1
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
2
|
Shaban HA, Friman ET, Deluz C, Tollenaere A, Katanayeva N, Suter DM. Individual transcription factors modulate both the micromovement of chromatin and its long-range structure. Proc Natl Acad Sci U S A 2024; 121:e2311374121. [PMID: 38648478 PMCID: PMC11067044 DOI: 10.1073/pnas.2311374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.
Collapse
Affiliation(s)
- Haitham A. Shaban
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
- Spectroscopy Department, Institute of Physics Research, National Research Centre, Cairo12622, Egypt
| | - Elias T. Friman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Cédric Deluz
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Armelle Tollenaere
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - David M. Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
3
|
van Staalduinen J, van Staveren T, Grosveld F, Wendt KS. Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenetics Chromatin 2023; 16:27. [PMID: 37349773 PMCID: PMC10288748 DOI: 10.1186/s13072-023-00503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as optical imaging that can investigate chromatin conformations down to the single cell level have revealed that chromatin structure is highly heterogeneous at the level of the individual allele. While TAD boundaries and enhancer-promoter pairs emerge as hotspots of 3D proximity, the spatiotemporal dynamics of these different types of chromatin contacts remain largely unexplored. Investigation of chromatin contacts in live single cells is necessary to close this knowledge gap and further enhance the current models of 3D genome organization and enhancer-promoter communication. In this review, we first discuss the potential of single locus labeling to study architectural and enhancer-promoter contacts and provide an overview of the available single locus labeling techniques such as FROS, TALE, CRISPR-dCas9 and ANCHOR, and discuss the latest developments and applications of these systems.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Tartas A, Lundholm L, Scherthan H, Wojcik A, Brzozowska B. The order of sequential exposure of U2OS cells to gamma and alpha radiation influences the formation and decay dynamics of NBS1 foci. PLoS One 2023; 18:e0286902. [PMID: 37307266 DOI: 10.1371/journal.pone.0286902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
DNA double strand breaks (DSBs) are a deleterious form of DNA damage. Densely ionising alpha radiation predominantly induces complex DSBs and sparsely ionising gamma radiation-simple DSBs. We have shown that alphas and gammas, when applied simultaneously, interact in producing a higher DNA damage response (DDR) than predicted by additivity. The mechanisms of the interaction remain obscure. The present study aimed at testing whether the sequence of exposure to alphas and gammas has an impact on the DDR, visualised by live NBS1-GFP (green fluorescent protein) focus dynamics in U2OS cells. Focus formation, decay, intensity and mobility were analysed up to 5 h post exposure. Focus frequencies directly after sequential alpha → gamma and gamma → alpha exposure were similar to gamma alone, but gamma → alpha foci quickly declined below the expected values. Focus intensities and areas following alpha alone and alpha → gamma were larger than after gamma alone and gamma → alpha. Focus movement was most strongly attenuated by alpha → gamma. Overall, sequential alpha → gamma exposure induced the strongest change in characteristics and dynamics of NBS1-GFP foci. Possible explanation is that activation of the DDR is stronger when alpha-induced DNA damage precedes gamma-induced DNA damage.
Collapse
Affiliation(s)
- Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the Univ. of Ulm, Munich, Germany
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Pfisterer M, Schmitz ML. Testing the Effect of Histone Acetyltransferases on Local Chromatin Compaction. Methods Mol Biol 2023; 2589:361-376. [PMID: 36255637 DOI: 10.1007/978-1-0716-2788-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experiments determining the chromatin association of histone acetylases (HATs) and deacetylases (HDACs) at the genome-wide level provide precise maps of locus occupancy, but do not allow conclusions on the functional consequences of this locus-specific enrichment. Here we describe a protocol that allows tethering of HATs or HDACs to specific genomic loci upon fusion with a fluorescent protein and a DNA-binding protein such as the E. coli Lac repressor (LacI), which binds to genomically inserted lac operon sequences (lacO) via DNA/protein interactions. Integration of these lacO sequences into a genomic region of interest allows to monitor the functional consequences of HAT/HDAC targeting on chromatin (de)compaction, histone modification, and interaction with other proteins by quantitative light microscopy, as described here. As DNA-binding of LacI can be tightly controlled by the addition of galactose-derivatives, this method also allows to monitor the effects of locus-specific recruitment in a time-resolved manner.
Collapse
Affiliation(s)
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.
- Member of the German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
6
|
Guh CY, Shen HJ, Chen LW, Chiu PC, Liao IH, Lo CC, Chen Y, Hsieh YH, Chang TC, Yen CP, Chen YY, Chen TWW, Chen LY, Wu CS, Egly JM, Chu HPC. XPF activates break-induced telomere synthesis. Nat Commun 2022; 13:5781. [PMID: 36184605 PMCID: PMC9527253 DOI: 10.1038/s41467-022-33428-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative Lengthening of Telomeres (ALT) utilizes a recombination mechanism and break-induced DNA synthesis to maintain telomere length without telomerase, but it is unclear how cells initiate ALT. TERRA, telomeric repeat-containing RNA, forms RNA:DNA hybrids (R-loops) at ALT telomeres. We show that depleting TERRA using an RNA-targeting Cas9 system reduces ALT-associated PML bodies, telomere clustering, and telomere lengthening. TERRA interactome reveals that TERRA interacts with an extensive subset of DNA repair proteins in ALT cells. One of TERRA interacting proteins, the endonuclease XPF, is highly enriched at ALT telomeres and recruited by telomeric R-loops to induce DNA damage response (DDR) independent of CSB and SLX4, and thus triggers break-induced telomere synthesis and lengthening. The attraction of BRCA1 and RAD51 at telomeres requires XPF in FANCM-deficient cells that accumulate telomeric R-loops. Our results suggest that telomeric R-loops activate DDR via XPF to promote homologous recombination and telomere replication to drive ALT.
Collapse
Affiliation(s)
- Chia-Yu Guh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Hong-Jhih Shen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Liv WeiChien Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Pei-Chen Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - I-Hsin Liao
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Chen-Chia Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yunfei Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Ting-Chia Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Chien-Ping Yen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Shyi Wu
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Strasbourg, France.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Ping Catherine Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan.
| |
Collapse
|
7
|
Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol Cell 2022; 82:1878-1893.e10. [DOI: 10.1016/j.molcel.2022.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/23/2022]
|
8
|
Abstract
In eukaryotic cells, protein and RNA factors involved in genome activities like transcription, RNA processing, DNA replication, and repair accumulate in self-organizing membraneless chromatin subcompartments. These structures contribute to efficiently conduct chromatin-mediated reactions and to establish specific cellular programs. However, the underlying mechanisms for their formation are only partly understood. Recent studies invoke liquid-liquid phase separation (LLPS) of proteins and RNAs in the establishment of chromatin activity patterns. At the same time, the folding of chromatin in the nucleus can drive genome partitioning into spatially distinct domains. Here, the interplay between chromatin organization, chromatin binding, and LLPS is discussed by comparing and contrasting three prototypical chromatin subcompartments: the nucleolus, clusters of active RNA polymerase II, and pericentric heterochromatin domains. It is discussed how the different ways of chromatin compartmentalization are linked to transcription regulation, the targeting of soluble factors to certain parts of the genome, and to disease-causing genetic aberrations.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Xu M, Chigumira T, Chen Z, Tones J, Zhao R, Dahl KN, Chenoweth DM, Zhang H. CRISPR Cas13-Based Tools to Track and Manipulate Endogenous Telomeric Repeat-Containing RNAs in Live Cells. Front Mol Biosci 2022; 8:785160. [PMID: 35174207 PMCID: PMC8841788 DOI: 10.3389/fmolb.2021.785160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
TERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and SunTag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Tafadzwa Chigumira
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jason Tones
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rongwei Zhao
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Kris Noel Dahl
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Heynck L, Matthias J, Bossi ML, Butkevich AN, Hell SW. N-Cyanorhodamines: cell-permeant, photostable and bathochromically shifted analogues of fluoresceins. Chem Sci 2022; 13:8297-8306. [PMID: 35919709 PMCID: PMC9297387 DOI: 10.1039/d2sc02448a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorescein and its analogues have found only limited use in biological imaging because of the poor photostability and cell membrane impermeability of their O-unprotected forms. Herein, we report rationally designed N-cyanorhodamines as orange- to red-emitting, photostable and cell-permeant fluorescent labels negatively charged at physiological pH values and thus devoid of off-targeting artifacts often observed for cationic fluorophores. In combination with well-established fluorescent labels, self-labelling protein (HaloTag, SNAP-tag) ligands derived from N-cyanorhodamines permit up to four-colour confocal and super-resolution STED imaging in living cells. N-Cyanorhodamines – photostable, cell-permeant analogues of fluoresceins – provide fast labelling kinetics with the HaloTag protein and background-free images in multicolour super-resolution microscopy.![]()
Collapse
Affiliation(s)
- Lukas Heynck
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Alexey N. Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Lamm N, Rogers S, Cesare AJ. Chromatin mobility and relocation in DNA repair. Trends Cell Biol 2021; 31:843-855. [PMID: 34183232 DOI: 10.1016/j.tcb.2021.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
The nucleus is a dynamic environment containing chromatin, membraneless organelles, and specialized molecular structures at the nuclear membrane. Within the spectrum of DNA repair activities are observations of increased mobility of damaged chromatin and the displacement of DNA lesions to specific nuclear environments. Here, we focus on the role that nuclear-specific filamentous actin plays in mobilizing damaged chromatin in response to DNA double-strand breaks and replication stress. We also examine nuclear pore complexes and promyelocytic leukemia-nuclear bodies as specialized platforms for homology-directed repair. The literature suggests an emerging model where specific types of DNA lesions are subjected to nuclear-derived forces that mobilize damaged chromatin and promote interaction with repair hubs to facilitate specialized repair reactions.
Collapse
Affiliation(s)
- Noa Lamm
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Samuel Rogers
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia.
| |
Collapse
|
12
|
Yang CW, Hsieh MH, Sun HJ, Teng SC. Nuclear envelope tethering inhibits the formation of ALT-associated PML bodies in ALT cells. Aging (Albany NY) 2021; 13:10490-10516. [PMID: 33820871 PMCID: PMC8064153 DOI: 10.18632/aging.202810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Telomere length homeostasis is essential for maintaining genomic stability and cancer proliferation. Telomerase-negative cancer cells undergo recombination-mediated alternative lengthening of telomeres. Telomeres associate with the nuclear envelope through the shelterin RAP1 and nuclear envelope SUN1 proteins. However, how the associations between telomeres and the nuclear envelope affect the progression of telomere recombination is not understood. Here, we show that telomere anchorage might inhibit telomere-telomere recombination. SUN1 depletion stimulates the formation of alternative lengthening of telomeres-associated promyelocytic leukemia bodies in ALT cells. In contrast, overexpression of a telomere-nuclear envelope-tethering chimera protein, RAP1-SUN1, suppresses APB formation. Moreover, inhibition of this nuclear envelope attachment alleviates the requirement of TOP3α for resolving the supercoiling pressure during telomere recombination. A coimmunoprecipitation assay revealed that the SUN1 N-terminal nucleoplasmic domain interacts with the RAP1 middle coil domain, and phosphorylation-mimetic mutations in RAP1 inhibit this interaction. However, abolishing the RAP1-SUN1 interaction does not hinder APB formation, which hints at the existence of another SUN1-dependent telomere anchorage pathway. In summary, our results reveal an inhibitory role of telomere-nuclear envelope association in telomere-telomere recombination and imply the presence of redundant pathways for the telomere-nuclear envelope association in ALT cells.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Meng-Hsun Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hao-Jhe Sun
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Center of Precision Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
13
|
Fesquet D, Llères D, Grimaud C, Viganò C, Méchali F, Boulon S, Coux O, Bonne-Andrea C, Baldin V. The 20S proteasome activator PA28γ controls the compaction of chromatin. J Cell Sci 2021; 134:134/3/jcs257717. [PMID: 33526472 DOI: 10.1242/jcs.257717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
PA28γ (also known as PSME3), a nuclear activator of the 20S proteasome, is involved in the degradation of several proteins regulating cell growth and proliferation and in the dynamics of various nuclear bodies, but its precise cellular functions remain unclear. Here, using a quantitative FLIM-FRET based microscopy assay monitoring close proximity between nucleosomes in living human cells, we show that PA28γ controls chromatin compaction. We find that its depletion induces a decompaction of pericentromeric heterochromatin, which is similar to what is observed upon the knockdown of HP1β (also known as CBX1), a key factor of the heterochromatin structure. We show that PA28γ is present at HP1β-containing repetitive DNA sequences abundant in heterochromatin and, importantly, that HP1β on its own is unable to drive chromatin compaction without the presence of PA28γ. At the molecular level, we show that this novel function of PA28γ is independent of its stable interaction with the 20S proteasome, and most likely depends on its ability to maintain appropriate levels of H3K9me3 and H4K20me3, histone modifications that are involved in heterochromatin formation. Overall, our results implicate PA28γ as a key factor involved in the regulation of the higher order structure of chromatin.
Collapse
Affiliation(s)
- Didier Fesquet
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - David Llères
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Université de Montpellier, CNRS Route de Mende, 34293 Montpellier, France
| | - Cristina Viganò
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Francisca Méchali
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Séverine Boulon
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
14
|
Haas J, Bloesel D, Bacher S, Kracht M, Schmitz ML. Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Front Cell Dev Biol 2020; 8:852. [PMID: 32984337 PMCID: PMC7490299 DOI: 10.3389/fcell.2020.00852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
The protein kinase homeodomain-interacting protein kinase 2 (HIPK2) plays an important role in development and in the response to external cues. The kinase associates with an exceptionally large number of different transcription factors and chromatin regulatory proteins to direct distinct gene expression programs. In order to investigate the function of HIPK2 for chromatin compaction, HIPK2 was fused to the DNA-binding domains of Gal4 or LacI, thus allowing its specific targeting to binding sites for these transcription factors that were integrated in specific chromosome loci. Tethering of HIPK2 resulted in strong decompaction of euchromatic and heterochromatic areas. HIPK2-mediated heterochromatin decondensation started already 4 h after its chromatin association and required the functionality of its SUMO-interacting motif. This process was paralleled by disappearance of the repressive H3K27me3 chromatin mark, recruitment of the acetyltransferases CBP and p300 and increased histone acetylation at H3K18 and H4K5. HIPK2-mediated chromatin decompaction was strongly inhibited in the presence of a CBP/p300 inhibitor and completely blocked by the BET inhibitor JQ1, consistent with a causative role of acetylations for this process. Chromatin tethering of HIPK2 had only a minor effect on basal transcription, while it strongly boosted estrogen-triggered gene expression by acting as a transcriptional cofactor.
Collapse
Affiliation(s)
- Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Daniel Bloesel
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Susanne Bacher
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Michael Kracht
- Member of the German Center for Lung Research, Giessen, Germany.,Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
16
|
Erdel F, Rademacher A, Vlijm R, Tünnermann J, Frank L, Weinmann R, Schweigert E, Yserentant K, Hummert J, Bauer C, Schumacher S, Al Alwash A, Normand C, Herten DP, Engelhardt J, Rippe K. Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation. Mol Cell 2020; 78:236-249.e7. [PMID: 32101700 PMCID: PMC7163299 DOI: 10.1016/j.molcel.2020.02.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two “digital” states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences. HP1 has only a weak capacity to form droplets in living cells Size, accessibility, and compaction of heterochromatin foci are independent of HP1 Heterochromatin compaction is “digital” and can toggle between two distinct states Methodological framework to assess hallmarks of phase separation in living cells
Collapse
Affiliation(s)
- Fabian Erdel
- LBME, Centre de Biologie Intégrative (CBI), CNRS, UPS, Toulouse, France; Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rifka Vlijm
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Tünnermann
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Robin Weinmann
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Elisabeth Schweigert
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Klaus Yserentant
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Johan Hummert
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Caroline Bauer
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Ahmad Al Alwash
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Dirk-Peter Herten
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences and School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| |
Collapse
|
17
|
Weiterer S, Meier‐Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, Brant L, Mayr‐Buro C, Jurida L, Beuerlein K, Müller H, Weber A, Tenekeci U, Dittrich‐Breiholz O, Bartkuhn M, Nist A, Stiewe T, van IJcken WFJ, Riedlinger T, Schmitz ML, Papantonis A, Kracht M. Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J 2020; 39:e101533. [PMID: 31701553 PMCID: PMC6939198 DOI: 10.15252/embj.2019101533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 "master" enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB.
Collapse
Affiliation(s)
- Sinah‐Sophia Weiterer
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Johanna Meier‐Soelch
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | | | - Athanasia Mizi
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Anna Beyerlein
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Hendrik Weiser
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Lilija Brant
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Christin Mayr‐Buro
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Liane Jurida
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Knut Beuerlein
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Helmut Müller
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Axel Weber
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Ulas Tenekeci
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
| | - Oliver Dittrich‐Breiholz
- Research Core Unit GenomicsInstitute of Physiological ChemistryMedical School HannoverHannoverGermany
| | - Marek Bartkuhn
- Institute for GeneticsJustus Liebig University GiessenGiessenGermany
| | - Andrea Nist
- Genomics Core Facility and Institute of Molecular OncologyPhilipps University MarburgMarburgGermany
| | - Thorsten Stiewe
- Genomics Core Facility and Institute of Molecular OncologyPhilipps University MarburgMarburgGermany
- Member of the German Center for Lung Research (DZL)GiessenGermany
| | | | - Tabea Riedlinger
- Institute of BiochemistryJustus Liebig University GiessenGiessenGermany
| | - M Lienhard Schmitz
- Member of the German Center for Lung Research (DZL)GiessenGermany
- Institute of BiochemistryJustus Liebig University GiessenGiessenGermany
| | - Argyris Papantonis
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Department of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Michael Kracht
- Rudolf Buchheim Institute of PharmacologyJustus Liebig University GiessenGiessenGermany
- Member of the German Center for Lung Research (DZL)GiessenGermany
| |
Collapse
|
18
|
Gong P, Wang H, Zhang J, Fu Y, Zhu Z, Wang J, Yin Y, Wang H, Zhou Z, Yang J, Liu L, Gou M, Zeng M, Yuan J, Wang F, Pan X, Xiang R, Weissman SM, Qi F, Liu L. Telomere Maintenance-Associated PML Is a Potential Specific Therapeutic Target of Human Colorectal Cancer. Transl Oncol 2019; 12:1164-1176. [PMID: 31207547 PMCID: PMC6580093 DOI: 10.1016/j.tranon.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length maintenance is essential for cell proliferation, which is particularly prominent in cancer. We validate that the primary colorectal tumors exhibit heterogeneous telomere lengths but mostly (90%) short telomeres relative to normal tissues. Intriguingly, relatively short telomeres are associated with tumor malignancy as indicated by poorly differentiated state, and these tumors contain more cancer stem-like cells (CSLCs) identified by several commonly used markers CD44, EPHB2 or LGR5. Moreover, promyelocytic leukemia (PML) and ALT-associated PML nuclear bodies (APBs) are frequently found in tumors with short telomeres and high proliferation. In contrast, distant normal tissues rarely or only minimally express PML. Inhibition of PML and APBs by an ATR inhibitor decreases proliferation of CSLCs and organoids, suggesting a potential therapeutic target to progressive colorectal tumors. Together, telomere maintenance underling tumor progression is connected with CSLCs.
Collapse
Affiliation(s)
- Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingsong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yudong Fu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhengmao Zhu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinmiao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinghua Yuan
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, China
| | - Xinghua Pan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Rong Xiang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Seibert M, Krüger M, Watson NA, Sen O, Daum JR, Slotman JA, Braun T, Houtsmuller AB, Gorbsky GJ, Jacob R, Kracht M, Higgins JMG, Schmitz ML. CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J Cell Biol 2019; 218:1164-1181. [PMID: 30765437 PMCID: PMC6446833 DOI: 10.1083/jcb.201806057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Faithful mitotic chromosome segregation is required for the maintenance of genomic stability. We discovered the phosphorylation of histone H2B at serine 6 (H2B S6ph) as a new chromatin modification site and found that this modification occurs during the early mitotic phases at inner centromeres and pericentromeric heterochromatin. This modification is directly mediated by cyclin B1-associated CDK1, and indirectly by Aurora B, and is antagonized by PP1-mediated dephosphorylation. H2B S6ph impairs chromatin binding of the histone chaperone SET (I2PP2A), which is important for mitotic fidelity. Injection of phosphorylation-specific H2B S6 antibodies in mitotic cells caused anaphase defects with impaired chromosome segregation and incomplete cytokinesis. As H2B S6ph is important for faithful chromosome separation, this modification may contribute to the prevention chromosomal instability and aneuploidy which frequently occur in cancer cells.
Collapse
Affiliation(s)
- Markus Seibert
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Nikolaus A Watson
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - Onur Sen
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Jonathan M G Higgins
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
20
|
Szydlowski NA, Go JS, Hu YS. Chromatin imaging and new technologies for imaging the nucleome. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1442. [PMID: 30456928 DOI: 10.1002/wsbm.1442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
Abstract
Synergistic developments in advanced fluorescent imaging and labeling techniques enable direct visualization of the chromatin structure and dynamics at the nanoscale level and in live cells. Super-resolution imaging encompasses a class of constantly evolving techniques that break the diffraction limit of fluorescence microscopy. Structured illumination microscopy provides a twofold resolution improvement and can readily achieve live multicolor imaging using conventional fluorophores. Single-molecule localization microscopy increases the spatial resolution by approximately 10-fold at the expense of slower acquisition speed. Stimulated emission-depletion microscopy generates a roughly fivefold resolution improvement with an imaging speed proportional to the scanning area. In parallel, advanced labeling strategies have been developed to "light up" global and sequence-specific DNA regions. DNA binding dyes have been exploited to achieve high labeling densities in single-molecule localization microscopy and enhance contrast in correlated light and electron microscopy. New-generation Oligopaint utilizes bioinformatics analyses to optimize the design of fluorescence in situ hybridization probes. Through sequential and combinatorial labeling, direct characterization of the DNA domain volume and length as well as the spatial organization of distinct topologically associated domains has been reported. In live cells, locus-specific labeling has been achieved by either inserting artificial loci next to the gene of interest, such as the repressor-operator array systems, or utilizing genome editing tools, including zinc finer proteins, transcription activator-like effectors, and the clustered regularly interspaced short palindromic repeats systems. Combined with single-molecule tracking, these labeling techniques enable direct visualization of intra- and inter-chromatin interactions. This article is categorized under: Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Nicole A Szydlowski
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Jane S Go
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Shaban HA, Barth R, Bystricky K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res 2018; 46:e77. [PMID: 29718294 PMCID: PMC6061878 DOI: 10.1093/nar/gky269] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/15/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022] Open
Abstract
Intrinsic dynamics of chromatin contribute to gene regulation. How chromatin mobility responds to genomic processes, and whether this response relies on coordinated chromatin movement is still unclear. Here, we introduce an approach called Dense Flow reConstruction and Correlation (DFCC), to quantify correlation of chromatin motion with sub-pixel sensitivity at the level of the whole nucleus. DFCC reconstructs dense global flow fields of fluorescent images acquired in real-time. We applied our approach to analyze stochastic movements of DNA and histones, based on direction and magnitude at different time lags in human cells. We observe long-range correlations extending over several μm between coherently moving regions over the entire nucleus. Spatial correlation of global chromatin dynamics was reduced by inhibiting elongation by RNA polymerase II, and abolished in quiescent cells. Furthermore, quantification of spatial smoothness over time intervals up to 30 s points to clear-cut boundaries between distinct regions, while smooth transitions in small (<1 μm) neighborhoods dominate for short time intervals. Rough transitions between regions of coherent motion indicate directed squeezing or stretching of chromatin boundaries, suggestive of changes in local concentrations of actors regulating gene expression. The DFCC approach hence allows characterizing stochastically forming domains of nuclear activity.
Collapse
Affiliation(s)
- Haitham A Shaban
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, University of Toulouse, UPS, 31062 Toulouse, France
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, Egypt
| | - Roman Barth
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, University of Toulouse, UPS, 31062 Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, University of Toulouse, UPS, 31062 Toulouse, France
| |
Collapse
|
22
|
Bikkul MU, Clements CS, Godwin LS, Goldberg MW, Kill IR, Bridger JM. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology 2018; 19:579-602. [PMID: 29907918 PMCID: PMC6223735 DOI: 10.1007/s10522-018-9758-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.
Collapse
Affiliation(s)
- Mehmet U Bikkul
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Craig S Clements
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Lauren S Godwin
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Ian R Kill
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
23
|
Youmans DT, Schmidt JC, Cech TR. Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 2018; 32:794-805. [PMID: 29891558 PMCID: PMC6049511 DOI: 10.1101/gad.311936.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.
Collapse
Affiliation(s)
- Daniel T Youmans
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Anschutz Medical Campus, University of Colorado at Denver, Aurora, Colorado 80045, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Jens C Schmidt
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
24
|
Srivastava P, Hira SK, Sharma A, Kashif M, Srivastava P, Srivastava DN, Singh RA, Manna PP. Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjug Chem 2018; 29:2107-2119. [DOI: 10.1021/acs.bioconjchem.8b00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Bardhhaman-713104, India
| | - Amod Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India
| | | | | | | | | | | |
Collapse
|
25
|
Bains SK, Chapman K, Bright S, Senan A, Kadhim M, Slijepcevic P. Effects of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells. Int J Radiat Biol 2018; 95:54-63. [PMID: 29667481 DOI: 10.1080/09553002.2018.1466066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the effects of ionizing radiation on telomere length and telomerase activity in human lens epithelial cells. There are studies suggesting evidence of telomere length in association with opacity of the lens; however, these studies have been conducted on Canine Lens cells. Our study was designed to understand further the effects of different doses of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells from three Donors. MATERIALS AND METHODS For this study, embryonic human lens epithelial (HLE) cells from three donors, obtained commercially were cultured. Telomere length and telomerase activity were measured after each passage until cells stopped growing in culture. This was repeated on irradiated (0.001 Gy, 0.01 Gy, 0.02 Gy, 0.1 Gy, 1 Gy and 2 Gy) cells. DNA damage response using the H2AX and telomere dysfunction foci assays were also examined at 30 mins, 24 hours, 48 hours and 72 hours postirradiation. RESULTS AND CONCLUSION We have demonstrated genetic changes in telomere length and oxidative stress, which may be relevant to cataractogenesis. Our study shows that in control cells telomere length increases as passage increases. We have also demonstrated that telomere length increases at higher doses of 1.0 Gy and 2.0 Gy. However, telomerase activity decreases dose dependently and as passages increase. These results are not conclusive and further studies ex vivo measuring lens opacity and telomere length in the model would be beneficial in a bigger cohort, hence confirming a link between telomere length, cataractogenesis and genetic factors.
Collapse
Affiliation(s)
- Savneet Kaur Bains
- a Department of Life Sciences , Brunel University London , Uxbridge , UK.,b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | - Kim Chapman
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK.,c Oxford Institute of Nursing , Oxford Brookes University , Oxford , UK
| | - Scott Bright
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK.,d Department of Radiation Physics , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Anish Senan
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | - Munira Kadhim
- b Department of Biological and Medical Sciences , Oxford Brookes University , Oxford , UK
| | | |
Collapse
|
26
|
Gao Y, Tan J, Jin J, Ma H, Chen X, Leger B, Xu J, Spagnol ST, Dahl KN, Levine AS, Liu Y, Lan L. SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep 2018; 8:5407. [PMID: 29599436 PMCID: PMC5876328 DOI: 10.1038/s41598-018-23602-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative damage to telomeres leads to telomere attrition and genomic instability, resulting in poor cell viability. Telomere dynamics contribute to the maintenance of telomere integrity; however, whether oxidative damage induces telomere movement and how telomere mobility is regulated remain poorly understood. Here, we show that oxidative damage at telomeres triggers directional telomere movement. The presence of the human Sir2 homolog, Sirtuin 6 (SIRT6) is required for oxidative damage-induced telomeric movement. SIRT6 knock out (KO) cells show neither damage-induced telomere movement nor chromatin decondensation at damaged telomeres; both are observed in wild type (WT) cells. A deacetylation mutant of SIRT6 increases damage-induced telomeric movement in SIRT6 KO cells as well as WT SIRT6. SIRT6 recruits the chromatin-remodeling protein SNF2H to damaged telomeres, which appears to promote chromatin decondensation independent of its deacetylase activity. Together, our results suggest that SIRT6 plays a role in the regulation of telomere movement upon oxidative damage, shedding new light onto the function of SIRT6 in telomere maintenance.
Collapse
Affiliation(s)
- Ying Gao
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing, 100084, China
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Jun Tan
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Jingyi Jin
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing, 100084, China
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 1218, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 3700 O'Hara Street, 302 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Hongqiang Ma
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 1218, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 3700 O'Hara Street, 302 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Xiukai Chen
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Brittany Leger
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jianquan Xu
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing, 100084, China
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 1218, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 3700 O'Hara Street, 302 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Arthur S Levine
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Yang Liu
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 1218, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 3700 O'Hara Street, 302 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Li Lan
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
27
|
Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, Deutzmann R, Schwartz U, Maldonado R, Huber C, Dendorfer AS, Rippe K, Längst G. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res 2017; 45:10534-10554. [PMID: 28977666 PMCID: PMC5737555 DOI: 10.1093/nar/gkx711] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Fabian Erdel
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophia Pinz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Gröbner-Ferreira
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rodrigo Maldonado
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Claudia Huber
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne-Sarah Dendorfer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
29
|
Vera M, Biswas J, Senecal A, Singer RH, Park HY. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu Rev Genet 2017; 50:267-291. [PMID: 27893965 DOI: 10.1146/annurev-genet-120215-034854] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.
Collapse
Affiliation(s)
- Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , , .,Janelia Research Campus of the HHMI, Ashburn, Virginia 20147
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea; .,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
30
|
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 2017; 8:14725. [PMID: 28290446 PMCID: PMC5424063 DOI: 10.1038/ncomms14725] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Imaging chromatin dynamics is crucial to understand genome organization and its role in transcriptional regulation. Recently, the RNA-guidable feature of CRISPR-Cas9 has been utilized for imaging of chromatin within live cells. However, these methods are mostly applicable to highly repetitive regions, whereas imaging regions with low or no repeats remains as a challenge. To address this challenge, we design single-guide RNAs (sgRNAs) integrated with up to 16 MS2 binding motifs to enable robust fluorescent signal amplification. These engineered sgRNAs enable multicolour labelling of low-repeat-containing regions using a single sgRNA and of non-repetitive regions with as few as four unique sgRNAs. We achieve tracking of native chromatin loci throughout the cell cycle and determine differential positioning of transcriptionally active and inactive regions in the nucleus. These results demonstrate the feasibility of our approach to monitor the position and dynamics of both repetitive and non-repetitive genomic regions in live cells.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mahmut Parlak
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jigar Bandaria
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ritambhara Singh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
31
|
Rademacher A, Erdel F, Trojanowski J, Schumacher S, Rippe K. Real-time observation of light-controlled transcription in living cells. J Cell Sci 2017. [DOI: 10.1242/jcs.205534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed BLInCR (Blue Light-Induced Chromatin Recruitment) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a reporter gene cluster in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 minutes after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models for transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.
Collapse
Affiliation(s)
- Anne Rademacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Fabian Erdel
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jorge Trojanowski
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sabrina Schumacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Wachsmuth M, Knoch TA, Rippe K. Dynamic properties of independent chromatin domains measured by correlation spectroscopy in living cells. Epigenetics Chromatin 2016; 9:57. [PMID: 28035241 PMCID: PMC5192577 DOI: 10.1186/s13072-016-0093-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
Background Genome organization into subchromosomal topologically associating domains (TADs) is linked to cell-type-specific gene expression programs. However, dynamic properties of such domains remain elusive, and it is unclear how domain plasticity modulates genomic accessibility for soluble factors. Results Here, we combine and compare a high-resolution topology analysis of interacting chromatin loci with fluorescence correlation spectroscopy measurements of domain dynamics in single living cells. We identify topologically and dynamically independent chromatin domains of ~1 Mb in size that are best described by a loop-cluster polymer model. Hydrodynamic relaxation times and gyration radii of domains are larger for open (161 ± 15 ms, 297 ± 9 nm) than for dense chromatin (88 ± 7 ms, 243 ± 6 nm) and increase globally upon chromatin hyperacetylation or ATP depletion. Conclusions Based on the domain structure and dynamics measurements, we propose a loop-cluster model for chromatin domains. It suggests that the regulation of chromatin accessibility for soluble factors displays a significantly stronger dependence on factor concentration than search processes within a static network. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0093-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tobias A Knoch
- Biophysical Genomics Group, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y. Uniform Contraction-Expansion Description of Relative Centromere and Telomere Motion. Biophys J 2016; 109:1454-62. [PMID: 26445446 PMCID: PMC4601005 DOI: 10.1016/j.bpj.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/30/2015] [Accepted: 07/20/2015] [Indexed: 10/25/2022] Open
Abstract
Internal organization and dynamics of the eukaryotic nucleus have been at the front of biophysical research in recent years. It is believed that both dynamics and location of chromatin segments are crucial for genetic regulation. Here we study the relative motion between centromeres and telomeres at various distances and at times relevant for genetic activity. Using live-imaging fluorescent microscopy coupled to stochastic analysis of relative trajectories, we find that the interlocus motion is distance-dependent with a varying fractional memory. In addition to short-range constraining, we also observe long-range anisotropic-enhanced parallel diffusion, which contradicts the expectation for classic viscoelastic systems. This motion is linked to uniform expansion and contraction of chromatin in the nucleus, and leads us to define and measure a new (to our knowledge) uniform contraction-expansion diffusion coefficient that enriches the contemporary picture of nuclear behavior. Finally, differences between loci types suggest that different sites along the genome experience distinctive coupling to the nucleoplasm environment at all scales.
Collapse
Affiliation(s)
- Eldad Kepten
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel.
| | - Aleksander Weron
- Hugo Steinhaus Center, Department of Mathematics, Wroclaw University of Technology, Wroclaw, Poland
| | - Irena Bronstein
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Krzysztof Burnecki
- Hugo Steinhaus Center, Department of Mathematics, Wroclaw University of Technology, Wroclaw, Poland
| | - Yuval Garini
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
34
|
Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 2016; 34:528-30. [PMID: 27088723 PMCID: PMC4864854 DOI: 10.1038/nbt.3526] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/04/2016] [Indexed: 01/02/2023]
Abstract
A lack of techniques to image multiple genomic loci in living cells has limited our ability to investigate chromosome dynamics. Here we describe CRISPRainbow, a system for labeling DNA in living cells based on nuclease-dead (d) Cas9 combined with engineered single guide RNA (sgRNA) scaffolds that bind sets of fluorescent proteins. We demonstrate simultaneous imaging of up to six chromosomal loci in individual live cells and document large differences in the dynamic properties of different chromosomal loci.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Li-Chun Tu
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Maximiliaan Huisman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, Florida, USA
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Hong J, Lee JH, Chung IK. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J Cell Sci 2016; 129:1566-79. [PMID: 26906424 DOI: 10.1242/jcs.181040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that is required for the maintenance of telomere repeats. Although overexpression of telomerase in normal human somatic cells is sufficient to overcome replicative senescence, the ability of telomerase to promote tumorigenesis requires additional activities that are independent of its role in telomere extension. Here, we identify proliferation-associated nucleolar antigen 120 (NOL1, also known as NOP2) as a telomerase RNA component (TERC)-binding protein that is found in association with catalytically active telomerase. Although NOL1 is highly expressed in the majority of human tumor cells, the molecular mechanism by which NOL1 contributes to tumorigenesis remained unclear. We show that NOL1 binds to the T-cell factor (TCF)-binding element of the cyclin D1 promoter and activates its transcription. Interestingly, telomerase is also recruited to the cyclin D1 promoter in a TERC-dependent manner through the interaction with NOL1, further enhancing transcription of the cyclin D1 gene. Depletion of NOL1 suppresses cyclin D1 promoter activity, thereby leading to induction of growth arrest and altered cell cycle distributions. Collectively, our findings suggest that NOL1 represents a new route by which telomerase activates transcription of cyclin D1 gene, thus maintaining cell proliferation capacity.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Hoon Lee
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - In Kwon Chung
- Department of Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
36
|
Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I, Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 2015; 34:2758-74. [PMID: 26464461 DOI: 10.15252/embj.201591458] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.
Collapse
Affiliation(s)
- Maïwen Caudron-Herger
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Teresa Pankert
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Jeanette Seiler
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg University of Regensburg, Regensburg, Germany
| | - Renate Voit
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Karsten Rippe
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| |
Collapse
|
37
|
Ramamoorthy M, Smith S. Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells. Cancer Cell 2015; 28:357-69. [PMID: 26373281 PMCID: PMC4573400 DOI: 10.1016/j.ccell.2015.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/08/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023]
Abstract
The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving cohesion. The resulting persistent telomere cohesion promotes recombination between sister telomeres, while it suppresses inappropriate recombination between non-sisters. Forced resolution of sister telomere cohesion induces excessive recombination between non-homologs, genomic instability, and impaired cell growth, indicating the ATRX-macroH2A1.1-tankyrase axis as a potential therapeutic target in ALT tumors.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
38
|
Lee JH, Jeong SA, Khadka P, Hong J, Chung IK. Involvement of SRSF11 in cell cycle-specific recruitment of telomerase to telomeres at nuclear speckles. Nucleic Acids Res 2015; 43:8435-51. [PMID: 26286192 PMCID: PMC4787792 DOI: 10.1093/nar/gkv844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/09/2015] [Indexed: 01/13/2023] Open
Abstract
Telomerase, a unique ribonucleoprotein complex that contains the telomerase reverse transcriptase (TERT), the telomerase RNA component (TERC) and the TERC-binding protein dyskerin, is required for continued cell proliferation in stem cells and cancer cells. Here we identify SRSF11 as a novel TERC-binding protein that localizes to nuclear speckles, subnuclear structures that are enriched in pre-messenger RNA splicing factors. SRSF11 associates with active telomerase enzyme through an interaction with TERC and directs it to nuclear speckles specifically during S phase of the cell cycle. On the other hand, a subset of telomeres is shown to be constitutively present at nuclear speckles irrespective of cell cycle phase, suggesting that nuclear speckles could be the nuclear sites for telomerase recruitment to telomeres. SRSF11 also associates with telomeres through an interaction with TRF2, which facilitates translocation of telomerase to telomeres. Depletion of SRSF11 prevents telomerase from associating with nuclear speckles and disrupts telomerase recruitment to telomeres, thereby abrogating telomere elongation by telomerase. These findings suggest that SRSF11 acts as a nuclear speckle-targeting factor that is essential for telomerase association with telomeres through the interactions with TERC and TRF2, and provides a potential target for modulating telomerase activity in cancer.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Departments of Systems Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Sun Ah Jeong
- Departments of Systems Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Prabhat Khadka
- Departments of Systems Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Juyeong Hong
- Departments of Systems Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - In Kwon Chung
- Departments of Systems Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
39
|
Mallm JP, Rippe K. Aurora Kinase B Regulates Telomerase Activity via a Centromeric RNA in Stem Cells. Cell Rep 2015; 11:1667-78. [PMID: 26051938 DOI: 10.1016/j.celrep.2015.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/28/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Non-coding RNAs can modulate histone modifications that, at the same time, affect transcript expression levels. Here, we dissect such a network in mouse embryonic stem cells (ESCs). It regulates the activity of the reverse transcriptase telomerase, which synthesizes telomeric repeats at the chromosome ends. We find that histone H3 serine 10 phosphorylation set by Aurora kinase B (AURKB) in ESCs during the S phase of the cell cycle at centromeric and (sub)telomeric loci promotes the expression of non-coding minor satellite RNA (cenRNA). Inhibition of AURKB induces silencing of cenRNA transcription and establishment of a repressive chromatin state with histone H3 lysine 9 trimethylation and heterochromatin protein 1 accumulation. This process results in a continuous shortening of telomeres. We further show that AURKB interacts with both telomerase and cenRNA and activates telomerase in trans. Thus, in mouse ESCs, telomere maintenance is regulated via expression of cenRNA in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Osterwald S, Deeg KI, Chung I, Parisotto D, Wörz S, Rohr K, Erfle H, Rippe K. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J Cell Sci 2015; 128:1887-1900. [DOI: 10.1242/jcs.148296] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACT
The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.
Collapse
Affiliation(s)
- Sarah Osterwald
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Katharina I. Deeg
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Inn Chung
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Daniel Parisotto
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| | - Stefan Wörz
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg & DKFZ, BioQuant, IPMB, 69120 Heidelberg, Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg & DKFZ, BioQuant, IPMB, 69120 Heidelberg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg & BioQuant, 69120 Heidelberg, Germany
| | - Karsten Rippe
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Cho NW, Dilley RL, Lampson MA, Greenberg RA. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 2015; 159:108-121. [PMID: 25259924 DOI: 10.1016/j.cell.2014.08.030] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 06/16/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022]
Abstract
Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT-dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between nonsister telomeres during ALT.
Collapse
Affiliation(s)
- Nam Woo Cho
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Robert L Dilley
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA; Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
42
|
Weth O, Paprotka C, Günther K, Schulte A, Baierl M, Leers J, Galjart N, Renkawitz R. CTCF induces histone variant incorporation, erases the H3K27me3 histone mark and opens chromatin. Nucleic Acids Res 2014; 42:11941-51. [PMID: 25294833 PMCID: PMC4231773 DOI: 10.1093/nar/gku937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.
Collapse
Affiliation(s)
- Oliver Weth
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christine Paprotka
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Katharina Günther
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Astrid Schulte
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manuel Baierl
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Joerg Leers
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
43
|
Beuzer P, Quivy JP, Almouzni G. Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle 2014; 13:1607-16. [PMID: 24675882 PMCID: PMC4050166 DOI: 10.4161/cc.28627] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity.
Collapse
Affiliation(s)
- Paolo Beuzer
- Institut Curie; Centre de Recherche; Paris, France; CNRS; UMR3664; Paris, France; Equipe Labellisée Ligue contre le Cancer; UMR3664; Paris, France; UPMC; UMR3664; Paris, France; Sorbonne University; PSL; Paris, France
| | - Jean-Pierre Quivy
- Institut Curie; Centre de Recherche; Paris, France; CNRS; UMR3664; Paris, France; Equipe Labellisée Ligue contre le Cancer; UMR3664; Paris, France; UPMC; UMR3664; Paris, France; Sorbonne University; PSL; Paris, France
| | - Geneviève Almouzni
- Institut Curie; Centre de Recherche; Paris, France; CNRS; UMR3664; Paris, France; Equipe Labellisée Ligue contre le Cancer; UMR3664; Paris, France; UPMC; UMR3664; Paris, France; Sorbonne University; PSL; Paris, France
| |
Collapse
|
44
|
Becker A, Durante M, Taucher-Scholz G, Jakob B. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells. PLoS One 2014; 9:e92640. [PMID: 24651490 PMCID: PMC3961414 DOI: 10.1371/journal.pone.0092640] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci) in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.
Collapse
Affiliation(s)
- Annabelle Becker
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technical University of Darmstadt, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technical University of Darmstadt, Darmstadt, Germany
| | - Burkhard Jakob
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
45
|
Loïodice I, Dubarry M, Taddei A. Scoring and manipulating gene position and dynamics using FROS in budding yeast. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 62:22.17.1-22.17.14. [PMID: 24610125 DOI: 10.1002/0471143030.cb2217s62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The spatial organization of the genome within the nucleus is now seen as a key contributor to genome function. Studying chromatin dynamics in living cells has been rendered possible by the development of fast microscopy coupled with fluorescent repressor operator systems (FROS). In these systems, arrays of protein-binding sites integrated at specific loci by homologous recombination are monitored through the fluorescence of tagged DNA-binding proteins. In the budding yeast, where homologous recombination is efficient, this technique, combined with targeting assay and genetic analysis, has been extremely powerful for studying the determinants and function of chromatin dynamics in living cells. However, issues have been recurrently raised in different species regarding the use of these systems. Here we discuss the different uses of gene tagging with FROS and their limitations, focusing in budding yeast as a model organism.
Collapse
Affiliation(s)
- Isabelle Loïodice
- Institut Curie, Centre de Recherche, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3364, Paris, France.,Université Pierre-et-Marie-Curie (UPMC), UMR 3664, Paris, France
| | - Marion Dubarry
- Université Pierre-et-Marie-Curie (UPMC), UMR 3664, Paris, France.,Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Taddei
- Institut Curie, Centre de Recherche, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3364, Paris, France.,Université Pierre-et-Marie-Curie (UPMC), UMR 3664, Paris, France
| |
Collapse
|
46
|
Girst S, Hable V, Drexler GA, Greubel C, Siebenwirth C, Haum M, Friedl AA, Dollinger G. Subdiffusion supports joining of correct ends during repair of DNA double-strand breaks. Sci Rep 2014; 3:2511. [PMID: 23979012 PMCID: PMC3753591 DOI: 10.1038/srep02511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 12/03/2022] Open
Abstract
The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.
Collapse
Affiliation(s)
- S Girst
- Angewandte Physik und Messtechnik LRT2, Universität der Bundeswehr München, 85577 Neubiberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pederson T. Repeated TALEs: visualizing DNA sequence localization and chromosome dynamics in live cells. Nucleus 2014; 5:28-31. [PMID: 24637394 PMCID: PMC4028351 DOI: 10.4161/nucl.28143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Three recent papers, published just weeks apart, describe the use of fluorescent TALEs to tag specific DNA sequences in live cells and, in one case, also in fixed cells, the latter with potential clinical applications.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics; Department of Biochemistry and Molecular Pharmacology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
48
|
Ahanger SH, Günther K, Weth O, Bartkuhn M, Bhonde RR, Shouche YS, Renkawitz R. Ectopically tethered CP190 induces large-scale chromatin decondensation. Sci Rep 2014; 4:3917. [PMID: 24472778 PMCID: PMC3905270 DOI: 10.1038/srep03917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/10/2014] [Indexed: 01/04/2023] Open
Abstract
Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.
Collapse
Affiliation(s)
- Sajad H Ahanger
- 1] National Centre for Cell Science, Pune 411007, India [2] Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Katharina Günther
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Oliver Weth
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| | | | | | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig University, Giessen D-35392, Germany
| |
Collapse
|
49
|
Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 2013; 110:21048-53. [PMID: 24324157 DOI: 10.1073/pnas.1319097110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe a transcription activator-like effector (TALE)-based strategy, termed "TALEColor," for labeling specific repetitive DNA sequences in human chromosomes. We designed TALEs for the human telomeric repeat and fused them with any of numerous fluorescent proteins (FPs). Expression of these TALE-telomere-FP fusion proteins in human osteosarcoma's (U2OS) cells resulted in bright signals coincident with telomeres. We also designed TALEs for centromeric sequences unique to certain chromosomes, enabling us to localize specific human chromosomes in live cells. Meanwhile we generated TALE-FPs in vitro and used them as probes to detect telomeres in fixed cells. Using human cells with different average telomere lengths, we found that the TALEColor signals correlated positively with telomere length. In addition, suspension cells were followed by imaging flow cytometry to resolve cell populations with differing telomere lengths. These methods may have significant potential both for basic chromosome and genome research as well as in clinical applications.
Collapse
|
50
|
Ferreira HC, Towbin BD, Jegou T, Gasser SM. The shelterin protein POT-1 anchors Caenorhabditis elegans telomeres through SUN-1 at the nuclear periphery. ACTA ACUST UNITED AC 2013; 203:727-35. [PMID: 24297748 PMCID: PMC3857485 DOI: 10.1083/jcb.201307181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Telomere positioning near the nuclear envelope during Caenorhabditis elegans development requires the nuclear envelope protein SUN-1, the Shelterin component POT-1, and the SUMO ligase GEI-17. Telomeres are specialized protein–DNA structures that protect chromosome ends. In budding yeast, telomeres form clusters at the nuclear periphery. By imaging telomeres in embryos of the metazoan Caenorhabditis elegans, we found that telomeres clustered only in strains that had activated an alternative telomere maintenance pathway (ALT). Moreover, as in yeast, the unclustered telomeres in wild-type embryos were located near the nuclear envelope (NE). This bias for perinuclear localization increased during embryogenesis and persisted in differentiated cells. Telomere position in early embryos required the NE protein SUN-1, the single-strand binding protein POT-1, and the small ubiquitin-like modifier (SUMO) ligase GEI-17. However, in postmitotic larval cells, none of these factors individually were required for telomere anchoring, which suggests that additional mechanisms anchor in late development. Importantly, targeted POT-1 was sufficient to anchor chromatin to the NE in a SUN-1–dependent manner, arguing that its effect at telomeres is direct. This high-resolution description of telomere position within C. elegans extends our understanding of telomere organization in eukaryotes.
Collapse
Affiliation(s)
- Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|