1
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
2
|
Ma CH, Kumar D, Jayaram M, Ghosh SK, Iyer VR. The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation. PLoS Genet 2023; 19:e1010986. [PMID: 37812641 PMCID: PMC10586699 DOI: 10.1371/journal.pgen.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Makkuni Jayaram
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Rep 2021; 37:110034. [PMID: 34818558 PMCID: PMC10042627 DOI: 10.1016/j.celrep.2021.110034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.
Collapse
|
4
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
5
|
Van Houten B, Schnable B, Kumar N. Chaperones for dancing on chromatin: Role of post-translational modifications in dynamic damage detection hand-offs during nucleotide excision repair. Bioessays 2021; 43:e2100011. [PMID: 33620094 PMCID: PMC9756857 DOI: 10.1002/bies.202100011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
We highlight a recent study exploring the hand-off of UV damage to several key nucleotide excision repair (NER) proteins in the cascade: UV-DDB, XPC and TFIIH. The delicate dance of DNA repair proteins is choreographed by the dynamic hand-off of DNA damage from one recognition complex to another damage verification protein or set of proteins. These DNA transactions on chromatin are strictly chaperoned by post-translational modifications (PTM). This new study examines the role that ubiquitylation and subsequent DDB2 degradation has during this process. In total, this study suggests an intricate cellular timer mechanism that under normal conditions DDB2 helps recruit and ubiquitylate XPC, stabilizing XPC at damaged sites. If DDB2 persists at damaged sites too long, it is turned over by auto-ubiquitylation and removed from DNA by the action of VCP/p97 for degradation in the 26S proteosome.
Collapse
Affiliation(s)
- Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittani Schnable
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Namrata Kumar
- UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Jalal D, Chalissery J, Hassan AH. Irc20 Regulates the Yeast Endogenous 2-μm Plasmid Levels by Controlling Flp1. Front Mol Biosci 2020; 7:221. [PMID: 33330615 PMCID: PMC7710549 DOI: 10.3389/fmolb.2020.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
The endogenous yeast 2-μm plasmid while innocuous to the host, needs to be properly regulated to avoid a toxic increase in copy number. The plasmid copy number control system is under the control of the plasmid encoded recombinase, Flp1. In case of a drop in 2-μm plasmid levels due to rare plasmid mis-segregation events, the Flp1 recombinase together with the cell’s homologous recombination machinery, produce multiple copies of the 2-μm plasmid that are spooled during DNA replication. The 2-μm plasmid copy number is tightly regulated by controlled expression of Flp1 as well as its ubiquitin and SUMO modification. Here, we identify a novel regulator of the 2-μm plasmid, the ATPase, ubiquitin ligase, Irc20. Irc20 was initially identified as a homologous recombination regulator, and here we uncover a new role for Irc20 in maintaining the 2-μm plasmid copy number and segregation through regulating Flp1 protein levels in the cell.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
7
|
The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Mol Cell 2020; 77:1066-1079.e9. [PMID: 31902667 DOI: 10.1016/j.molcel.2019.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.
Collapse
|
8
|
Ma CH, Su BY, Maciaszek A, Fan HF, Guga P, Jayaram M. A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification. PLoS Genet 2019; 15:e1008193. [PMID: 31242181 PMCID: PMC6594588 DOI: 10.1371/journal.pgen.1008193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms for highly efficient chromosome-associated equal segregation, and for maintenance of steady state copy number, are at the heart of the evolutionary success of the 2-micron plasmid as a stable multi-copy extra-chromosomal selfish DNA element present in the yeast nucleus. The Flp site-specific recombination system housed by the plasmid, which is central to plasmid copy number maintenance, is regulated at multiple levels. Transcription of the FLP gene is fine-tuned by the repressor function of the plasmid-coded partitioning proteins Rep1 and Rep2 and their antagonist Raf1, which is also plasmid-coded. In addition, the Flp protein is regulated by the host's post-translational modification machinery. Utilizing a Flp-SUMO fusion protein, which functionally mimics naturally sumoylated Flp, we demonstrate that the modification signals ubiquitination of Flp, followed by its proteasome-mediated degradation. Furthermore, reduced binding affinity and cooperativity of the modified Flp decrease its association with the plasmid FRT (Flp recombination target) sites, and/or increase its dissociation from them. The resulting attenuation of strand cleavage and recombination events safeguards against runaway increase in plasmid copy number, which is deleterious to the host-and indirectly-to the plasmid. These results have broader relevance to potential mechanisms by which selfish genomes minimize fitness conflicts with host genomes by holding in check the extra genetic load they pose.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Anna Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
9
|
Sau S, Ghosh SK, Liu YT, Ma CH, Jayaram M. Hitchhiking on chromosomes: A persistence strategy shared by diverse selfish DNA elements. Plasmid 2019; 102:19-28. [PMID: 30726706 DOI: 10.1016/j.plasmid.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
An underlying theme in the segregation of low-copy bacterial plasmids is the assembly of a 'segrosome' by DNA-protein and protein-protein interactions, followed by energy-driven directed movement. Analogous partitioning mechanisms drive the segregation of host chromosomes as well. Eukaryotic extra-chromosomal elements, exemplified by budding yeast plasmids and episomes of certain mammalian viruses, harbor partitioning systems that promote their physical association with chromosomes. In doing so, they indirectly take advantage of the spindle force that directs chromosome movement to opposite cell poles. Molecular-genetic, biochemical and cell biological studies have revealed several unsuspected aspects of 'chromosome hitchhiking' by the yeast 2-micron plasmid, including the ability of plasmid sisters to associate symmetrically with sister chromatids. As a result, the plasmid overcomes the 'mother bias' experienced by plasmids lacking a partitioning system, and elevates itself to near chromosome status in equal segregation. Chromosome association for stable propagation, without direct energy expenditure, may also be utilized by a small minority of bacterial plasmids-at least one case has been reported. Given the near perfect accuracy of chromosome segregation, it is not surprising that elements residing in evolutionarily distant host organisms have converged upon the common strategy of gaining passage to daughter cells as passengers on chromosomes.
Collapse
Affiliation(s)
- Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yen-Ting Liu
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA.
| |
Collapse
|
10
|
A Rizvi SM, Prajapati HK, Nag P, Ghosh SK. The 2-μm plasmid encoded protein Raf1 regulates both stability and copy number of the plasmid by blocking the formation of the Rep1-Rep2 repressor complex. Nucleic Acids Res 2017; 45:7167-7179. [PMID: 28472368 PMCID: PMC5499539 DOI: 10.1093/nar/gkx316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
The 2-μm plasmid of the budding yeast Saccharomyces cerevisiae achieves a high chromosome-like stability with the help of four plasmid-encoded (Rep1, Rep2, Raf1 and Flp) and several host-encoded proteins. Rep1 and Rep2 and the DNA locus STB form the partitioning system ensuring equal segregation of the plasmid. The Flp recombinase and its target sites FRTs form the amplification system which is responsible for the steady state plasmid copy number. In this work we show that the absence of Raf1 can affect both the plasmid stability and the steady sate copy number. We also show that the Rep proteins do bind to the promoter regions of the 2-μm encoded genes, as predicted by earlier models and Raf1 indeed blocks the formation of the Rep1–Rep2 repressor complex not by blocking the transcription of the REP1 and REP2 genes but by physically associating with the Rep proteins and negating their interactions. This explains the role of Raf1 in both the partitioning and the amplification systems as the Rep1–Rep2 complex is believed to modulate both these systems. Based on this study, we have provided, from a systems biology perspective, a model for the mechanism of the 2-μm plasmid maintenance.
Collapse
Affiliation(s)
- Syed M A Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Hemant K Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Purba Nag
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane Queensland 4006, Australia
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
11
|
Jalal D, Chalissery J, Hassan AH. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res 2017; 45:2242-2261. [PMID: 28115630 PMCID: PMC5389695 DOI: 10.1093/nar/gkw1369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023] Open
Abstract
The genome of the cell is often exposed to DNA damaging agents and therefore requires an intricate well-regulated DNA damage response (DDR) to overcome its deleterious effects. The DDR needs proper regulation for its timely activation, repression, as well as appropriate choice of repair pathway. Studies in Saccharomyces cerevisiae have advanced our understanding of the DNA damage response, as well as the mechanisms the cell employs to maintain genome stability and how these mechanisms are regulated. Eukaryotic cells utilize post-translational modifications as a means for fine-tuning protein functions. Ubiquitylation and SUMOylation involve the attachment of small protein molecules onto proteins to modulate function or protein–protein interactions. SUMO in particular, was shown to act as a molecular glue when DNA damage occurs, facilitating the assembly of large protein complexes in repair foci. In other instances, SUMOylation alters a protein's biochemical activities, and interactions. SUMO-targeted ubiquitin ligases (STUbLs) are enzymes that target SUMOylated proteins for ubiquitylation and subsequent degradation, providing a function for the SUMO modification in the regulation and disassembly of repair complexes. Here, we discuss the major contributions of SUMO and STUbLs in the regulation of DNA damage repair pathways as well as in the maintenance of critical regions of the genome, namely rDNA regions, telomeres and the 2 μm circle in budding yeast.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| |
Collapse
|
12
|
Jensen IS, Inui K, Drakulic S, Jayaprakash S, Sander B, Golas MM. Expression of Flp Protein in a Baculovirus/Insect Cell System for Biotechnological Applications. Protein J 2017; 36:332-342. [PMID: 28660316 DOI: 10.1007/s10930-017-9724-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Saccharomyces cerevisiae Flp protein is a site-specific recombinase that recognizes and binds to the Flp recognition target (FRT) site, a specific sequence comprised of at least two inverted repeats separated by a spacer. Binding of four monomers of Flp is required to mediate recombination between two FRT sites. Because of its site-specific cleavage characteristics, Flp has been established as a genome engineering tool. Amongst others, Flp is used to direct insertion of genes of interest into eukaryotic cells based on single and double FRT sites. A Flp-encoding plasmid is thereby typically cotransfected with an FRT-harboring donor plasmid. Moreover, Flp can be used to excise DNA sequences that are flanked by FRT sites. Therefore, the aim of this study was to determine whether Flp protein and its step-arrest mutant, FlpH305L, recombinantly expressed in insect cells, can be used for biotechnological applications. Using a baculovirus system, the proteins were expressed as C-terminally 3 × FLAG-tagged proteins and were purified by anti-FLAG affinity selection. As demonstrated by electrophoretic mobility shift assays (EMSAs), purified Flp and FlpH305L bind to FRT-containing DNA. Furthermore, using a cell assay, purified Flp was shown to be active in recombination and to mediate efficient insertion of a donor plasmid into the genome of target cells. Thus, these proteins can be used for applications such as DNA-binding assays, in vitro recombination, or genome engineering.
Collapse
Affiliation(s)
- Ida S Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Ken Inui
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Sakthidasan Jayaprakash
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark.
| |
Collapse
|
13
|
Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet 2017; 64:25-42. [PMID: 28597305 DOI: 10.1007/s00294-017-0719-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Since its discovery in the early 70s, the 2 micron plasmid of Saccharomyces cerevisiae continues to intrigue researchers with its high protein-coding capacity and a selfish nature yet high stability, earning it the title of a 'miniaturized selfish genetic element'. It codes for four proteins (Rep1, Rep2, Raf1, and Flp) vital for its own survival and recruits several host factors (RSC2, Cohesin, Cse4, Kip1, Bik1, Bim1, and microtubules) for its faithful segregation during cell division. The plasmid maintains a high-copy number with the help of Flp-mediated recombination. The plasmids organize in the form of clusters that hitch-hike the host chromosomes presumably with the help of the plasmid-encoded Rep proteins and host factors such as microtubules, Kip1 motor, and microtubule-associated proteins Bik1 and Bim1. Although there is no known yeast cell phenotype associated with the 2 micron plasmid, excessive copies of the plasmid are lethal for the cells, warranting a tight control over the plasmid copy number. This control is achieved through a combination of feedback loops involving the 2 micron encoded proteins. Thus, faithful segregation and a concomitant tightly controlled plasmid copy number ensure an optimized benign parasitism of the 2 micron plasmid within budding yeast.
Collapse
Affiliation(s)
- Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
14
|
Liu YT, Chang KM, Ma CH, Jayaram M. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome. Nucleic Acids Res 2016; 44:8302-23. [PMID: 27492289 PMCID: PMC5041486 DOI: 10.1093/nar/gkw694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Keng-Ming Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
16
|
Sau S, Liu YT, Ma CH, Jayaram M. Stable persistence of the yeast plasmid by hitchhiking on chromosomes during vegetative and germ-line divisions of host cells. Mob Genet Elements 2015; 5:1-8. [PMID: 26442178 DOI: 10.1080/2159256x.2015.1031359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Yen-Ting Liu
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
17
|
Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 2013; 111:1-15. [PMID: 23982993 DOI: 10.1002/bit.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, 92037
| | | | | |
Collapse
|
18
|
Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence. Plasmid 2013; 70:2-17. [DOI: 10.1016/j.plasmid.2013.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/21/2013] [Accepted: 03/02/2013] [Indexed: 01/24/2023]
|
19
|
Fan HF, Ma CH, Jayaram M. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Nucleic Acids Res 2013; 41:7031-47. [PMID: 23737451 PMCID: PMC3737535 DOI: 10.1093/nar/gkt424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Flp, a tyrosine site-specific recombinase coded for by the selfish two micron plasmid of Saccharomyces cerevisiae, plays a central role in the maintenance of plasmid copy number. The Flp recombination system can be manipulated to bring about a variety of targeted DNA rearrangements in its native host and under non-native biological contexts. We have performed an exhaustive analysis of the Flp recombination pathway from start to finish by using single-molecule tethered particle motion (TPM). The recombination reaction is characterized by its early commitment and high efficiency, with only minor detraction from ‘non-productive’ and ‘wayward’ complexes. The recombination synapse is stabilized by strand cleavage, presumably by promoting the establishment of functional interfaces between adjacent Flp monomers. Formation of the Holliday junction intermediate poses a rate-limiting barrier to the overall reaction. Isomerization of the junction to the conformation favoring its resolution in the recombinant mode is not a slow step. Consistent with the completion of nearly every initiated reaction, the chemical steps of strand cleavage and exchange are not reversible during a recombination event. Our findings demonstrate similarities and differences between Flp and the mechanistically related recombinases λ Int and Cre. The commitment and directionality of Flp recombination revealed by TPM is consistent with the physiological role of Flp in amplifying plasmid DNA.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
20
|
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C, Giaever G, Nislow C, Raught B. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. ACTA ACUST UNITED AC 2013; 201:145-63. [PMID: 23547032 PMCID: PMC3613684 DOI: 10.1083/jcb.201210019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple large-scale analyses in yeast implicate SUMO chain function in the
maintenance of higher-order chromatin structure and transcriptional repression
of environmental stress response genes. Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form
oligomeric “chains,” but the biological functions of these
superstructures are not well understood. Here, we created mutant yeast strains
unable to synthesize SUMO chains (smt3allR) and
subjected them to high-content microscopic screening, synthetic genetic array
(SGA) analysis, and high-density transcript profiling to perform the first
global analysis of SUMO chain function. This comprehensive assessment identified
144 proteins with altered localization or intensity in
smt3allR cells, 149 synthetic genetic
interactions, and 225 mRNA transcripts (primarily consisting of stress- and
nutrient-response genes) that displayed a >1.5-fold increase in
expression levels. This information-rich resource strongly implicates SUMO
chains in the regulation of chromatin. Indeed, using several different
approaches, we demonstrate that SUMO chains are required for the maintenance of
normal higher-order chromatin structure and transcriptional repression of
environmental stress response genes in budding yeast.
Collapse
Affiliation(s)
- Tharan Srikumar
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance. PLoS One 2013; 8:e60384. [PMID: 23555963 PMCID: PMC3610928 DOI: 10.1371/journal.pone.0060384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.
Collapse
|
22
|
Garza R, Pillus L. STUbLs in chromatin and genome stability. Biopolymers 2013; 99:146-54. [PMID: 23175389 PMCID: PMC3507437 DOI: 10.1002/bip.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
Chromatin structure and function is based on the dynamic interactions between nucleosomes and chromatin-associated proteins. In addition to the other post-translational modifications considered in this review issue of Biopolymers, ubiquitin and SUMO proteins also have prominent roles in chromatin function. A specialized form of modification that involves both, referred to as SUMO-targeted ubiquitin ligation, or STUbL [Perry, Tainer, and Boddy, Trends Biochem Sci, 2008, 33, 201-208], has significant effects on nuclear functions, ranging from gene regulation to genomic stability. Intersections between SUMO and ubiquitin in protein modification have been the subject of a recent comprehensive review [Praefcke, Hofmann, and Dohmen, Trends Biochem Sci, 2012, 37, 23-31]. Our goal here is to focus on features of enzymes with STUbL activity that have been best studied, particularly in relation to their nuclear functions in humans, flies, and yeasts. Because there are clear associations of disease and development upon loss of STUbL activities in metazoans, learning more about their function, regulation, and substrates will remain an important goal for the future.
Collapse
Affiliation(s)
- Renee Garza
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Lee MT, Bakir AA, Nguyen KN, Bachant J. The SUMO isopeptidase Ulp2p is required to prevent recombination-induced chromosome segregation lethality following DNA replication stress. PLoS Genet 2011; 7:e1001355. [PMID: 21483811 PMCID: PMC3069114 DOI: 10.1371/journal.pgen.1001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/25/2011] [Indexed: 11/25/2022] Open
Abstract
SUMO conjugation is a key regulator of the cellular response to DNA replication stress, acting in part to control recombination at stalled DNA replication forks. Here we examine recombination-related phenotypes in yeast mutants defective for the SUMO de-conjugating/chain-editing enzyme Ulp2p. We find that spontaneous recombination is elevated in ulp2 strains and that recombination DNA repair is essential for ulp2 survival. In contrast to other SUMO pathway mutants, however, the frequency of spontaneous chromosome rearrangements is markedly reduced in ulp2 strains, and some types of rearrangements arising through recombination can apparently not be tolerated. In investigating the basis for this, we find DNA repair foci do not disassemble in ulp2 cells during recovery from the replication fork-blocking drug methyl methanesulfonate (MMS), corresponding with an accumulation of X-shaped recombination intermediates. ulp2 cells satisfy the DNA damage checkpoint during MMS recovery and commit to chromosome segregation with similar kinetics to wild-type cells. However, sister chromatids fail to disjoin, resulting in abortive chromosome segregation and cell lethality. This chromosome segregation defect can be rescued by overproducing the anti-recombinase Srs2p, indicating that recombination plays an underlying causal role in blocking chromatid separation. Overall, our results are consistent with a role for Ulp2p in preventing the formation of DNA lesions that must be repaired through recombination. At the same time, Ulp2p is also required to either suppress or resolve recombination-induced attachments between sister chromatids. These opposing defects may synergize to greatly increase the toxicity of DNA replication stress. DNA damage, arising from environmental stress or errors in DNA metabolism, can interfere with DNA replication. Cells respond by using homologous recombination to bypass the damage, resulting in DNA strand linkages between the replicated chromosomes. It is crucial to undo these linkages so chromosomes can segregate properly. Previously, a regulatory mechanism known as SUMO modification was shown to be important in controlling recombination following replication interference by the DNA damaging agent MMS. We show that mutations in a yeast enzyme called Ulp2p, which reverses SUMO modification, increase recombination and impose a requirement for recombination to maintain survival. MMS–treated ulp2 mutants also accumulate recombination intermediates and fail to separate their chromosomes, leading to a permanent block to cell division. Further analysis suggests this block may not simply be due to a failure to resolve recombination intermediates, but may reflect a role for Ulp2p in undoing additional chromosome attachments that accompany recombination. In sum, our data indicate that cells defective for Ulp2p develop a love/hate relationship with recombination, requiring recombination for viability while failing to resolve chromosome attachments induced by recombination repair. Identification of Ulp2p substrates that ensure chromosome separation following recombination will shed light on how SUMO modification maintains genome stability.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Abla A. Bakir
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Kristen N. Nguyen
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Jeff Bachant
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Huang CC, Hajra S, Ghosh SK, Jayaram M. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications in centromere evolution. Mol Cell Biol 2011; 31:1030-40. [PMID: 21173161 PMCID: PMC3067819 DOI: 10.1128/mcb.01191-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the 2μm circle--a multicopy plasmid that resides in the yeast nucleus and propagates itself stably. Cse4 is essential for the functional assembly of the plasmid partitioning complex, including the recruitment of the yeast cohesin complex at STB. We have located Cse4 association strictly at the origin-proximal subregion of STB. Three of the five directly repeated tandem copies of a 62-bp consensus sequence element constituting this region are necessary and sufficient for the recruitment of Cse4. The association of Cse4 with STB is dependent on Scm3, the loading factor responsible for the incorporation of Cse4 into the CEN nucleosome. A chromosomally integrated copy of STB confers on the integration site the capacity for Cse4 association as well as cohesin assembly. The localization of Cse4 in chromatin digested by micrococcal nuclease is consistent with the potential assembly of one Cse4-containing nucleosome, but not more than two, at STB. The remarkable ability of STB to acquire a very specialized, and strictly regulated, chromosome segregation factor suggests its plausible evolutionary kinship with CEN.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sujata Hajra
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Abstract
Saccharomyces cerevisiae cells lacking the Slx5-Slx8 SUMO-targeted Ub ligase display increased levels of sumoylated and polysumoylated proteins, and they are inviable in the absence of the Sgs1 DNA helicase. One explanation for this inviability is that one or more sumoylated proteins accumulate to toxic levels in sgs1Δ slx5Δ cells. To address this possibility, we isolated a second-site suppressor of sgs1Δ slx5Δ synthetic lethality and identified it as an allele of the ULP2 SUMO isopeptidase. The suppressor, ulp2-D623H, behaved like the ulp2Δ allele in its sensitivity to heat, DNA replication stress, and DNA damage. Surprisingly, deletion of ULP2, which is known to promote the accumulation of poly-SUMO chains, suppressed sgs1Δ slx5Δ synthetic lethality and the slx5Δ sporulation defect. Further, ulp2Δ's growth sensitivities were found to be suppressed in ulp2Δ slx5Δ double mutants. This mutual suppression indicates that SLX5-SLX8 and ULP2 interact antagonistically. However, the suppressed strain sgs1Δ slx5Δ ulp2-D623H displayed even higher levels of sumoylated proteins than the corresponding double mutants. Thus, sgs1Δ slx5Δ synthetic lethality cannot be due simply to high levels of bulk sumoylated proteins. We speculate that the loss of ULP2 suppresses the toxicity of the sumoylated proteins that accumulate in slx5Δ-slx8Δ cells by permitting the extension of poly-SUMO chains on specific target proteins. This additional modification might attenuate the activity of the target proteins or channel them into alternative pathways for proteolytic degradation. In support of this latter possibility we find that the WSS1 isopeptidase is required for suppression by ulp2Δ.
Collapse
|
26
|
Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol Cell Biol 2010; 30:3737-48. [PMID: 20516210 DOI: 10.1128/mcb.01649-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein sumoylation plays an important but poorly understood role in controlling genome integrity. In Saccharomyces cerevisiae, the Slx5-Slx8 SUMO-targeted Ub ligase appears to be needed to ubiquitinate sumoylated proteins that arise in the absence of the Sgs1 DNA helicase. WSS1, a high-copy-number suppressor of a mutant SUMO, was implicated in this pathway because it shares phenotypes with SLX5-SLX8 mutants, including a wss1Delta sgs1Delta synthetic-fitness defect. Here we show that Wss1, a putative metalloprotease, physically binds SUMO and displays in vitro isopeptidase activity on poly-SUMO chains. Like that of SLX5, overexpression of WSS1 suppresses sgs1Delta slx5Delta lethality and the ulp1ts growth defect. Interestingly, although Wss1 is relatively inactive on ubiquitinated substrates and poly-Ub chains, it efficiently deubiquitinates a Ub-SUMO isopeptide conjugate and a Ub-SUMO fusion protein. Wss1 was further implicated in Ub metabolism on the basis of its physical association with proteasomal subunits. The results suggest that Wss1 is a SUMO-dependent isopeptidase that acts on sumoylated substrates as they undergo proteasomal degradation.
Collapse
|
27
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|