptake and release have been identified, except the mitochondrial Ca2+ /H+ exchanger (CHE). Originally identified as the mitochondrial K+ /H+ exchanger, LETM1 was also considered as a candidate for the mitochondrial CHE. Defining the mitochondrial interactome of LETM1, we identify TMBIM5/MICS1, the only mitochondrial member of the TMBIM family, and validate the physical interaction of TMBIM5 and LETM1. Cell-based and cell-free biochemical assays demonstrate the absence or greatly reduced Na+ -independent mitochondrial Ca2+ release in TMBIM5 knockout or pH-sensing site mutants, respectively, and pH-dependent Ca2+ transport by recombinant TMBIM5. Taken together, we demonstrate that TMBIM5, but not LETM1, is the long-sought mitochondrial CHE, involved in setting and regulating the mitochondrial proton gradient. This finding provides the final piece of the puzzle of mitochondrial Ca2+ transporters and opens the door to exploring its importance in health and disease, and to developing drugs modulating Ca2+ exchange.
Collapse
Affiliation(s)
- Shane Austin
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Present address:
Department of Biological & Chemical SciencesThe University of the West Indies, Cave Hill CampusCave HillBarbados
| | - Ronald Mekis
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Sami E M Mohammed
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Wen‐An Wang
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Christina Pfeiffer
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Tamara Borovec
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of PathologyUniversity of Veterinary MedicineViennaAustria
| | - Nicolas Demaurex
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
- CNR Institute of BiomembranesBioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
10
|
Zhang L, Dietsche F, Seitaj B, Rojas-Charry L, Latchman N, Tomar D, Wüst RC, Nickel A, Frauenknecht KB, Schoser B, Schumann S, Schmeisser MJ, Vom Berg J, Buch T, Finger S, Wenzel P, Maack C, Elrod JW, Parys JB, Bultynck G, Methner A. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Sci Alliance 2022; 5:5/10/e202201478. [PMID: 35715207 PMCID: PMC9206080 DOI: 10.26508/lsa.202201478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
TMBIM5 deficiency reduces mitochondrial K+/H+ exchange. Mutation of the channel pore in mice destabilizes the protein and results in increased embryonic lethality and a skeletal myopathy. Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Bruno Seitaj
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Liliana Rojas-Charry
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadina Latchman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Rob Ci Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Katrin Bm Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Munich, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jan B Parys
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Orliaguet L, Ejlalmanesh T, Humbert A, Ballaire R, Diedisheim M, Julla JB, Chokr D, Cuenco J, Michieletto J, Charbit J, Lindén D, Boucher J, Potier C, Hamimi A, Lemoine S, Blugeon C, Legoix P, Lameiras S, Baudrin LG, Baulande S, Soprani A, Castelli FA, Fenaille F, Riveline JP, Dalmas E, Rieusset J, Gautier JF, Venteclef N, Alzaid F. Early macrophage response to obesity encompasses Interferon Regulatory Factor 5 regulated mitochondrial architecture remodelling. Nat Commun 2022; 13:5089. [PMID: 36042203 PMCID: PMC9427774 DOI: 10.1038/s41467-022-32813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Adipose tissue macrophages (ATM) adapt to changes in their energetic microenvironment. Caloric excess, in a range from transient to diet-induced obesity, could result in the transition of ATMs from highly oxidative and protective to highly inflammatory and metabolically deleterious. Here, we demonstrate that Interferon Regulatory Factor 5 (IRF5) is a key regulator of macrophage oxidative capacity in response to caloric excess. ATMs from mice with genetic-deficiency of Irf5 are characterised by increased oxidative respiration and mitochondrial membrane potential. Transient inhibition of IRF5 activity leads to a similar respiratory phenotype as genomic deletion, and is reversible by reconstitution of IRF5 expression. We find that the highly oxidative nature of Irf5-deficient macrophages results from transcriptional de-repression of the mitochondrial matrix component Growth Hormone Inducible Transmembrane Protein (GHITM) gene. The Irf5-deficiency-associated high oxygen consumption could be alleviated by experimental suppression of Ghitm expression. ATMs and monocytes from patients with obesity or with type-2 diabetes retain the reciprocal regulatory relationship between Irf5 and Ghitm. Thus, our study provides insights into the mechanism of how the inflammatory transcription factor IRF5 controls physiological adaptation to diet-induced obesity via regulating mitochondrial architecture in macrophages. Interferon Regulatory Factor 5 levels have been shown to increase in adipose tissue macrophages in diet-induced obesity. Here authors show that IRF5 transcriptionally represses the Growth Hormone Inducible Transmembrane Protein gene encoding a mitochondrial protein important for oxidative respiration in macrophages, thus driving the detrimental metabolic changes observed in obesity.
Collapse
Affiliation(s)
- L Orliaguet
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - T Ejlalmanesh
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - A Humbert
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Lyon 1 University, F-69310, Pierre Bénite, France
| | - R Ballaire
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - M Diedisheim
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.,Department of Diabetes, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - J B Julla
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.,Department of Diabetes, Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - D Chokr
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - J Cuenco
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - J Michieletto
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - J Charbit
- Service d'endocrinologie, diabétologie, maladies métaboliques, Hôpital Avicenne, 127 Rte de Stalingrad, 93 009, Bobigny, France
| | - D Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - J Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - C Potier
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - A Hamimi
- INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - S Lemoine
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - C Blugeon
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - P Legoix
- Institut Curie Genomics of Excellence Platform, Institut Curie Research Center, PSL University, Paris, France
| | - S Lameiras
- Institut Curie Genomics of Excellence Platform, Institut Curie Research Center, PSL University, Paris, France
| | - L G Baudrin
- Institut Curie Genomics of Excellence Platform, Institut Curie Research Center, PSL University, Paris, France
| | - S Baulande
- Institut Curie Genomics of Excellence Platform, Institut Curie Research Center, PSL University, Paris, France
| | - A Soprani
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.,Department of Digestive Surgery, Générale de Santé (GDS), Geoffroy Saint Hilaire Clinic, 75005, Paris, France
| | - F A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - F Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - J P Riveline
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.,Department of Diabetes, Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - E Dalmas
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France
| | - J Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Lyon 1 University, F-69310, Pierre Bénite, France
| | - J F Gautier
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France.,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.,Department of Diabetes, Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - N Venteclef
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France. .,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France.
| | - F Alzaid
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015, Paris, France. .,INSERM UMR-S1138, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, IMMEDIAB Laboratory, Paris, France. .,Dasman Diabetes Institute, Kuwait, Kuwait.
| |
Collapse
|
12
|
Patron M, Tarasenko D, Nolte H, Kroczek L, Ghosh M, Ohba Y, Lasarzewski Y, Ahmadi ZA, Cabrera-Orefice A, Eyiama A, Kellermann T, Rugarli EI, Brandt U, Meinecke M, Langer T. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J 2022; 41:e110476. [PMID: 35912435 PMCID: PMC9379554 DOI: 10.15252/embj.2021110476] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yohsuke Ohba
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akinori Eyiama
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Kellermann
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Lu Y, Lu X, Xu Y, Ren Y, Shen Y, Yang X. Expression, purification and microscopic characterization of transmembrane BAX Inhibitor-1 motif containing protein 5. Protein Expr Purif 2022; 193:106045. [PMID: 34999216 DOI: 10.1016/j.pep.2022.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Transmembrane bax inhibitor-1 motif containing protein 5 (TMBIM5) is located on the inner membrane of mitochondria and is widely expressed in tissues but less frequently in the intestine and thymus. TMBIM5 affects mitochondrial cristae organization and is associated with Parkinson's disease. Here, we present the first report about expression, purification and the 2D classification projections derived from negatively stained electron micrographs of recombinant H. sapiens TMBIM5 (hTMBIM5). The described methods and results will support further structural and functional study of hTMBIM5.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xuhang Lu
- College of Life Sciences, Nankai University, Tianjin, 300094, China
| | - Yingjian Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yue Ren
- College of Life Sciences, Nankai University, Tianjin, 300094, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; College of Life Sciences, Nankai University, Tianjin, 300094, China; Synergetic Innovation Center of Chemical Science and Engineering, Tianjin, 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; College of Life Sciences, Nankai University, Tianjin, 300094, China.
| |
Collapse
|
14
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Gupta MK, Sahu A, Sun Y, Mohan ML, Kumar A, Zalavadia A, Wang X, Martelli EE, Stenson K, Witherow CP, Drazba J, Dasarathy S, Naga Prasad SV. Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling. Sci Rep 2021; 11:22018. [PMID: 34759299 PMCID: PMC8581024 DOI: 10.1038/s41598-021-00778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Anita Sahu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yu Sun
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Maradumane L Mohan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Avinash Kumar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ajaykumar Zalavadia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xi Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Elizabeth E Martelli
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Kate Stenson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Conner P Witherow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Judy Drazba
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Srinivasan Dasarathy
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Zhang L, Buhr S, Voigt A, Methner A. The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of Drosophila melanogaster. Front Cell Dev Biol 2021; 9:666484. [PMID: 34540824 PMCID: PMC8446389 DOI: 10.3389/fcell.2021.666484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Transmembrane BAX Inhibitor Motif (TMBIM) protein family consists of six evolutionarily conserved hydrophobic proteins that affect programmed cell death and the regulation of intracellular calcium levels. The bacterial ortholog BsYetJ is a pH-dependent calcium channel. We here identified seven TMBIM family members in Drosophila melanogaster and describe their expression levels in diverse tissues and developmental stages. A phylogenetic analysis revealed that CG30379 represents the ortholog of human TMBIM4 although these two proteins are much less related than TMBIM5 (CG2076 and CG1287/Mics1) and TMBIM6 (CG7188/Bi-1) to their respective orthologs. For TMBIM1-3 the assignment is more dubious because the fly and the human proteins cluster together. We conducted a functional analysis based on expression levels and the availability of RNAi lines. This revealed that the ubiquitous knockdown of CG3798/Nmda1 and CG3814/Lfg had no effect on development while knockdown of CG2076/dTmbim5 resulted in death at the pupa stage and knockdown of CG7188/dTmbim6 in death at the embryonic stage. Ubiquitous knockdown of the second TMBIM5 paralog CG1287/Mics1 ensued in male sterility. Knockdown of dTmbim5 and 6 in muscle and neural tissue also greatly reduced lifespan through different mechanisms. Knockdown of the mitochondrial family member dTmbim5 resulted in reduced ATP production and a pro-apoptotic expression profile while knockdown of the ER protein dTmbim6 increased the ER calcium levels similar to findings in mammalian cells. Our data demonstrate that dTmbim5 and 6 are essential for fly development and survival but affect cell survival through different mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Buhr
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich GmbH, JARA-Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen University, Aachen, Germany
| | - Axel Methner
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
18
|
Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondrial Protein Synthesis Machinery. Cells 2020; 9:cells9102147. [PMID: 32977469 PMCID: PMC7598220 DOI: 10.3390/cells9102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.
Collapse
|
19
|
Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease. J Neurochem 2020; 156:715-752. [PMID: 33616931 DOI: 10.1111/jnc.15154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are essential for neuronal function. They produce ATP to meet energy demands, regulate homeostasis of ion levels such as calcium and regulate reactive oxygen species that cause oxidative cellular stress. Mitochondria have also been shown to regulate protein synthesis within themselves, as well as within the nucleus, and also influence synaptic plasticity. These roles are especially important for neurons, which have higher energy demands and greater susceptibility to stress. Dysfunction of mitochondria has been associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, Glaucoma and Amyotrophic Lateral Sclerosis. The focus of this review is on how and why mitochondrial function is linked to the pathology of Parkinson's disease (PD). Many of the PD-linked genetic mutations which have been identified result in dysfunctional mitochondria, through a wide-spread number of mechanisms. In this review, we describe how susceptible neurons are predisposed to be vulnerable to the toxic events that occur during the neurodegenerative process of PD, and how mitochondria are central to these pathways. We also discuss ways in which proteins linked with familial PD control mitochondrial function, both physiologically and pathologically, along with their implications in genome-wide association studies and risk assessment. Finally, we review potential strategies for disease modification through mitochondrial enhancement. Ultimately, agents capable of both improving and/or restoring mitochondrial function, either alone, or in conjunction with other disease-modifying agents may halt or slow the progression of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Lindsay R Arathoon
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Jacqueline A Gleave
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| |
Collapse
|
20
|
Whole exome sequencing highlights variants in association with Keratoconus in Jordanian families. BMC MEDICAL GENETICS 2020; 21:177. [PMID: 32887565 PMCID: PMC7650294 DOI: 10.1186/s12881-020-01112-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Keratoconus (KC) is usually bilateral, noninflammatory progressive corneal ectasia in which the cornea becomes progressively thin and conical, resulting in myopia, irregular astigmatism, and corneal scarring. METHODS Eight families characterized by consanguineous marriages and/or multiple keratoconic individuals were examined genetically. Whole exome sequencing was done as trio or quadro per family. The output of the filtration procedure, based on minor allele frequency (MAF) less than 0.01 for homozygous variants and MAF equals 0 for heterozygous variants, is 22 missense variants. RESULTS Based on the gene/protein function five candidate variants were highlighted in four families. Two variants were highlighted in one family within the genes MYOF and STX2, and one variant is highlighted in each of the other three families within the genes: COL6A5, ZNF676 and ZNF765. CONCLUSION This study is one of the very rare that highlights genetic variants in association with KC.
Collapse
|
21
|
Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun 2020; 11:1312. [PMID: 32161263 PMCID: PMC7066179 DOI: 10.1038/s41467-020-14999-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/14/2020] [Indexed: 11/08/2022] Open
Abstract
The emergence of small open reading frame (sORF)-encoded peptides (SEPs) is rapidly expanding the known proteome at the lower end of the size distribution. Here, we show that the mitochondrial proteome, particularly the respiratory chain, is enriched for small proteins. Using a prediction and validation pipeline for SEPs, we report the discovery of 16 endogenous nuclear encoded, mitochondrial-localized SEPs (mito-SEPs). Through functional prediction, proteomics, metabolomics and metabolic flux modeling, we demonstrate that BRAWNIN, a 71 a.a. peptide encoded by C12orf73, is essential for respiratory chain complex III (CIII) assembly. In human cells, BRAWNIN is induced by the energy-sensing AMPK pathway, and its depletion impairs mitochondrial ATP production. In zebrafish, Brawnin deletion causes complete CIII loss, resulting in severe growth retardation, lactic acidosis and early death. Our findings demonstrate that BRAWNIN is essential for vertebrate oxidative phosphorylation. We propose that mito-SEPs are an untapped resource for essential regulators of oxidative metabolism.
Collapse
|
22
|
Nakamura S, Matsui A, Akabane S, Tamura Y, Hatano A, Miyano Y, Omote H, Kajikawa M, Maenaka K, Moriyama Y, Endo T, Oka T. The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol 2020; 3:99. [PMID: 32139798 PMCID: PMC7058069 DOI: 10.1038/s42003-020-0832-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the growth deficiency caused by gene deletion of a yeast LETM1 orthologue. Substituting amino acid residues with alanine disrupts the correct assembly of a protein complex containing LETM1 and prevents changes in the mitochondrial morphology induced by exogenous LETM1 expression. Moreover, the LETM1 protein changes the shapes of the membranes of in vitro-reconstituted proteoliposomes, leading to the formation of invaginated membrane structures on artificial liposomes. LETM1 mutant proteins with alanine substitutions fail to facilitate the formation of invaginated membrane structures, suggesting that LETM1 plays a fundamental role in the organization of mitochondrial membrane morphology. Nakamura et al find that the mitochondrial protein LETM1 can directly modulate membrane structure in vitro and identify a conserved domain involved in modulating mitochondrial membrane morphology. This study enhances our understanding of how mitochondrial cristae are organised.
Collapse
Affiliation(s)
- Seiko Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Aiko Matsui
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Azumi Hatano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yuriko Miyano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Mizuho Kajikawa
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Kanagawa, 230-0045, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
| |
Collapse
|
23
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
24
|
Protasoni M, Pérez‐Pérez R, Lobo‐Jarne T, Harbour ME, Ding S, Peñas A, Diaz F, Moraes CT, Fearnley IM, Zeviani M, Ugalde C, Fernández‐Vizarra E. Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J 2020; 39:e102817. [PMID: 31912925 PMCID: PMC6996572 DOI: 10.15252/embj.2019102817] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/02/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT-CYB-deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre-formation of fully assembled individual complexes. In contrast, they support a cooperative-assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.
Collapse
Affiliation(s)
- Margherita Protasoni
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | | | | | - Michael E Harbour
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Shujing Ding
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Ana Peñas
- Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain
| | - Francisca Diaz
- Department of NeurologyMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Carlos T Moraes
- Department of NeurologyMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Ian M Fearnley
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Massimo Zeviani
- Medical Research Council‐Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Department of NeurosciencesUniversity of PadovaPadovaItaly
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723MadridSpain
| | | |
Collapse
|
25
|
Yu W, Zhang B, Song H, Zhan R, Li L, He C, Jiang Q, Wang X, Wei L, Zhao N, Guo W, Wang X. Preliminary investigation demonstrating the GHITM gene probably involved in apoptosis and growth of the golden apple snail (Pomacea canaliculata). BMC Genomics 2020; 21:19. [PMID: 31906861 PMCID: PMC6945724 DOI: 10.1186/s12864-019-6434-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Background Growth hormone inducible transmembrane protein (GHITM) is a highly conserved transmembrane protein. This study was conducted to investigate the role of GHITM gene in the apoptosis and growth of the golden apple snail Pomacea canaliculate. Results The complete cDNA of this gene was cloned using the rapid amplification of cDNA ends (RACE) method and subjected to bioinformatics analysis. The full-length cDNA was 2242 bp, including an open reading frame of 1021 bp that encoded a protein of 342 amino acid residues. The mRNA expression profiles of GHITM gene in different tissues (liver, kidney, gonad and foot) and different growth phases (6-months old and 2-years old) showed that it was expressed in various tissues and different growth phases. Silencing of the GHITM gene by RNAi (RNA interference) experiments revealed that the GHITM gene possibly plays a role in inhibiting apoptosis through detecting the Caspase (Cysteine-requiring Aspartate Protease)-3 activity. In addition, the aperture width and body whorl length of the snail was significantly affected by RNAi, suggesting that this gene plays a significant role in promoting the growth of the organism. Conclusions These results demonstrated that the GHITM gene was involved in apoptosis and growth in golden apple snail.
Collapse
Affiliation(s)
- Wenchao Yu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baolu Zhang
- Oceanic Consultation Center, Ministry of Natural Resources of the People's Republic of China, Beijing, 100071, China
| | - Hongce Song
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Rui Zhan
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng He
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Nannan Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5Yushan Road, Qingdao, 266003, Shandong, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
26
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
27
|
Chen K, Li X, Song G, Zhou T, Long Y, Li Q, Zhong S, Cui Z. Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J Biol Chem 2019; 294:11445-11457. [PMID: 31171717 DOI: 10.1074/jbc.ra119.007813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Most members of the family of proteins containing a transmembrane BAX inhibitor motif (TMBIM) have anti-apoptotic activity, but their in vivo functions and intracellular mechanisms remain obscure. Here, we report that zebrafish Tmbim3a/Grinaa functions in the prevention of cold-induced endoplasmic reticulum (ER) stress and apoptosis. Using a gene-trapping approach, we obtained a mutant zebrafish line in which the expression of the tmbim3a/grinaa gene is disrupted by a Tol2 transposon insertion. Homozygous tmbim3a/grinaa mutant larvae exhibited time-dependently increased mortality and apoptosis under cold exposure (at 16 °C). Mechanistically, using immunofluorescence, fluorescence-based assessments of intracellular/mitochondrial Ca2+ levels, mitochondrial membrane potential measurements, and Ca2+-ATPase assays, we found that cold exposure suppresses sarcoplasmic/ER Ca2+-ATPase (SERCA) activity and induces the unfolded protein response (UPR) and ER stress. We also found that the cold-induced ER stress is increased in homozygous tmbim3a/grinaa mutant embryos. The cold-stress hypersensitivity of the tmbim3a/grinaa mutants was tightly associated with disrupted intracellular Ca2+ homeostasis, followed by mitochondrial Ca2+ overload and cytochrome c release, leading to the activation of caspase 9- and caspase-3-mediated intrinsic apoptotic pathways. Treatment of zebrafish larvae with the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester (BAPTA-AM) or with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of the calcium-releasing protein inositol 1,4,5-trisphosphate receptor (IP3R), alleviated cold-induced cell death. Together, these findings unveil a key role of Tmbim3a/Grinaa in relieving cold-induced ER stress and in protecting cells against caspase 9- and caspase 3-mediated apoptosis during zebrafish development.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xixi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China .,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, Liu Q. Ion and pH Sensitivity of a TMBIM Ca 2+ Channel. Structure 2019; 27:1013-1021.e3. [PMID: 30930064 PMCID: PMC6560632 DOI: 10.1016/j.str.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
The anti-apoptotic transmembrane Bax inhibitor motif (TMBIM) containing protein family regulates Ca2+ homeostasis, cell death, and the progression of diseases including cancers. The recent crystal structures of the TMBIM homolog BsYetJ reveal a conserved Asp171-Asp195 dyad that is proposed in regulating a pH-dependent Ca2+ translocation. Here we show that BsYetJ mediates Ca2+ fluxes in permeabilized mammalian cells, and its interaction with Ca2+ is sensitive to protons and other cations. We report crystal structures of BsYetJ in additional states, revealing the flexibility of the dyad in a closed state and a pore-opening mechanism. Functional studies show that the dyad is responsible for both Ca2+ affinity and pH dependence. Computational simulations suggest that protonation of Asp171 weakens its interaction with Arg60, leading to an open state. Our integrated analysis provides insights into the regulation of the BsYetJ Ca2+ channel that may inform understanding of human TMBIM proteins regarding their roles in cell death and diseases.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA
| | - Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Tomas Luyten
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA.
| | - Matthias Quick
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
29
|
Interscapular and Perivascular Brown Adipose Tissue Respond Differently to a Short-Term High-Fat Diet. Nutrients 2019; 11:nu11051065. [PMID: 31086124 PMCID: PMC6566556 DOI: 10.3390/nu11051065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical locations and developmental origins and we hypothesised that iBAT and PVAT would respond differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n=12) were fed either a standard (10% fat, n=6) or high fat diet (HFD: 45% fat, n=6) for 72h and housed at thermoneutrality. Following an assessment of whole body physiology, fat was collected from both depots for analysis of gene expression and the proteome. HFD consumption for 72h induced rapid weight gain (c. 2.6%) and reduced serum non-esterified fatty acids (NEFA) with no change in either total adipose or depot mass. In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was accompanied by enrichment of lipid-related processes and functions, plus glucagon and peroxisome proliferator-activated receptor (PPAR) signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g., Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-related processes and functions (e.g., nucleosome assembly and histone exchange) and RNA degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit divergent responses to short-term nutrient excess highlighting early adaptations in these depots before changes in fat mass.
Collapse
|
30
|
Antunes S, Couto J, Ferrolho J, Sanches GS, Merino Charrez JO, De la Cruz Hernández N, Mazuz M, Villar M, Shkap V, de la Fuente J, Domingos A. Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Front Physiol 2019; 10:318. [PMID: 31001128 PMCID: PMC6454348 DOI: 10.3389/fphys.2019.00318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A system biology approach was used to gain insight into tick biology and interactions between vector and pathogen. Rhipicephalus annulatus is one of the main vectors of Babesia bigemina which has a massive impact on animal health. It is vital to obtain more information about this relationship, to better understand tick and pathogen biology, pathogen transmission dynamics, and new potential control approaches. In ticks, salivary glands (SGs) play a key role during pathogen infection and transmission. RNA sequencing obtained from uninfected and B. bigemina infected SGs obtained from fed female ticks resulted in 6823 and 6475 unigenes, respectively. From these, 360 unigenes were found to be differentially expressed (p < 0.05). Reversed phase liquid chromatography-mass spectrometry identified a total of 3679 tick proteins. Among them 406 were differently represented in response to Babesia infection. The omics data obtained suggested that Babesia infection lead to a reduction in the levels of mRNA and proteins (n = 237 transcripts, n = 212 proteins) when compared to uninfected controls. Integrated transcriptomics and proteomics datasets suggested a key role for stress response and apoptosis pathways in response to infection. Thus, six genes coding for GP80, death-associated protein kinase (DAPK-1), bax inhibitor-1 related (BI-1), heat shock protein (HSP), heat shock transcription factor (PHSTF), and queuine trna-ribosyltransferase (QtRibosyl) were selected and RNA interference (RNAi) performed. Gene silencing was obtained for all genes except phstf. Knockdown of gp80, dapk-1, and bi-1 led to a significant increase in Babesia infection levels while hsp and QtRibosyl knockdown resulted in a non-significant decrease of infection levels when compared to the respective controls. Gene knockdown did not affect tick survival, but engorged female weight and egg production were affected in the gp80, dapk-1, and QtRibosyl-silenced groups in comparison to controls. These results advanced our understanding of tick-Babesia molecular interactions, and suggested new tick antigens as putative targets for vaccination to control tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Ned De la Cruz Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Varda Shkap
- Kimron Veterinary Institute, Bet Dagan, Israel
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
32
|
Lee RG, Sedghi M, Salari M, Shearwood AMJ, Stentenbach M, Kariminejad A, Goullee H, Rackham O, Laing NG, Tajsharghi H, Filipovska A. Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. NEUROLOGY-GENETICS 2018; 4:e276. [PMID: 30338296 PMCID: PMC6186023 DOI: 10.1212/nxg.0000000000000276] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
Objective Our goal was to identify the gene(s) associated with an early-onset form of Parkinson disease (PD) and the molecular defects associated with this mutation. Methods We combined whole-exome sequencing and functional genomics to identify the genes associated with early-onset PD. We used fluorescence microscopy, cell, and mitochondrial biology measurements to identify the molecular defects resulting from the identified mutation. Results Here, we report an association of a homozygous variant in CHCHD2, encoding coiled-coil-helix-coiled-coil-helix domain containing protein 2, a mitochondrial protein of unknown function, with an early-onset form of PD in a 26-year-old Caucasian woman. The CHCHD2 mutation in PD patient fibroblasts causes fragmentation of the mitochondrial reticular morphology and results in reduced oxidative phosphorylation at complex I and complex IV. Although patient cells could maintain a proton motive force, reactive oxygen species production was increased, which correlated with an increased metabolic rate. Conclusions Our findings implicate CHCHD2 in the pathogenesis of recessive early-onset PD, expanding the repertoire of mitochondrial proteins that play a direct role in this disease.
Collapse
Affiliation(s)
- Richard G Lee
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Maryam Sedghi
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Mehri Salari
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Anne-Marie J Shearwood
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Maike Stentenbach
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Ariana Kariminejad
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Hayley Goullee
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Oliver Rackham
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Nigel G Laing
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Homa Tajsharghi
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| | - Aleksandra Filipovska
- Centre for Medical Research (R.G.L., A.-M.J.S., M. Stentenbach, H.G., O.R., N.G.L., H.T., A.F.), University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia; Department of Genetics (M. Sedghi), University of Isfahan, Isfahan; Functional Neurosurgery Research Center (M. Salari), Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Kariminejad-Najmabadi Pathology and Genetics Center (A.K.), Tehran, Iran; School of Molecular Sciences (O.R., A.F.), The University of Western Australia, Crawley; Department of Diagnostic Genomics (N.G.L.), PathWest, QEII Medical Centre, Nedlands, Western Australia, Australia; and Division Biomedicine and Public Health (H.T.), School of Health and Education, University of Skovde, Sweden
| |
Collapse
|
33
|
Carrara G, Parsons M, Saraiva N, Smith GL. Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 2018; 7:rsob.170045. [PMID: 28469007 PMCID: PMC5451544 DOI: 10.1098/rsob.170045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.
Collapse
Affiliation(s)
- Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nuno Saraiva
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK .,CBIOS, Universidade Lusófona Research Centre for Biosciences and Health Technologies, Campo Grande 376, Lisbon 1749-024, Portugal
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
34
|
Matsumura A, Higuchi J, Watanabe Y, Kato M, Aoki K, Akabane S, Endo T, Oka T. Inactivation of cardiolipin synthase triggers changes in mitochondrial morphology. FEBS Lett 2017; 592:209-218. [DOI: 10.1002/1873-3468.12948] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jun Higuchi
- Department of Life Science Rikkyo University Tokyo Japan
| | - Yasunori Watanabe
- Department of Bioscience Graduate School of Agriculture Ehime University Japan
| | - Masahiro Kato
- Department of Life Science Rikkyo University Tokyo Japan
| | - Keigo Aoki
- Department of Life Science Rikkyo University Tokyo Japan
| | - Shiori Akabane
- Department of Life Science Rikkyo University Tokyo Japan
| | - Toshiya Endo
- Faculty of Life Sciences Kyoto Sangyo University Japan
| | - Toshihiko Oka
- Department of Life Science Rikkyo University Tokyo Japan
| |
Collapse
|
35
|
Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T. PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Mol Cell 2017; 62:371-384. [PMID: 27153535 DOI: 10.1016/j.molcel.2016.03.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
A mitochondrial kinase, PTEN-induced putative kinase 1 (PINK1), selectively recruits the ubiquitin ligase Parkin to damaged mitochondria, which modifies mitochondria by polyubiquitination, leading to mitochondrial autophagy. Here, we report that treatment with an adenylate cyclase agonist or expression of protein kinase A (PKA) impairs Parkin recruitment to damaged mitochondria and decreases PINK1 protein levels. We identified a mitochondrial membrane protein, MIC60 (also known as mitofilin), as a PKA substrate. Mutational and mass spectrometric analyses revealed that the Ser528 residue of MIC60 undergoes PKA-dependent phosphorylation. MIC60 transiently interacts with PINK1, and MIC60 downregulation leads to a reduction in PINK1 and mislocalization of Parkin. Phosphorylation-mimic mutants of MIC60 fail to restore the defect in Parkin recruitment in MIC60-knocked down cells, whereas a phosphorylation-deficient MIC60 mutant facilitates the mitochondrial localization of Parkin. Our findings indicate that PKA-mediated phosphorylation of MIC60 negatively regulates mitochondrial clearance that is initiated by PINK1 and Parkin.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Midori Uno
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shunta Shimazaki
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsumi Ebara
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiroki Kato
- Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
36
|
Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T, Umitsu M, Takagi J, Imai Y, Hattori N. Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 2017; 8:15500. [PMID: 28589937 PMCID: PMC5467237 DOI: 10.1038/ncomms15500] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/03/2017] [Indexed: 01/25/2023] Open
Abstract
Mutations in CHCHD2 have been identified in some Parkinson's disease (PD) cases. To understand the physiological and pathological roles of CHCHD2, we manipulated the expression of CHCHD2 in Drosophila and mammalian cells. The loss of CHCHD2 in Drosophila causes abnormal matrix structures and impaired oxygen respiration in mitochondria, leading to oxidative stress, dopaminergic neuron loss and motor dysfunction with age. These PD-associated phenotypes are rescued by the overexpression of the translation inhibitor 4E-BP and by the introduction of human CHCHD2 but not its PD-associated mutants. CHCHD2 is upregulated by various mitochondrial stresses, including the destabilization of mitochondrial genomes and unfolded protein stress, in Drosophila. CHCHD2 binds to cytochrome c along with a member of the Bax inhibitor-1 superfamily, MICS1, and modulated cell death signalling, suggesting that CHCHD2 dynamically regulates the functions of cytochrome c in both oxidative phosphorylation and cell death in response to mitochondrial stress. Mutations in CHCHD2 are associated with Parkinson's disease. Here the authors investigate the physiological and pathological roles of CHCHD2 in Drosophila and mammalian cells, and find that it regulates mitochondrial respiration through stabilizing cytochrome c.
Collapse
Affiliation(s)
- Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Chikara Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
37
|
Liu Q. TMBIM-mediated Ca 2+ homeostasis and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:850-857. [PMID: 28064000 DOI: 10.1016/j.bbamcr.2016.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
38
|
Than W, Qin F, Liu W, Wang X. Analysis of Sogatella furcifera proteome that interact with P10 protein of Southern rice black-streaked dwarf virus. Sci Rep 2016; 6:32445. [PMID: 27653366 PMCID: PMC5032029 DOI: 10.1038/srep32445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/04/2016] [Indexed: 02/03/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is transmitted efficiently only by white-backed planthopper (WBPH, Sogatella furcifera) in a persistent propagative manner. Here we used a yeast two-hybrid system to investigate the interactions between the SRBSDV- P10 and the cDNA library of WBPH. Of 130 proteins identified as putative interactors, 28 were further tested in a retransformation analysis and β-galactosidase assay to confirm the interaction. The full-length gene sequences of 5 candidate proteins: vesicle-associated membrane protein 7 (VAMP7), vesicle transport V-SNARE protein (Vti1A), growth hormone-inducible transmembrane protein (Ghitm), nascent polypeptide-associated complex subunit alpha, and ATP synthase lipid-binding protein) were amplified by 5' rapid amplification of cDNA ends (RACE) and used in a GST fusion protein pull-down assay. Three of these proteins interacted with SRBSDV-P10 in vitro experiment GST pull-down assay. In a gene expression analysis of 3 different growth stages and 6 different tissue organs of S. furcifera, the mRNA level of VAMP7 was high in adult males and gut. Vti1A was abundant in adult female, and malpighian tubule, gut and ovary. Ghitm was predominantly found in adult male and the malpighian tubule. These research findings are greatly helpful to understand the interaction between SRBSDV and insect vector.
Collapse
Affiliation(s)
- Win Than
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Faliang Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
39
|
Akabane S, Matsuzaki K, Yamashita SI, Arai K, Okatsu K, Kanki T, Matsuda N, Oka T. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem 2016; 291:16162-74. [PMID: 27302064 DOI: 10.1074/jbc.m116.714923] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 02/04/2023] Open
Abstract
Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shiori Akabane
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Kohei Matsuzaki
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Shun-Ichi Yamashita
- the Institute of Nephrology, Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Kana Arai
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Kei Okatsu
- the Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomotake Kanki
- the Institute of Nephrology, Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Noriyuki Matsuda
- the Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshihiko Oka
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501,
| |
Collapse
|
40
|
Liu K, Xu H, Xiang H, Sun P, Xie J. Protective effects of Ndfip1 on MPP(+)-induced apoptosis in MES23.5 cells and its underlying mechanisms. Exp Neurol 2015; 273:215-24. [PMID: 26300475 DOI: 10.1016/j.expneurol.2015.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/22/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Apoptosis has been implicated as one of the important mechanisms involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Increasing evidence suggests that Ndfip1 is a neuroprotective protein, and Ndfip1-mediated protein ubiquitination might be a possible survival strategy in neuronal injury. The aim of the present study is to investigate the neuroprotective effect of Ndfip1 on 1-methyl-4-phenylpyridinium (MPP(+))-treated MES23.5 cells and the underlying mechanisms. Results showed that overexpression of Ndfip1 could significantly attenuate MPP(+)-induced cell loss and nuclear condensation. Further experiments demonstrated that Ndfip1 could increase Bcl-2/Bax ratio, suppress cytochrome c release from the mitochondria to cytoplasm and decrease caspase-3 activation induced by MPP(+). These results suggested that Ndfip1 protected MES23.5 cells against MPP(+) by its anti-apoptotic effect. In addition, we found that Ndfip1 overexpression could decrease the protein level of dopamine transporter (DAT). In parallel, proteasome inhibitor MG132 could markedly reverse Ndfip1-induced degradation of DAT. These data suggest that Ndfip1 exerts its inhibitory effect on DAT by modulating DAT degradation, in which ubiquitin-proteasome system activation might be involved. Collectively, our study indicated that the ability to decrease the DAT of Ndfip1 might be one of the mechanisms underlying its protective effect on MPP(+)-induced cell damage in MES23.5 cells.
Collapse
Affiliation(s)
- Kai Liu
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Hengwei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China.
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
41
|
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 2015; 25:1489-95. [PMID: 26004762 DOI: 10.1016/j.cub.2015.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Mitochondria are eukaryotic organelles that originated from an endosymbiotic α-proteobacterium. As an adaptation to maximize ATP production through oxidative phosphorylation, mitochondria contain inner membrane invaginations called cristae. Recent work has characterized a multi-protein complex in yeast and animal mitochondria called MICOS (mitochondrial contact site and cristae organizing system), responsible for the determination and maintenance of cristae [1-4]. However, the origin and evolution of these characteristic mitochondrial features remain obscure. We therefore conducted a comprehensive search for MICOS components across the major groups that encompass eukaryotic diversity to determine the extent of conservation of this complex. We detected homologs for the majority of MICOS components among opisthokonts (the group containing animals and fungi), but only Mic60 and Mic10 were consistently identified outside this group. The conservation of Mic60 and Mic10 in eukaryotes is consistent with their central role in MICOS function [5-7], indicating that the basic mechanism for cristae determination arose early in evolution and has remained relatively unchanged. We found that eukaryotes with ultrastructurally simplified anaerobic mitochondria that lack cristae have also lost MICOS. We then searched for a prokaryotic MICOS and identified a homolog of Mic60 present only in α-proteobacteria, providing evidence for the endosymbiotic origin of mitochondrial cristae. Our study clarifies the origins of mitochondrial cristae and their subsequent evolutionary history, provides evidence for a general mechanism of cristae formation and maintenance in eukaryotes, and points to a new potential factor involved in membrane differentiation in prokaryotes.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Halifax, NS B3H 4R2, Canada
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kaitlyn A Baier
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Katelyn D Spencer
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada.
| |
Collapse
|
42
|
Lisak DA, Schacht T, Enders V, Habicht J, Kiviluoto S, Schneider J, Henke N, Bultynck G, Methner A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA²⁺-filling state. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2104-14. [PMID: 25764978 DOI: 10.1016/j.bbamcr.2015.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca²⁺ leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca²⁺ homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca²⁺ content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca²⁺ concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca²⁺ homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Dmitrij A Lisak
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Teresa Schacht
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Vitalij Enders
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Jörn Habicht
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, Leuven BE-3000, Belgium
| | - Julia Schneider
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Nadine Henke
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, Leuven BE-3000, Belgium
| | - Axel Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany.
| |
Collapse
|
43
|
Hallstrom KN, Srikanth CV, Agbor TA, Dumont CM, Peters KN, Paraoan L, Casanova JE, Boll EJ, McCormick BA. PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation. Cell Microbiol 2015; 17:843-59. [PMID: 25486861 PMCID: PMC4915744 DOI: 10.1111/cmi.12406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Salmonella enterica
Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.
Collapse
Affiliation(s)
- Kelly N Hallstrom
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - C V Srikanth
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence A Agbor
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher M Dumont
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kristen N Peters
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luminita Paraoan
- Eye and Vision Science Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Erik J Boll
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
44
|
TMBIM protein family: ancestral regulators of cell death. Oncogene 2014; 34:269-80. [DOI: 10.1038/onc.2014.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
45
|
B L, R.K Y, G.S J, H.-R K, H.-J C. The characteristics of Bax inhibitor-1 and its related diseases. Curr Mol Med 2014; 14:603-15. [PMID: 24894176 PMCID: PMC4083451 DOI: 10.2174/1566524014666140603101113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/01/2013] [Accepted: 11/24/2013] [Indexed: 11/28/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily-conserved endoplasmic reticulum protein. The expression of BI-1 in mammalian cells suppresses apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. BI-1 has been shown to be associated with calcium (Ca(2+)) levels, reactive oxygen species (ROS) production, cytosolic acidification, and autophagy as well as endoplasmic reticulum stress signaling pathways. According to both in vitro and clinical studies, BI-1 promotes the characteristics of cancers. In other diseases, BI-1 has also been shown to regulate insulin resistance, adipocyte differentiation, hepatic dysfunction and depression. However, the roles of BI-1 in these disease conditions are not fully consistent among studies. Until now, the molecular mechanisms of BI-1 have not directly explained with regard to how these conditions can be regulated. Therefore, this review investigates the physiological role of BI-1 through molecular mechanism studies and its application in various diseases.
Collapse
Affiliation(s)
- Li B
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Yadav R.K
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Jeong G.S
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kim H.-R
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Chae H.-J
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
46
|
Pellizzari C, Krasnov A, Afanasyev S, Vitulo N, Franch R, Pegolo S, Patarnello T, Bargelloni L. High mortality of juvenile gilthead sea bream (Sparus aurata) from photobacteriosis is associated with alternative macrophage activation and anti-inflammatory response: results of gene expression profiling of early responses in the head kidney. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1269-1278. [PMID: 23485716 DOI: 10.1016/j.fsi.2013.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
The halophilic bacterium Photobacterium damselae subsp. piscicida (Phdp) represents a substantial health problem for several fish species in aquaculture. Bacteria that reside free and inside phagocytes cause acute and chronic forms of photobacteriosis. Infections of juveniles rapidly kill up to 90-100% fish. Factors underlying failure of the immune protection against bacteria remain largely unknown. The reported study used a transcriptomic approach to address this issue. Juvenile sea breams (0.5 g) were challenged by immersion in salt water containing 2.89 × 10(8) CFU of a virulent Phdp and the head kidney was sampled after 24- and 48-h. Analyses were performed using the second version of a 44 k oligonucleotide DNA microarray that represents 19,734 sea bream unique transcripts and covers diverse immune pathways. Expression changes of selected immune genes were validated with qPCR. Results suggested rapid recognition of the pathogen, as testified by up-regulation of lectins and antibacterial proteins (bactericidal permeability-increasing protein lectins, lysozyme, intracellular and extracellular proteases), chemokines and chemokine receptors. Increased expression of proteins involved in iron and heme metabolism also could be a response against bacteria that are dependent on iron. However, negative regulators of immune/inflammatory response were preponderant among the up-regulated genes. A remarkable finding was the increased expression of IL-10 in concert with up-regulation of arginase I and II and proteins of the polyamine biosynthesis pathway that diverts the arginine flux from the production of reactive nitrogen species. Such expression changes are characteristic for alternatively activated macrophages that do not develop acute inflammatory responses. Immune suppression can be induced by the host to reduce tissue damages or by the pathogen to evade host response.
Collapse
Affiliation(s)
- Caterina Pellizzari
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ 2012; 20:139-53. [PMID: 22955947 PMCID: PMC3524647 DOI: 10.1038/cdd.2012.106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are highly motile organelles that constantly undergo fission and fusion. Impairment of mitochondrial dynamics is associated with mitochondrial dysfunction and is frequently linked to the pathogenesis of neurodegenerative diseases and cancer. We have previously shown that biallelic inactivation of the suppressor of cytokine signaling 6 (SOCS6) gene is a frequent event in human gastric cancer. In this study, we recapitulated the event of SOCS6 loss using a Lentivirus-based knockdown approach, and demonstrated the linkage between SOCS6 depletion and the suppression of programmed cell death. SOCS6 promotes intrinsic apoptosis, with increased Bax conformational change, mitochondrial targeting, and oligomerization. Most importantly, SOCS6 is targeted to mitochondria and induces mitochondrial fragmentation mediated through an increase in DRP1 fission activity. Here, we show that SOCS6 forms complex with DRP1 and the mitochondrial phosphatase PGAM5, attenuates DRP1 phosphorylation, and promotes DRP1 mitochondrial translocation. Based on mutation analyses, SOCS6-mediated apoptosis is tightly coupled to its ability to induce mitochondrial fission. This study demonstrates an important role for SOCS6 in modulating mitochondrial dynamics and apoptosis.
Collapse
|
48
|
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2012; 70:951-76. [PMID: 22806564 PMCID: PMC3578726 DOI: 10.1007/s00018-012-1066-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden,
| | | | | |
Collapse
|
49
|
Putignani L, Raffa S, Pescosolido R, Rizza T, Del Chierico F, Leone L, Aimati L, Signore F, Carrozzo R, Callea F, Torrisi MR, Grammatico P. Preliminary evidences on mitochondrial injury and impaired oxidative metabolism in breast cancer. Mitochondrion 2012; 12:363-9. [DOI: 10.1016/j.mito.2012.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 02/06/2012] [Accepted: 02/13/2012] [Indexed: 01/10/2023]
|
50
|
Kim JH, Lee ER, Jeon K, Choi HY, Lim H, Kim SJ, Chae HJ, Park SH, Kim S, Seo YR, Kim JH, Cho SG. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:876-88. [DOI: 10.1016/j.bbamcr.2012.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 12/30/2022]
|