1
|
Sharma I, Talakayala A, Tiwari M, Asinti S, Kirti PB. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108700. [PMID: 38781635 DOI: 10.1016/j.plaphy.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.
Collapse
Affiliation(s)
- Isha Sharma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324.
| | - Ashwini Talakayala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sarath Asinti
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - P B Kirti
- Agri Biotech Foundation, Rajendranagar, 500030, Hyderabad, India
| |
Collapse
|
2
|
Wu Q, Wang Z, Chen S, She X, Zhu S, Li P, Liu L, Zhao C, Li K, Liu A, Huang C, Chen Y, Hu F, Wang G, Hu J. USP26 promotes colorectal cancer tumorigenesis by restraining PRKN-mediated mitophagy. Oncogene 2024; 43:1581-1593. [PMID: 38565942 DOI: 10.1038/s41388-024-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengyu Zhu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chongchong Zhao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
4
|
Chandrasekhar H, Mohapatra G, Kajal K, Singh M, Walia K, Rana S, Kaur N, Sharma S, Tuli A, Das P, Srikanth CV. SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function. PLoS Pathog 2023; 19:e1011686. [PMID: 37773952 PMCID: PMC10566704 DOI: 10.1371/journal.ppat.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
One of the mechanisms shaping the pathophysiology during the infection of enteric pathogen Salmonella Typhimurium is host PTM machinery utilization by the pathogen encoded effectors. Salmonella Typhimurium (S. Tm) during infection in host cells thrives in a vacuolated compartment, Salmonella containing vacuole (SCV), which sequentially acquires host endosomal and lysosomal markers. Long tubular structures, called as Salmonella induced filaments (SIFs), are further generated by S. Tm, which are known to be required for SCV's nutrient acquisition, membrane maintenance and stability. A tightly coordinated interaction involving prominent effector SifA and various host adapters PLEKHM1, PLEKHM2 and Rab GTPases govern SCV integrity and SIF formation. Here, we report for the first time that the functional regulation of SifA is modulated by PTM SUMOylation at its 11th lysine. S. Tm expressing SUMOylation deficient lysine 11 mutants of SifA (SifAK11R) is defective in intracellular proliferation due to compromised SIF formation and enhanced lysosomal acidification. Furthermore, murine competitive index experiments reveal defective in vivo proliferation and weakened virulence of SifAK11R mutant. Concisely, our data reveal that SifAK11R mutant nearly behaves like a SifA knockout strain which impacts Rab9-MPR mediated lysosomal acidification pathway, the outcome of which culminates in reduced bacterial load in in vitro and in vivo infection model systems. Our results bring forth a novel pathogen-host crosstalk mechanism where the SUMOylation of effector SifA regulated S. Tm intracellular survival.
Collapse
Affiliation(s)
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Kajal
- Regional Centre for Biotechnology, Faridabad, India
| | - Mukesh Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitiz Walia
- Institute of Microbial Technology, Chandigarh, India
| | - Sarika Rana
- Laboratory of Immunobiology, Universite´ Libre de Bruxelles, Gosselies, Belgium
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | - Amit Tuli
- Institute of Microbial Technology, Chandigarh, India
| | - Prasenjit Das
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
5
|
Zittlau KI, Terradas AL, Nalpas N, Geisler S, Kahle PJ, Macek B. Temporal Analysis of Protein Ubiquitylation and Phosphorylation During Parkin-dependent Mitophagy. Mol Cell Proteomics 2021; 21:100191. [PMID: 34974192 PMCID: PMC8808264 DOI: 10.1016/j.mcpro.2021.100191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane (MOM). While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages of the process. Here we used HeLa cells expressing catalytically active or inactive parkin to perform temporal analysis of the proteome, ubiquitylome and phosphoproteome during 18 hours after induction of mitophagy by mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP). Abundance profiles of proteins downregulated in parkin-dependent manner revealed a stepwise, "outside-in" directed degradation of mitochondrial subcompartments. While ubiquitylation of MOM proteins was enriched among early parkin-dependent targets, numerous mitochondrial inner membrane, matrix and cytosolic proteins were also found ubiquitylated at later stages of mitophagy. Phosphoproteome analysis revealed a possible cross-talk between phosphorylation and ubiquitylation during mitophagy on key parkin targets, such as VDAC1/2.
Collapse
Affiliation(s)
- Katharina I Zittlau
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Germany
| | - Anna Lechado Terradas
- Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Faculty of Medicine, University of Tübingen, Germany; Interfaculty Institute of Biochemistry, Faculty of Natural Sciences, University of Tübingen, Germany
| | - Nicolas Nalpas
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Germany
| | - Sven Geisler
- Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Faculty of Medicine, University of Tübingen, Germany
| | - Philipp J Kahle
- Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Faculty of Medicine, University of Tübingen, Germany; Interfaculty Institute of Biochemistry, Faculty of Natural Sciences, University of Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Germany.
| |
Collapse
|
6
|
Kon E, Calvo-Jiménez E, Cossard A, Na Y, Cooper JA, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. eLife 2019; 8:47673. [PMID: 31577229 PMCID: PMC6786859 DOI: 10.7554/elife.47673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.
Collapse
Affiliation(s)
- Elif Kon
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alexia Cossard
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Youn Na
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Monitoring stress-induced autophagic engulfment and degradation of the 26S proteasome in mammalian cells. Methods Enzymol 2019; 619:337-366. [PMID: 30910028 DOI: 10.1016/bs.mie.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Almost 70 years after the discovery of the lysosome, and about four decades following the unraveling of ubiquitin as a specific "mark of death," the field of protein turnover-the numerous processes it regulates, the pathologies resulting from its dysregulation, and the drugs that have been developed to target them-is still growing exponentially. Accordingly, the need for new technologies and methods is ever growing. One interesting question in the field is the mechanism(s) by which the "predators become prey". We have reported recently that the 26S proteasome, the catalytic arm of the ubiquitin system, is degraded by the autophagy-lysosome machinery, in a process requiring specific ubiquitination of the proteasome, and subsequent recognition by the shuttle protein p62/SQSTM1. Studying the modification(s), recognition sites, engulfment, and breakdown of the 26S proteasome via such "proteaphagy" has required the use of microscopy, subcellular fractionation, 'classical biochemistry', and proteomics. In this chapter, we present the essentials of these protocols, with emphasis on the refinements we have introduced in order for them to better suit the particular study of proteaphagy.
Collapse
|
8
|
Pan M, Zheng Q, Ding S, Zhang L, Qu Q, Wang T, Hong D, Ren Y, Liang L, Chen C, Mei Z, Liu L. Chemical Protein Synthesis Enabled Mechanistic Studies on the Molecular Recognition of K27‐linked Ubiquitin Chains. Angew Chem Int Ed Engl 2019; 58:2627-2631. [DOI: 10.1002/anie.201810814] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Man Pan
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical Biologythe Graduate School at ShenzenTsinghua University Shenzen Guangdong 518055 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Shan Ding
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lujia Zhang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Tian Wang
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Danning Hong
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Yujing Ren
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lujun Liang
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua University Beijing 100084 China
| | - Ziqing Mei
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lei Liu
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical Biologythe Graduate School at ShenzenTsinghua University Shenzen Guangdong 518055 China
| |
Collapse
|
9
|
Pan M, Zheng Q, Ding S, Zhang L, Qu Q, Wang T, Hong D, Ren Y, Liang L, Chen C, Mei Z, Liu L. Chemical Protein Synthesis Enabled Mechanistic Studies on the Molecular Recognition of K27‐linked Ubiquitin Chains. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Man Pan
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical Biologythe Graduate School at ShenzenTsinghua University Shenzen Guangdong 518055 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Shan Ding
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lujia Zhang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Tian Wang
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Danning Hong
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Yujing Ren
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lujun Liang
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua University Beijing 100084 China
| | - Ziqing Mei
- Biotechnology Research InstituteChinese Academy of Agricultural Science Beijing 100081 China
| | - Lei Liu
- Tsinghua-Peking Center for Life SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical Biologythe Graduate School at ShenzenTsinghua University Shenzen Guangdong 518055 China
| |
Collapse
|
10
|
Ma Y, Yuan S, Tian X, Lin S, Wei S, Hu T, Chen S, Li X, Chen S, Wu D, Wang M, Guo D. ABIN1 inhibits HDAC1 ubiquitination and protects it from both proteasome- and lysozyme-dependent degradation. J Cell Biochem 2017; 119:3030-3043. [PMID: 29058807 DOI: 10.1002/jcb.26428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
ABIN1, an important immune regulator, has been shown to be involved in various cellular functions, such as immunity, development, tissue homeostasis, and tumor progression. It inhibits TNF- and TLR-induced NF-κB signaling activation and the consequent gene expression. Despite its functional significance, the mechanism of ABIN1 in the regulation of various cellular functions remains unclear. In this study, we identified HDAC1, a key regulator of eukaryotic gene expression and many important cellular events, including cell proliferation, differentiation, cancer and immunity, as an interacting partner of ABIN1. The results showed that ABIN1 acted as a modulator to down-regulate HDAC1 ubiquitination via three different linkages, thereby stabilizing HDAC1 by inhibiting its lysosomal and proteasomal degradation. Interestingly, the inhibitory function of ABIN1 required direct binding with HDAC1. Moreover, the level of p53, which was a tumor suppressor and a well-studied substrate of HDAC1, was under the regulation of ABIN1 via the modulation of HDAC1 levels, suggesting that ABIN1 was physiologically significant in tumor progression. This study has revealed a new function of ABIN1 in mediating HDAC1 modification and stability.
Collapse
Affiliation(s)
- Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shanchuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shangmou Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Tongtong Hu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Xueqing Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Dongcheng Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China.,School of Basic Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
11
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Szymanska E, Budick-Harmelin N, Miaczynska M. Endosomal "sort" of signaling control: The role of ESCRT machinery in regulation of receptor-mediated signaling pathways. Semin Cell Dev Biol 2017; 74:11-20. [PMID: 28797837 DOI: 10.1016/j.semcdb.2017.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) machinery consists of four protein assemblies (ESCRT-0 to -III subcomplexes) which mediate various processes of membrane remodeling in the cell. In the endocytic pathway, ESCRTs sort cargo destined for degradation into intraluminal vesicles (ILVs) of endosomes. Cargos targeted by ESCRTs include various signaling molecules, mainly internalized cell-surface receptors but also some cytosolic proteins. It is therefore expected that aberrant trafficking caused by ESCRT dysfunction affects different signaling pathways. Here we review how perturbation of ESCRT activity alters intracellular transport of membrane receptors, causing their accumulation on endocytic compartments, decreased degradation and/or altered recycling to the plasma membrane. We further describe how perturbed trafficking of receptors impacts the activity of their downstream signaling pathways, with or without changes in transcriptional responses. Finally, we present evidence that ESCRT components can also control activity and intracellular distribution of cytosolic signaling proteins (kinases, other effectors and soluble receptors). The underlying mechanisms involve sequestration of such proteins in ILVs, their sorting for degradation or towards non-lysosomal destinations, and regulating their availability in various cellular compartments. All these ESCRT-mediated processes can modulate final outputs of multiple signaling pathways.
Collapse
Affiliation(s)
- Ewelina Szymanska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Noga Budick-Harmelin
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland; Cell Research and Immunology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
13
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
15
|
Pan M, Gao S, Zheng Y, Tan X, Lan H, Tan X, Sun D, Lu L, Wang T, Zheng Q, Huang Y, Wang J, Liu L. Quasi-Racemic X-ray Structures of K27-Linked Ubiquitin Chains Prepared by Total Chemical Synthesis. J Am Chem Soc 2016; 138:7429-35. [PMID: 27268299 DOI: 10.1021/jacs.6b04031] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quasi-racemic crystallography has been used to determine the X-ray structures of K27-linked ubiquitin (Ub) chains prepared through total chemical synthesis. Crystal structures of K27-linked di- and tri-ubiquitins reveal that the isopeptide linkages are confined in a unique buried conformation, which provides the molecular basis for the distinctive function of K27 linkage compared to the other seven Ub chains. K27-linked di- and triUb were found to adopt different structural conformations in the crystals, one being symmetric whereas the other triangular. Furthermore, bioactivity experiments showed that the ovarian tumor family de-ubiquitinase 2 significantly favors K27-linked triUb than K27-linked diUb. K27-linked triUb represents the so-far largest chemically synthesized protein (228 amino acids) that has been crystallized to afford a high-resolution X-ray structure.
Collapse
Affiliation(s)
- Man Pan
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yong Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiaodan Tan
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Huan Lan
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xianglong Tan
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Demeng Sun
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Lining Lu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yichao Huang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Jiawei Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
16
|
Hofer A, Wenz T. Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 2014; 56:202-20. [DOI: 10.1016/j.exger.2014.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
|
17
|
Walsh CK, Sadanandom A. Ubiquitin chain topology in plant cell signaling: a new facet to an evergreen story. FRONTIERS IN PLANT SCIENCE 2014; 5:122. [PMID: 24744767 PMCID: PMC3978257 DOI: 10.3389/fpls.2014.00122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 05/24/2023]
Abstract
Ubiquitin is a peptide modifier able to form polymers of varying length and linkage as part of a powerful signaling system. Perhaps the best-known aspect of this protein's function is as the driver of targeted protein degradation through the Ubiquitin Proteasome System (UPS). Through the formation of lysine 48-linked polyubiquitin chains, it is able to direct the degradation of tagged proteins by the 26S proteasome, indirectly controlling many processes within the cell. However, recent research has indicated that ubiquitin performs a multitude of other roles within the cell beyond protein degradation. It is able to form 6 other "atypical" linkages though lysine residues at positions 6, 11, 27, 29, 33, and 63. These atypical chains perform a range of diverse functions, including the regulation of iron uptake in response to perceived deficiency, repair of double stranded breaks in the DNA, and regulation of the auxin response through the non-proteasomal degradation of auxin efflux carrier protein PIN1. This review explores the role ubiquitin chain topology plays in plant cellular function. We aim to highlight the importance of these varying functions and the future challenges to be encountered within this field.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- *Correspondence: Ari Sadanandom, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK e-mail:
| |
Collapse
|
18
|
Choi YN, Lee SK, Seo TW, Lee JS, Yoo SJ. C-terminus of Hsc70-interacting protein regulates profilin1 and breast cancer cell migration. Biochem Biophys Res Commun 2014; 446:1060-6. [DOI: 10.1016/j.bbrc.2014.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
19
|
Huang T, Li J, Byrd RA. Solution structure of lysine-free (K0) ubiquitin. Protein Sci 2014; 23:662-7. [PMID: 24591328 DOI: 10.1002/pro.2450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022]
Abstract
Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub (15) N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations.
Collapse
Affiliation(s)
- Tao Huang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | | | | |
Collapse
|
20
|
Waadt R, Schlücking K, Schroeder JI, Kudla J. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations. Methods Mol Biol 2014; 1062:629-58. [PMID: 24057390 PMCID: PMC4073779 DOI: 10.1007/978-1-62703-580-4_33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The analyses of protein-protein interactions are crucial for understanding cellular processes including signal transduction, protein trafficking, and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further, we discuss different BiFC applications and provide examples for proper BiFC analyses in planta.
Collapse
Affiliation(s)
- Rainer Waadt
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Kathrin Schlücking
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| | - Julian I. Schroeder
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Jörg Kudla
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
21
|
Mageswaran SK, Dixon MG, Curtiss M, Keener JP, Babst M. Binding to any ESCRT can mediate ubiquitin-independent cargo sorting. Traffic 2013; 15:212-29. [PMID: 24148098 DOI: 10.1111/tra.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT-like protein fusions. These studies showed that lowering ESCRT-binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin-independent MVB sorting.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
22
|
Kerppola TK. Visualization of ubiquitin conjugates using ubiquitin-mediated fluorescence complementation analysis. Cold Spring Harb Protoc 2013; 2013:949-54. [PMID: 24086058 DOI: 10.1101/pdb.prot078170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ubiquitin-family peptide conjugation regulates the functions and stabilities of many proteins. Numerous cellular proteins are modified by covalent conjugation of ubiquitin-family peptides to specific lysine residues. These modifications provide a flexible means for regulating the properties of the substrate proteins. Because ubiquitin can be conjugated to substrate proteins at many different sites and in many topological configurations, these modifications have the potential to confer a wide range of functional states to the modified proteins. Ubiquitin conjugation is typically detected by immunoprecipitation of a putative substrate protein followed by immunoblotting to detect ubiquitin conjugated to the substrate. However, this assay cannot be used to detect ubiquitin conjugates in live cells. It is also difficult to determine the subcellular distribution of a specific ubiquitin conjugate using this approach. To visualize ubiquitin conjugates in live cells, we have developed the ubiquitin-mediated fluorescence complementation assay, which is based on the association of fragments of fluorescent proteins when ubiquitin fused to one fragment is conjugated to a substrate protein fused to a complementary fragment. This protocol focuses on the visualization of ubiquitin conjugated in cultured mammalian cells, but it can be adapted to any cell type or aerobically grown organism that can be genetically modified to express the fusion proteins.
Collapse
|
23
|
Chen Z, Zhong Y, Wang Y, Xu S, Liu Z, Baskakov IV, Monteiro MJ, Karbowski M, Shen Y, Fang S. Ubiquitination-induced fluorescence complementation (UiFC) for detection of K48 ubiquitin chains in vitro and in live cells. PLoS One 2013; 8:e73482. [PMID: 24039955 PMCID: PMC3764048 DOI: 10.1371/journal.pone.0073482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/21/2013] [Indexed: 12/17/2022] Open
Abstract
Proteins can be modified with eight homogenous ubiquitin chains linked by an isopeptide bond between the C-terminus of one ubiquitin and an amine from one of the seven lysines or the N-terminal methionine of the next ubiquitin. These topologically distinct ubiquitin chains signal for many essential cellular functions, such as protein degradation, cell cycle progression, DNA repair, and signal transduction. The lysine 48 (K48)-linked ubiquitin chain is one of the most abundant chains and a major proteasome-targeting signal in cells. Despite recent advancements in imaging linkage-specific polyubiquitin chains, no tool is available for imaging K48 chains in live cells. Here we report on a ubiquitination-induced fluorescence complementation (UiFC) assay for detecting K48 ubiquitin chains in vitro and in live cells. For this assay, two nonfluorescent fragments of a fluorescent protein were fused to the ubiquitin-interacting motifs (UIMs) of epsin1 protein. Upon simultaneous binding to a ubiquitin chain, the nonfluorescent fragments of the two fusion proteins are brought in close proximity to reconstitute fluorescence. When used in vitro, UiFC preferentially detected K48 ubiquitin chains with excellent signal-to-noise ratio. Time-lapse imaging revealed that UiFC is capable of monitoring increases in polyubiquitination induced by treatment with proteasome inhibitor, by agents that induce stress, and during mitophagy in live cells.
Collapse
Affiliation(s)
- Zhiliang Chen
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Yang Wang
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
- School of Basic Medical Science and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Shan Xu
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Zheng Liu
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (SF); (YS); (MK)
| | - Yuxian Shen
- School of Basic Medical Science and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- * E-mail: (SF); (YS); (MK)
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (SF); (YS); (MK)
| |
Collapse
|
24
|
Xia T, Lévy L, Levillayer F, Jia B, Li G, Neuveut C, Buendia MA, Lan K, Wei Y. The four and a half LIM-only protein 2 (FHL2) activates transforming growth factor β (TGF-β) signaling by regulating ubiquitination of the E3 ligase Arkadia. J Biol Chem 2012; 288:1785-94. [PMID: 23212909 DOI: 10.1074/jbc.m112.439760] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arkadia is a RING-based ubiquitin ligase that positively regulates TGF-β signaling by targeting several pathway components for ubiquitination and degradation. However, little is known about the mechanisms controlling Arkadia activity. Here we show that the LIM-only protein FHL2 binds and synergistically cooperates with Arkadia to activate Smad3/Smad4-dependent transcription. Knockdown of FHL2 by RNA interference decreases Arkadia level and restricts the amplitude of Arkadia-induced TGF-β target gene responses. We found that Arkadia is ubiquitinated via K63- and K27-linked polyubiquitination. A single mutation at the RING domain that abolishes the E3 activity diminishes Arkadia ubiquitination, indicating that this modification partly involves autocatalytic process. Mutation of seven lysines at the C-terminal region of Arkadia severely impairs ubiquitination through the K27 but not the K63 linkage and slows down the turnover of Arkadia, suggesting that K27-linked polyubiquitination might promote proteolysis-dependent regulation of Arkadia. We show that FHL2 increases the half-life of Arkadia through inhibition of ubiquitin chain assembly on the protein, which provides a molecular basis for functional cooperation between Arkadia and FHL2 in enhancing TGF-β signaling. Our study uncovers a novel regulatory mechanism of Arkadia by ubiquitination and identifies FHL2 as important regulator of Arkadia ubiquitination and TGF-β signal transduction.
Collapse
Affiliation(s)
- Tian Xia
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 225 South Chongqing Road, 200025, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-α pathway to PCSK9-mediated LDLR degradation pathway. Molecules 2012; 17:12086-101. [PMID: 23085658 PMCID: PMC6268524 DOI: 10.3390/molecules171012086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/17/2022] Open
Abstract
Recent genetic studies have shown that PCSK9, one of the key genes in cholesterol metabolism, plays a critical role by controlling the level of low-density lipoprotein receptor. However, how PCSK9 mediates LDLR degradation is still unknown. By combining a shotgun proteomic method and differential analysis of natural occurring mutations of the PCSK9 gene, we found that an E3 ubiquitin ligase c-IAP1 binds and processes PCSK9 protein. One of the ‘gain-of-function’ mutations, S127R, is defective with respect to binding to c-IAP1, and thus has defective autocatalytic activity. Knockdown of c-IAP1 impairs PCSK9 processing and autocatalytic cleavage. In c-IAP1 null mouse embryonic fibroblasts (MEFs), there is a dramatic decrease in secreted mature PCSK9 protein accompanied by a significant increase in LDLR protein levels compared with matched wild-type MEF cells. c-IAP1 also acts as an E3 ligase for ubiquitination of PCSK9. Ubiquitin containing only lysine-27 mediated PCSK9 ubiquitination by c-IAP1. Given K27-linked polyubiquitination promotes lysosomal localization, the finding indicates the c-IAP1 acts on both secretion of PCSK9 and its lysosomal localization. The novel pathway described here will open new avenues for exploring novel disease treatments.
Collapse
|
26
|
Abstract
The nuclear factor-κB (NF-κB) pathway is a critical regulator of innate and adaptive immunity. Noncanonical K63-linked polyubiquitination plays a key regulatory role in NF-κB signaling pathways by functioning as a scaffold to recruit kinase complexes containing ubiquitin-binding domains. Ubiquitination is balanced by deubiquitinases that cleave polyubiquitin chains and oppose the function of E3 ubiquitin ligases. Deubiquitinases therefore play an important role in the termination of NF-κB signaling and the resolution of inflammation. In this review, we focus on NF-κB regulation by deubiquitinases with an emphasis on A20 and CYLD. Deubiquitinases and the ubiquitin/proteasome components that regulate NF-κB may serve as novel therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
27
|
Implications of therapy-induced selective autophagy on tumor metabolism and survival. Int J Cell Biol 2012; 2012:872091. [PMID: 22550492 PMCID: PMC3328951 DOI: 10.1155/2012/872091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/14/2012] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer.
Collapse
|
28
|
Avvakumov GV, Walker JR, Xue S, Allali-Hassani A, Asinas A, Nair UB, Fang X, Zuo X, Wang YX, Wilkinson KD, Dhe-Paganon S. Two ZnF-UBP domains in isopeptidase T (USP5). Biochemistry 2012; 51:1188-98. [PMID: 22283393 PMCID: PMC8391072 DOI: 10.1021/bi200854q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human ubiquitin-specific cysteine protease 5 (USP5, also known as ISOT and isopeptidase T), an 835-residue multidomain enzyme, recycles ubiquitin by hydrolyzing isopeptide bonds in a variety of unanchored polyubiquitin substrates. Activation of the enzyme's hydrolytic activity toward ubiquitin-AMC (7-amino-4-methylcoumarin), a fluorogenic substrate, by the addition of free, unanchored monoubiquitin suggested an allosteric mechanism of activation by the ZnF-UBP domain (residues 163-291), which binds the substrate's unanchored diglycine carboxyl tail. By determining the structure of full-length USP5, we discovered the existence of a cryptic ZnF-UBP domain (residues 1-156), which was tightly bound to the catalytic core and was indispensable for catalytic activity. In contrast, the previously characterized ZnF-UBP domain did not contribute directly to the active site; a paucity of interactions suggested flexibility between these two domains consistent with an ability by the enzyme to hydrolyze a variety of different polyubiquitin chain linkages. Deletion of the known ZnF-UBP domain did not significantly affect rate of hydrolysis of ubiquitin-AMC and suggested that it is likely associated mainly with substrate targeting and specificity. Together, our findings show that USP5 uses multiple ZnF-UBP domains for substrate targeting and core catalytic function.
Collapse
Affiliation(s)
- George V. Avvakumov
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
- Department of Physiology, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| | - John R. Walker
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| | - Sheng Xue
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
- Department of Physiology, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| | | | - Abdalin Asinas
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
- Department of Physiology, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| | - Usha B. Nair
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
- Department of Physiology, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| | - Xianyang Fang
- Protein-Nucleic Acid Interactions Section, Structural Biophysical Laboratory, 1050 Boyles St., National Cancer Institute – Frederick, MD 21702
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interactions Section, Structural Biophysical Laboratory, 1050 Boyles St., National Cancer Institute – Frederick, MD 21702
| | - Keith D. Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7
- Department of Physiology, University of Toronto, 101 College St., Toronto, ON M5G 1L7
| |
Collapse
|
29
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
30
|
Distal leucines are key functional determinants of Alix-binding simian immunodeficiency virus SIV(smE543) and SIV(mac239) type 3 L domains. J Virol 2011; 85:11532-7. [PMID: 21849430 DOI: 10.1128/jvi.05284-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to PTAP L domains, primate lentiviruses carry Alix-binding motifs that include the recently described type 3 SREKPYKEVTEDLLHLNSLF sequence. We examined the requirements for the type 3 sequence motif in simian immunodeficiency virus SIV(smE543) and identified the (499)LNSLF(503) sequence as a key functional determinant. Mutation of distal leucines (499)L and (502)L (LL mutant) caused an inhibitory effect on Alix-dependent SIV(smE543) release that was quantitatively similar to that observed following disruption of the type 3 L domain or RNA interference (RNAi) depletion of Alix. Similar results were obtained with the SIV(mac239) LL mutant. Thus, distal leucines are key determinants of SIV(smE543) and SIV(mac239) type 3 L domains.
Collapse
|
31
|
Zucchelli S, Marcuzzi F, Codrich M, Agostoni E, Vilotti S, Biagioli M, Pinto M, Carnemolla A, Santoro C, Gustincich S, Persichetti F. Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J Biol Chem 2011; 286:25108-17. [PMID: 21454471 PMCID: PMC3137084 DOI: 10.1074/jbc.m110.187591] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/24/2011] [Indexed: 01/08/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys(6), Lys(27), and Lys(29) linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys(6), Lys(27), and Lys(29) ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis.
Collapse
Affiliation(s)
- Silvia Zucchelli
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- the SISSA Unit, Italian Institute of Technology, via Bonomea 265, 34136 Trieste, Italy
- The Giovanni Armenise-Harvard Foundation Laboratory, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Federica Marcuzzi
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Marta Codrich
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Elena Agostoni
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Sandra Vilotti
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Marta Biagioli
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- The Giovanni Armenise-Harvard Foundation Laboratory, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Milena Pinto
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Alisia Carnemolla
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Claudio Santoro
- the Department of Medical Sciences, University of Eastern Piedmont, Viale Solari 17, 28100 Novara, Italy, and
| | - Stefano Gustincich
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- the SISSA Unit, Italian Institute of Technology, via Bonomea 265, 34136 Trieste, Italy
- The Giovanni Armenise-Harvard Foundation Laboratory, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Francesca Persichetti
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
- the Department of Environmental and Life Sciences, University of Eastern Piedmont, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
32
|
Peng DJ, Zeng M, Muromoto R, Matsuda T, Shimoda K, Subramaniam M, Spelsberg TC, Wei WZ, Venuprasad K. Noncanonical K27-linked polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. THE JOURNAL OF IMMUNOLOGY 2011; 186:5638-47. [PMID: 21471442 DOI: 10.4049/jimmunol.1003801] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Earlier, we demonstrated the essential role of Kruppel-like transcription factor, TIEG1, in TGF-β-induced regulatory T cell (Treg) development. In this article, we demonstrate that IL-6, which promotes Th17 development, abrogated TIEG1 nuclear translocation and inhibited TGF-β-induced Treg development. Tyrosine kinase Tyk2-mediated phosphorylation of TIEG1 at Tyr179 promoted noncanonical K-27-linked polyubiquitination, which inhibited TIEG1 nuclear translocation. To test the role of TIEG1-regulated Treg/Th17 development in antitumor immunity, we analyzed TRAMP-C2 tumor growth in TIEG1(-/-) mice. The defective Treg development and elevated Th17 response resulted in enhanced immune reactivity in the tumor and inhibition of TRAMP-C2 tumor growth in TIEG1(-/-) mice. Thus, our results uncovered a novel regulatory mechanism that modulates Tregs and may regulate tumor progression.
Collapse
|
33
|
Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, Pantazopoulou M, Kim W, Gygi SP, Haguenauer-Tsapis R, Reis N, Glickman MH, Kleifeld O. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 2011; 10:M111.009753. [PMID: 21427232 PMCID: PMC3098606 DOI: 10.1074/mcp.m111.009753] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Any of seven lysine residues on ubiquitin can serve as the base for chain-extension, resulting in a sizeable spectrum of ubiquitin modifications differing in chain length or linkage type. By optimizing a procedure for rapid lysis, we charted the profile of conjugated cellular ubiquitin directly from whole cell extract. Roughly half of conjugated ubiquitin (even at high molecular weights) was nonextended, consisting of monoubiquitin modifications and chain terminators (endcaps). Of extended ubiquitin, the primary linkages were via Lys48 and Lys63. All other linkages were detected, contributing a relatively small portion that increased at lower molecular weights. In vivo expression of lysineless ubiquitin (K0 Ub) perturbed the ubiquitin landscape leading to elevated levels of conjugated ubiquitin, with a higher mono-to-poly ratio. Affinity purification of these trapped conjugates identified a comprehensive list of close to 900 proteins including novel targets. Many of the proteins enriched by K0 ubiquitination were membrane-associated, or involved in cellular trafficking. Prime among them are components of the ESCRT machinery and adaptors of the Rsp5 E3 ubiquitin ligase. Ubiquitin chains associated with these substrates were enriched for Lys63 linkages over Lys48, indicating that K0 Ub is unevenly distributed throughout the ubiquitinome. Biological assays validated the interference of K0 Ub with protein trafficking and MVB sorting, minimally affecting Lys48-dependent turnover of proteasome substrates. We conclude that despite the shared use of the ubiquitin molecule, the two branches of the ubiquitin machinery—the ubiquitin-proteasome system and the ubiquitin trafficking system—were unevenly perturbed by expression of K0 ubiquitin.
Collapse
Affiliation(s)
- Inbal Ziv
- Department of Biology, Technion Israel institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, 1550 NW 10 Avenue, Miami, FL 33136, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
35
|
Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S, Smith RL, Green E, Grozeva D, Holmans P, Owen MJ, O'Donovan MC. The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet 2011; 20:141-54. [PMID: 20940148 PMCID: PMC3005906 DOI: 10.1093/hmg/ddq452] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 01/19/2023] Open
Abstract
Machado-Joseph disease (MJD), the most common dominantly inherited ataxia worldwide, is caused by a polyglutamine (polyQ) expansion in the deubiquitinating (DUB) enzyme ataxin-3. Interestingly, MJD can present clinically with features of Parkinsonism. In this study, we identify parkin, an E3 ubiquitin-ligase responsible for a common familial form of Parkinson's disease, as a novel ataxin-3 binding partner. The interaction between ataxin-3 and parkin is direct, involves multiple domains and is greatly enhanced by parkin self-ubiquitination. Moreover, ataxin-3 deubiquitinates parkin directly in vitro and in cells. Compared with wild-type ataxin-3, MJD-linked polyQ-expanded mutant ataxin-3 is more active, possibly owing to its greater efficiency at DUB K27- and K29-linked Ub conjugates on parkin. Remarkably, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway. The finding is consistent with the reduction in parkin levels observed in the brains of transgenic mice over-expressing polyQ-expanded but not wild-type ataxin-3, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of its parkinsonian features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Michael C. O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
36
|
Zucchelli S, Codrich M, Marcuzzi F, Pinto M, Vilotti S, Biagioli M, Ferrer I, Gustincich S. TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson's disease brains. Hum Mol Genet 2010; 19:3759-70. [PMID: 20634198 DOI: 10.1093/hmg/ddq290] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra and the formation of ubiquitin- and alpha-synuclein (aSYN)-positive cytoplasmic inclusions called Lewy bodies (LBs). Although most PD cases are sporadic, families with genetic mutations have been found. Mutations in PARK7/DJ-1 have been associated with autosomal recessive early-onset PD, while missense mutations or duplications of aSYN (PARK1, PARK4) have been linked to dominant forms of the disease. In this study, we identify the E3 ubiquitin ligase tumor necrosis factor-receptor associated factor 6 (TRAF6) as a common player in genetic and sporadic cases. TRAF6 binds misfolded mutant DJ-1 and aSYN. Both proteins are substrates of TRAF6 ligase activity in vivo. Interestingly, rather than conventional K63 assembly, TRAF6 promotes atypical ubiquitin linkage formation to both PD targets that share K6-, K27- and K29- mediated ubiquitination. Importantly, TRAF6 stimulates the accumulation of insoluble and polyubiquitinated mutant DJ-1 into cytoplasmic aggregates. In human post-mortem brains of PD patients, TRAF6 protein colocalizes with aSYN in LBs. These results reveal a novel role for TRAF6 and for atypical ubiquitination in PD pathogenesis.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Sector of Neurobiology, International School for Advanced Studies (SISSA), AREA Science Park, s.s. 14, Km 163.5, Basovizza, 34012 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Goto E, Yamanaka Y, Ishikawa A, Aoki-Kawasumi M, Mito-Yoshida M, Ohmura-Hoshino M, Matsuki Y, Kajikawa M, Hirano H, Ishido S. Contribution of lysine 11-linked ubiquitination to MIR2-mediated major histocompatibility complex class I internalization. J Biol Chem 2010; 285:35311-9. [PMID: 20833710 DOI: 10.1074/jbc.m110.112763] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyubiquitin chain is generated by the sequential addition of ubiquitin moieties to target molecules, a reaction between specific lysine residues that is catalyzed by E3 ubiquitin ligase. The Lys(48)-linked and Lys(63)-linked polyubiquitin chains are well established inducers of proteasome-dependent degradation and signal transduction, respectively. The concept has recently emerged that polyubiquitin chain-mediated regulation is even more complex because various types of atypical polyubiquitin chains have been discovered in vivo. Here, we demonstrate that a novel complex ubiquitin chain functions as an internalization signal for major histocompatibility complex class I (MHC I) membrane proteins in vivo. Using a tetracycline-inducible expression system and quantitative mass spectrometry, we show that the polyubiquitin chain generated by the viral E3 ubiquitin ligase of Kaposi sarcoma-associated herpesvirus, MIR2, is a Lys(11) and Lys(63) mixed-linkage chain. This novel ubiquitin chain can function as an internalization signal for MHC I through its association with epsin1, an adaptor molecule containing ubiquitin-interacting motifs.
Collapse
Affiliation(s)
- Eiji Goto
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P, Pérez-Sala D. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11:1221-33. [PMID: 20573066 DOI: 10.1111/j.1600-0854.2010.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.
Collapse
Affiliation(s)
- Ruth A Valero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31. [PMID: 20098416 DOI: 10.1038/ncb2012] [Citation(s) in RCA: 2209] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/09/2009] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage, ubiquitylation and autophagy in non-neuronal and neuronal cells. PINK1 kinase activity and its mitochondrial localization sequence are prerequisites to induce translocation of the E3 ligase Parkin to depolarized mitochondria. Subsequently, Parkin mediates the formation of two distinct poly-ubiquitin chains, linked through Lys 63 and Lys 27. In addition, the autophagic adaptor p62/SQSTM1 is recruited to mitochondrial clusters and is essential for the clearance of mitochondria. Strikingly, we identified VDAC1 (voltage-dependent anion channel 1) as a target for Parkin-mediated Lys 27 poly-ubiquitylation and mitophagy. Moreover, pathogenic Parkin mutations interfere with distinct steps of mitochondrial translocation, ubiquitylation and/or final clearance through mitophagy. Thus, our data provide functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinson's disease.
Collapse
|
40
|
Butler PL, Mallampalli RK. Cross-talk between remodeling and de novo pathways maintains phospholipid balance through ubiquitination. J Biol Chem 2009; 285:6246-58. [PMID: 20018880 DOI: 10.1074/jbc.m109.017350] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine (PtdCho), the major phospholipid of animal membranes, is generated by its remodeling and de novo synthesis. Overexpression of the remodeling enzyme, LPCAT1 (acyl-CoA:lysophosphatidylcholine acyltransferase) in epithelia decreased de novo PtdCho synthesis without significantly altering cellular PtdCho mass. Overexpression of LPCAT1 increased degradation of CPT1 (cholinephosphotransferase), a resident Golgi enzyme that catalyzes the terminal step for de novo PtdCho synthesis. CPT1 degradation involved its multiubiquitination and processing via the lysosomal pathway. CPT1 mutants harboring arginine substitutions at multiple carboxyl-terminal lysines exhibited proteolytic resistance to effects of LPCAT1 overexpression in cells and restored de novo PtdCho synthesis. Thus, cross-talk between phospholipid remodeling and de novo pathways involves ubiquitin-lysosomal processing of a key molecular target that mechanistically provides homeostatic control of cellular PtdCho content.
Collapse
Affiliation(s)
- Phillip L Butler
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
41
|
Rose RH, Briddon SJ, Holliday ND. Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks. Br J Pharmacol 2009; 159:738-50. [PMID: 20015298 DOI: 10.1111/j.1476-5381.2009.00480.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is increasing complexity in the organization of seven transmembrane domain (7TM) receptor signalling pathways, and in the ability of their ligands to modulate and direct this signalling. Underlying these events is a network of protein interactions between the 7TM receptors themselves and associated effectors, such as G proteins and beta-arrestins. Bimolecular fluorescence complementation, or BiFC, is a technique capable of detecting these protein-protein events essential for 7TM receptor function. Fluorescent proteins, such as those from Aequorea victoria, are split into two non-fluorescent halves, which then tag the proteins under study. On association, these fragments refold and regenerate a mature fluorescent protein, producing a BiFC signal indicative of complex formation. Here, we review the experimental criteria for successful application of BiFC, considered in the context of 7TM receptor signalling events such as receptor dimerization, G protein and beta-arrestin signalling. The advantages and limitations of BiFC imaging are compared with alternative resonance energy transfer techniques. We show that the essential simplicity of the fluorescent BiFC measurement allows high-content and advanced imaging applications, and that it can probe more complex multi-protein interactions alone or in combination with resonance energy transfer. These capabilities suggest that BiFC techniques will become ever more useful in the analysis of ligand and 7TM receptor pharmacology at the molecular level of protein-protein interactions.
Collapse
Affiliation(s)
- Rachel H Rose
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
42
|
Kerppola TK. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev 2009; 38:2876-86. [PMID: 19771334 PMCID: PMC2980501 DOI: 10.1039/b909638h] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the molecular processes that sustain life must include studies of these processes in their normal cellular environment. The bimolecular fluorescence complementation (BiFC) assay provides an approach for the visualization of protein interactions and modifications in living cells. This assay is based on the facilitated association of complementary fragments of a fluorescent protein that are fused to interaction partners. Complex formation by the interaction partners tethers the fluorescent protein fragments in proximity to each other, which can facilitate their association. The BiFC assay enables sensitive visualization of protein complexes with high spatial resolution. The temporal resolution of BiFC analysis is limited by the time required for fluorophore formation, as well as the stabilization of complexes by association of the fluorescent protein fragments. Many modifications and enhancements to the BiFC assay have been developed. The multicolor BiFC assay enables simultaneous visualization of multiple protein complexes in the same cell, and can be used to investigate competition among mutually exclusive interaction partners for complex formation in cells. The ubiquitin-mediated fluorescence complementation (UbFC) assay enables visualization of covalent ubiquitin family peptide conjugation to substrate proteins in cells. The BiFC assay can also be used to visualize protein binding to specific chromatin domains, as well as other molecular scaffolds in cells. BiFC analysis therefore provides a powerful approach for the visualization of a variety of processes that affect molecular proximity in living cells. The visualization of macromolecular interactions and modifications is of great importance owing to the central roles of proteins, nucleic acids and other macromolecular complexes in the regulation of cellular functions. This tutorial review describes the BiFC assay, and discusses the advantages and disadvantages of this experimental approach. The review will be of interest to scientists interested in the investigation of macromolecular interactions or modifications who need exquisite sensitivity for the detection of their complexes or conjugates of interest.
Collapse
Affiliation(s)
- Tom K Kerppola
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0650, USA.
| |
Collapse
|
43
|
Abstract
Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, polyubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore, ubiquitin signaling offers a more complex and versatile biology compared with many other posttranslational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore, further understanding of the molecular signaling mechanisms that regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted or reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies.
Collapse
Affiliation(s)
- Robert Meller
- Legacy Clinical Research and Technology Center, Portland, Oregon, USA.
| |
Collapse
|
44
|
Masking of a nuclear signal motif by monoubiquitination leads to mislocalization and degradation of the regulatory enzyme cytidylyltransferase. Mol Cell Biol 2009; 29:3062-75. [PMID: 19332566 DOI: 10.1128/mcb.01824-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoubiquitination aids in the nuclear export and entrance of proteins into the lysosomal degradative pathway, although the mechanisms are unknown. Cytidylyltransferase (CCTalpha) is a proteolytically sensitive lipogenic enzyme containing an NH(2)-terminal nuclear localization signal (NLS). We show here that CCTalpha is monoubiquitinated at a molecular site (K(57)) juxtaposed near its NLS, resulting in disruption of its interaction with importin-alpha, nuclear exclusion, and subsequent degradation within the lysosome. Cellular expression of a CCTalpha-ubiquitin fusion protein that mimics the monoubiquitinated enzyme resulted in cytoplasmic retention. A CCTalpha K(57R) mutant exhibited an extended half-life, was retained in the nucleus, and displayed proteolytic resistance. Importantly, by using CCTalpha-ubiquitin hybrid constructs that vary in the intermolecular distance between ubiquitin and the NLS, we show that CCTalpha monoubiquitination masks its NLS, resulting in cytoplasmic retention. These results unravel a unique molecular mechanism whereby monoubiquitination governs the trafficking and life span of a critical regulatory enzyme in vivo.
Collapse
|