1
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
2
|
Hua R, Wei J, Torres M, He Y, Li Y, Sun X, Wang L, Inoki K, Yoshida S. Identification of circular dorsal ruffles as signal platforms for the AKT pathway in glomerular podocytes. J Cell Physiol 2023; 238:1063-1079. [PMID: 36924084 DOI: 10.1002/jcp.30996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced by growth factors to function as precursors of the large-scale endocytosis called macropinocytosis. In addition to their role in cellular uptake, recent research using cell line systems has shown that CDRs/macropinocytosis regulate the canonical AKT-mTORC1 growth factor signaling pathway. However, as CDRs have not been observed in tissues, their physiological relevance has remained unclear. Here, utilizing ultrahigh-resolution scanning electron microscopy, we first report that CDRs are expressed in glomerular podocytes ex vivo and in vivo, and we visually captured the transformation process to macropinocytosis. Moreover, through biochemical and imaging analyses, we show that AKT phosphorylation localized to CDRs upstream of mTORC1 activation in podocyte cell lines and isolated glomeruli. These results demonstrate the physiological role of CDRs as signal platforms for the AKT-mTORC1 pathway in glomerular podocytes at the tissue level. As mTORC1 plays critical roles in podocyte metabolism, and aberrant activation of mTORC1 triggers podocytopathies, our results strongly suggest that targeting CDR formation could represent a potential therapeutic approach for these diseases.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Internal medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Circular dorsal ruffles disturb the growth factor-induced PI3K-AKT pathway in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2022; 20:102. [PMID: 35799301 PMCID: PMC9264614 DOI: 10.1186/s12964-022-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced on the dorsal surfaces of cells stimulated by growth factors (GF). They can serve as signal platforms to activate AKT protein kinase. After GF stimulation, phosphatidylinositol 3-kinase (PI3K) generates phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the plasma membrane. PIP3 accumulates inside CDRs, recruits AKT into the structures, and phosphorylates them (pAKT). Given the importance of the PI3K-AKT pathway in GF signaling, CDRs are likely involved in cell growth. Interestingly, some cancer cell lines express CDRs. We hypothesized that CDRs contribute to carcinogenesis by modulating the AKT pathway. In the present study, we identified CDR-expressing cancer cell lines and investigated their cellular functions. Methods CDR formation was examined in six cancer cell lines in response to epidermal growth factor (EGF) and insulin. The morphology of the CDRs was characterized, and the related signaling molecules were observed using confocal and scanning electron microscopy. The role of CDRs in the AKT pathway was studied using biochemical analysis. The actin inhibitor cytochalasin D (Cyto D) and the PI3K inhibitor TGX221 were used to block CDRs. Results GF treatment induced CDRs in the hepatocellular carcinoma (HCC) Hep3B cell line, but not in others, including HCC cell lines HepG2 and Huh7, and the LO2 hepatocyte cell line. Confocal microscopy and western blot analysis showed that the PI3K-PIP3-AKT pathway was activated at the CDRs and that receptor proteins were recruited to the structures. Cyto D and TGX221 completely blocked CDRs and partially attenuated GF-induced pAKT. These results indicate that CDRs regulate the receptor-mediated PI3K-AKT pathway in Hep3B cells and the existence of CDR-independent pAKT mechanisms. Conclusions Our results showed that CDRs modulate the AKT pathway in Hep3B cells. Since CDRs were not observed in other HCC and hepatocyte cell lines, we propose that CDRs in Hep3B would determine the carcinoma characteristic of the cell by aberrantly triggering the AKT pathway. Signaling molecules involved in CDR formation are promising therapeutic targets for some types of HCC. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00911-6.
Collapse
|
4
|
Tanaka S, Masuda Y, Harada A, Okabe S. Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice. ACTA ACUST UNITED AC 2020; 69:44-52. [PMID: 31990031 DOI: 10.1093/jmicro/dfaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Masuda
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
6
|
Ghosh A, Enderlein J, Butkevich E. Dimerization of Human Drebrin-like Protein Governs Its Biological Activity. Biochemistry 2020; 59:1553-1558. [PMID: 32282191 DOI: 10.1021/acs.biochem.9b01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drebrin-like protein (DBNL) is a multidomain F-actin-binding protein, which also interacts with other molecules within different intracellular pathways. Here, we present quantitative measurements on the size and conformation of human DBNL. Using dual-focus fluorescence correlation spectroscopy, we determined the hydrodynamic radius of the DBNL monomer. Native gel electrophoresis and dual-color fluorescence cross-correlation spectroscopy show that both endogenous DBNL and recombinant DBNL exist as dimers under physiological conditions. We demonstrate that C-terminal truncations of DBNL downstream of the coiled-coil domain result in its oligomerization at nanomolar concentrations. In contrast, the ADF-H domain alone is a monomer, which displays a concentration-dependent self-assembly. In vivo FLIM-FRET imaging shows that the presence of only actin-binding domains is not sufficient for DBNL to localize properly at the actin filament inside the cell. In summary, our work provides detailed insight into the structure-function relationship of human drebrin-like protein.
Collapse
Affiliation(s)
- Arindam Ghosh
- Third Institute of Physics-Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Eugenia Butkevich
- Third Institute of Physics-Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Shi X, Duan F, Lin L, Xu Q, Xu T, Zhang R. WIP-1 and DBN-1 promote scission of endocytic vesicles by bridging actin and Dynamin-1 in the C. elegans intestine. J Cell Sci 2019; 132:jcs.228023. [PMID: 31118234 DOI: 10.1242/jcs.228023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
There has been a consensus that actin plays an important role in scission of the clathrin-coated pits (CCPs) together with large GTPases of the dynamin family in metazoan cells. However, the recruitment, regulation and functional interdependence of actin and dynamin during this process remain inadequately understood. Here, based on small-scale screening and in vivo live-imaging techniques, we identified a novel set of molecules underlying CCP scission in the multicellular organism Caenorhabditis elegans We found that loss of Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP-1) impaired CCP scission in a manner that is independent of the C. elegans homolog of WASP/N-WASP (WSP-1) and is mediated by direct binding to G-actin. Moreover, the cortactin-binding domain of WIP-1 serves as the binding interface for DBN-1 (also known in other organisms as Abp1), another actin-binding protein. We demonstrate that the interaction between DBN-1 and F-actin is essential for Dynamin-1 (DYN-1) recruitment at endocytic sites. In addition, the recycling regulator RME-1, a homolog of mammalian Eps15 homology (EH) domain-containing proteins, is increasingly recruited at the arrested endocytic intermediates induced by F-actin loss or DYN-1 inactivation, which further stabilizes the tubular endocytic intermediates. Our study provides new insights into the molecular network underlying F-actin participation in the scission of CCPs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fengyun Duan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Long Lin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qifeng Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
8
|
Li L, Zhang S, Liu X, Yu R, Li X, Liu M, Zhang H, Zheng X, Wang P, Zhang Z. Magnaporthe oryzae Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:437-451. [PMID: 30451565 DOI: 10.1094/mpmi-10-18-0281-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The actin cytoskeleton and actin-coupled endocytosis are conserved cellular processes required for the normal growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. We have previously shown that actin regulating kinase MoArk1 regulates actin dynamics and endocytosis to play a key role in virulence of the fungus. To understand the underlying mechanism, we have characterized the actin-binding protein MoAbp1 that interacts with MoArk1 from M. oryzae. The ΔMoabp1 mutant exhibited delayed endocytosis and defects in growth, host penetration, and invasive growth. Consistent with its putative function associated with actin-binding, MoAbp1 regulates the localization of actin patches and plays a role in MoArk1 phosphorylation. In addition, MoAbp1 interacts with MoCap (adenylyl cyclase-associated protein) affecting its normal patch localization pattern and the actin protein MoAct1 through its conserved domains. Taken together, our results support a notion that MoAbp1 functions as a protein scaffold linking MoArk1, MoCap1, and MoAct1 to regulate actin cytoskeleton dynamics critical in growth and pathogenicity of the blast fungus.
Collapse
Affiliation(s)
- Lianwei Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Shengpei Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xinyu Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Rui Yu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xinrui Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Muxing Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Ping Wang
- 2 Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| |
Collapse
|
9
|
Ueda Y, Sato M. Cell membrane dynamics induction using optogenetic tools. Biochem Biophys Res Commun 2018; 506:387-393. [DOI: 10.1016/j.bbrc.2017.11.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022]
|
10
|
Furuya A, Kawano F, Nakajima T, Ueda Y, Sato M. Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling. ACS Synth Biol 2017; 6:1086-1095. [PMID: 28195693 DOI: 10.1021/acssynbio.7b00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously developed the Magnet system, which consists of two distinct Vivid protein variants, one positively and one negatively charged, designated the positive Magnet (pMag) and negative Magnet (nMag), respectively. These two proteins bind to each other through electrostatic interactions, preventing unwanted homodimerization and providing selective light-induced heterodimerization. The Magnet system enables the manipulation of cellular functions such as protein-protein interactions and genome editing, although the system could be improved further. To enhance the ability of pMagFast2 (a pMag variant with fast kinetics) to bind nMag, we introduced several pMagFast2 modules in tandem into a single construct, pMagFast2(3×). However, the expression level of this construct decreased drastically with increasing number of pMagFast2 molecules integrated into a single construct. In the present study, we applied a new approach to improve the Magnet system based on an assembly domain (AD). Among several ADs, the Ca2+/calmodulin-dependent protein kinase IIα association domain (CAD) most enhanced the Magnet system. The present CAD-Magnet system overcame a trade-off issue between the expression level and binding affinity. The CAD-converged 12 pMag photoswitches exhibited a stronger interaction with nMag after blue light irradiation compared with monomeric pMag. Additionally, the CAD played a key role in converging effector proteins as well in a single complex. Owing to these substantial improvements, the CAD-Magnet system combined with Tiam1 allowed us to robustly induce localized formation of vertical ruffles on the apical plasma membrane. The CAD-Magnet system combined with 4D imaging was instrumental in revealing the dynamics of ruffle formation.
Collapse
Affiliation(s)
- Akihiro Furuya
- Graduate
School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902, Japan
| | - Fuun Kawano
- Graduate
School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Nakajima
- Graduate
School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshibumi Ueda
- Graduate
School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Moritoshi Sato
- Graduate
School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Valdivia A, Goicoechea SM, Awadia S, Zinn A, Garcia-Mata R. Regulation of circular dorsal ruffles, macropinocytosis, and cell migration by RhoG and its exchange factor, Trio. Mol Biol Cell 2017; 28:1768-1781. [PMID: 28468978 PMCID: PMC5491185 DOI: 10.1091/mbc.e16-06-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/11/2022] Open
Abstract
The small GTPase RhoG and its exchange factor, Trio, regulate the formation and size of circular dorsal ruffles and associated functions, including macropinocytosis and cell migration. Circular dorsal ruffles (CDRs) are actin-rich structures that form on the dorsal surface of many mammalian cells in response to growth factor stimulation. CDRs represent a unique type of structure that forms transiently and only once upon stimulation. The formation of CDRs involves a drastic rearrangement of the cytoskeleton, which is regulated by the Rho family of GTPases. So far, only Rac1 has been consistently associated with CDR formation, whereas the role of other GTPases in this process is either lacking or inconclusive. Here we show that RhoG and its exchange factor, Trio, play a role in the regulation of CDR dynamics, particularly by modulating their size. RhoG is activated by Trio downstream of PDGF in a PI3K- and Src-dependent manner. Silencing RhoG expression decreases the number of cells that form CDRs, as well as the area of the CDRs. The regulation of CDR area by RhoG is independent of Rac1 function. In addition, our results show the RhoG plays a role in the cellular functions associated with CDR formation, including macropinocytosis, receptor internalization, and cell migration. Taken together, our results reveal a novel role for RhoG in the regulation of CDRs and the cellular processes associated with their formation.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606.,Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322
| | | | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
12
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
13
|
Boateng LR, Bennin D, De Oliveira S, Huttenlocher A. Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. J Biol Chem 2016; 291:13987-13998. [PMID: 27129278 DOI: 10.1074/jbc.m116.725739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Mammalian actin-binding protein-1 (mAbp1) is an adaptor protein that binds actin and modulates scission during endocytosis. Recent studies suggest that mAbp1 impairs cell invasion; however, the mechanism for the inhibitory effects of mAbp1 remain unclear. We performed a yeast two-hybrid screen and identified the adaptor protein, FHL2, as a novel binding partner that interacts with the N-terminal actin depolymerizing factor homology domain (ADFH) domain of mAbp1. Here we report that depletion of mAbp1 or ectopic expression of the ADFH domain of mAbp1 increased Rho GTPase signaling and breast cancer cell invasion. Moreover, cell invasion induced by the ADFH domain of mAbp1 required the expression of FHL2. Taken together, our findings show that mAbp1 and FHL2 are novel binding partners that differentially regulate Rho GTPase signaling and MTLn3 breast cancer cell invasion.
Collapse
Affiliation(s)
- Lindsy R Boateng
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - David Bennin
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sofia De Oliveira
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706
| | - Anna Huttenlocher
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
14
|
Gryaznova T, Kropyvko S, Burdyniuk M, Gubar O, Kryklyva V, Tsyba L, Rynditch A. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell Signal 2015; 27:1499-508. [PMID: 25797047 DOI: 10.1016/j.cellsig.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 01/21/2023]
Abstract
Invasive cancer cells form actin-rich membrane protrusions called invadopodia that degrade extracellular matrix and facilitate cell invasion and metastasis. WIP (WASP-interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) are localized in invadopodia and play a crucial role in their formation. Here we show that WIP interacts with endocytic adaptor proteins of the intersectin (ITSN) family, ITSN1 and ITSN2. The interaction is mediated by the SH3 domains of ITSNs and the middle part of the WIP proline-rich motifs. We have also demonstrated that ITSN1, WIP and N-WASP can form a complex in cells. Endogenous ITSN1 and ITSN2 are located in invasive protrusions of MDA-MB-231 breast cancer cell line. Moreover, data from immunofluorescent analysis revealed co-localization of ITSN1 and WIP at sites of invadopodia formation and in clathrin-coated pits. Together, these findings provide insights into the molecular mechanisms of invadopodia formation and identify ITSNs as scaffold proteins involved in this process.
Collapse
Affiliation(s)
- Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Mariia Burdyniuk
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Olga Gubar
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Valentyna Kryklyva
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Liudmyla Tsyba
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| |
Collapse
|
15
|
He K, Xing R, Yan X, Tian A, Zhang M, Yuan J, Lv Z, Fang X, Li Z, Zhang Y. Mammalian actin-binding protein 1/HIP-55 is essential for the scission of clathrin-coated pits by regulating dynamin-actin interaction. FASEB J 2015; 29:2495-503. [PMID: 25690657 DOI: 10.1096/fj.14-264259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 02/03/2023]
Abstract
Actin and dynamin work cooperatively to drive the invagination and scission of clathrin-coated pits (CCPs). However, little is known about the mechanism that orchestrates the spatiotemporal recruitment of dynamin and actin. Here, we have identified the mammalian actin-binding protein 1 (mAbp1; also called HIP-55 or SH3P7), which could bind to clathrin, actin, as well as dynamin, as an adaptor that links the dynamic recruitment of dynamin and actin for the scission of CCPs. Live-cell imaging reveals that mAbp1 is specifically recruited at a late stage of the long-lived CCPs. mAbp1 knockdown impaired CCP scission by reducing dynamin recruitment at the plasma membrane. However, actin disruption remarkably eliminates mAbp1 recruitment and thus dynamin recruitment. These data suggest that by binding to both clathrin and F-actin, mAbp1 is specifically recruited at a late stage of CCP formation, which subsequently recruits dynamin to CCPs.
Collapse
Affiliation(s)
- Kangmin He
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Xing
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Yan
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aiju Tian
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingliang Zhang
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinghe Yuan
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhizhen Lv
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohong Fang
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zijian Li
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Youyi Zhang
- *Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc Natl Acad Sci U S A 2014; 111:9881-6. [PMID: 24958882 DOI: 10.1073/pnas.1321971111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prolonged or uncontrolled B-cell receptor (BCR) signaling is associated with autoimmunity. We previously demonstrated a role for actin in BCR signal attenuation. This study reveals that actin-binding protein 1 (Abp1/HIP-55/SH3P7) is a negative regulator of BCR signaling and links actin to negative regulatory pathways of the BCR. In both Abp1(-/-) and bone marrow chimeric mice, in which only B cells lack Abp1 expression, the number of spontaneous germinal center and marginal zone B cells and the level of autoantibody are significantly increased. Serum levels of T-independent antibody responses and total antibody are elevated, whereas T-dependent antibody responses are markedly reduced and fail to undergo affinity maturation. Upon activation, surface BCR clustering is enhanced and B-cell contraction delayed in Abp1(-/-) B cells, concurrent with slow but persistent increases in F-actin at BCR signalosomes. Furthermore, BCR signaling is enhanced in Abp1(-/-) B cells compared with wild-type B cells, including Ca(2+) flux and phosphorylation of B-cell linker protein, the mitogen-activated protein kinase kinase MEK1/2, and ERK, coinciding with reductions in recruitment of the inhibitory signaling molecules hematopoietic progenitor kinase 1 and SH2-containing inositol 5-phosphatase to BCR signalosomes. Our results indicate that Abp1 negatively regulates BCR signaling by coupling actin remodeling to B-cell contraction and activation of inhibitory signaling molecules, which contributes to the regulation of peripheral B-cell development and antibody responses.
Collapse
|
17
|
Banon-Rodriguez I, Saez de Guinoa J, Bernardini A, Ragazzini C, Fernandez E, Carrasco YR, Jones GE, Wandosell F, Anton IM. WIP regulates persistence of cell migration and ruffle formation in both mesenchymal and amoeboid modes of motility. PLoS One 2013; 8:e70364. [PMID: 23950925 PMCID: PMC3737202 DOI: 10.1371/journal.pone.0070364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/17/2013] [Indexed: 02/08/2023] Open
Abstract
The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein) family. WIP (WASP Interacting Protein) is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor) but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP) and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast) and amoeboid (B lymphocytes) motility.
Collapse
Affiliation(s)
| | - Julia Saez de Guinoa
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandra Bernardini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Chiara Ragazzini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estefania Fernandez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gareth E. Jones
- The Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francisco Wandosell
- Department of Molecular Neurobiology, Centro de Biología Molecular “Severo Ochoa” (CBM-UAM), Madrid, Spain
| | - Ines Maria Anton
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Yang Y, de la Roche M, Crawley SW, Li Z, Furmaniak-Kazmierczak E, Côté GP. PakB binds to the SH3 domain of Dictyostelium Abp1 and regulates its effects on cell polarity and early development. Mol Biol Cell 2013; 24:2216-27. [PMID: 23699396 PMCID: PMC3708727 DOI: 10.1091/mbc.e12-12-0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium p21-activated kinase B (PakB) phosphorylates and activates class I myosins. PakB colocalizes with myosin I to actin-rich regions of the cell, including macropinocytic and phagocytic cups and the leading edge of migrating cells. Here we show that residues 1-180 mediate the cellular localization of PakB. Yeast two-hybrid and pull-down experiments identify two proline-rich motifs in PakB-1-180 that directly interact with the SH3 domain of Dictyostelium actin-binding protein 1 (dAbp1). dAbp1 colocalizes with PakB to actin-rich regions in the cell. The loss of dAbp1 does not affect the cellular distribution of PakB, whereas the loss of PakB causes dAbp1 to adopt a diffuse cytosolic distribution. Cosedimentation studies show that the N-terminal region of PakB (residues 1-70) binds directly to actin filaments, whereas dAbp1 exhibits only a low affinity for filamentous actin. PakB-1-180 significantly enhances the binding of dAbp1 to actin filaments. When overexpressed in PakB-null cells, dAbp1 completely blocks early development at the aggregation stage, prevents cell polarization, and significantly reduces chemotaxis rates. The inhibitory effects are abrogated by the introduction of a function-blocking mutation into the dAbp1 SH3 domain. We conclude that PakB plays a critical role in regulating the cellular functions of dAbp1, which are mediated largely by its SH3 domain.
Collapse
Affiliation(s)
- Yidai Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Calpains are a family of complex multi-domain intracellular enzymes that share a calcium-dependent cysteine protease core. These are not degradative enzymes, but instead carry out limited cleavage of target proteins in response to calcium signalling. Selective cutting of cytoskeletal proteins to facilitate cell migration is one such function. The two most abundant and extensively studied members of this family in mammals, calpains 1 and 2, are heterodimers of an isoform-specific 80 kDa large subunit and a common 28 kDa small subunit. Structures of calpain-2, both Ca2+-free and bound to calpastatin in the activated Ca2+-bound state, have provided a wealth of information about the enzyme's structure-function relationships and activation. The main association between the subunits is the pairing of their C-terminal penta-EF-hand domains through extensive intimate hydrophobic contacts. A lesser contact is made between the N-terminal anchor helix of the large subunit and the penta-EF-hand domain of the small subunit. Up to ten Ca2+ ions are co-operatively bound during activation. The anchor helix is released and individual domains change their positions relative to each other to properly align the active site. Because calpains 1 and 2 require ~30 and ~350 μM Ca2+ ions for half-maximal activation respectively, it has long been argued that autoproteolysis, subunit dissociation, post-translational modifications or auxiliary proteins are needed to activate the enzymes in the cell, where Ca2+ levels are in the nanomolar range. In the absence of robust support for these mechanisms, it is possible that under normal conditions calpains are transiently activated by high Ca2+ concentrations in the microenvironment of a Ca2+ influx, and then return to an inactive state ready for reactivation.
Collapse
|
20
|
Itoh T, Hasegawa J. Mechanistic insights into the regulation of circular dorsal ruffle formation. J Biochem 2012; 153:21-9. [PMID: 23175656 DOI: 10.1093/jb/mvs138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth factor stimulations induce dynamic changes in the cytoskeleton beneath the plasma membrane. Among them is the formation of membrane ruffles organized in a circular array, called 'circular dorsal ruffles' (CDRs). Physiological functions of CDRs include downregulation of cell growth by desensitizing the signalling from growth factor receptors as well as rearrangement of adhesion sites at the onset of cell migration. For the formation of CDRs, not only the activators of actin polymerization, such as N-WASP and the Arp2/3-complex, but also membrane deforming proteins with BAR/F-BAR domains are necessary. Small GTPases are also involved in the formation of CDRs by controlling intracellular trafficking through endosomes. Moreover, recent analyses of another circular cytoskeletal structure, podosome rosettes, have revealed common molecular features shared with CDRs. Among them, the roles of PI3-kinase and phosphoinositide 5-phosphatase may hold the key to the induction of these circular structures.
Collapse
Affiliation(s)
- Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan.
| | | |
Collapse
|
21
|
Abstract
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These "rings" then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.
Collapse
|
22
|
Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze SK, Hu JM, Feng ZW, Heese K. Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:219-241. [PMID: 22773961 PMCID: PMC3388733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Tianma (Gastrodia elata Blume) is a traditional Chinese medicine (TCM) often used for the treatment of headache, convulsions, hypertension and neurodegenerative diseases. Tianma also modulates the cleavage of the amyloid precursor protein App and cognitive functions in mice. The neuronal actions of tianma thus led us to investigate its specific effects on neuronal signalling. Accordingly, this pilot study was designed to examine the effects of tianma on the proteome metabolism in differentiated mouse neuronal N2a cells using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach. We identified 2178 proteins, out of which 74 were found to be altered upon tianma treatment in differentiated mouse neuronal N2a cells. Based on the observed data obtained, we hypothesize that tianma could promote neuro-regenerative processes by inhibiting stress-related proteins and mobilizing neuroprotective genes such as Nxn, Dbnl, Mobkl3, Clic4, Mki67 and Bax with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
Affiliation(s)
- Arulmani Manavalan
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Umamaheswari Ramachandran
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Husvinee Sundaramurthi
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mishra
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of ScienceKunming, Yunnan 650204, People’s Republic of China
| | - Zhi Wei Feng
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Klaus Heese
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| |
Collapse
|
23
|
The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality. Genetics 2012; 191:1199-211. [PMID: 22661326 DOI: 10.1534/genetics.112.141739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Actin-Binding Protein 1 (Abp1p) is a member of the Abp1 family of proteins, which are in diverse organisms including fungi, nematodes, flies, and mammals. All proteins in this family possess an N-terminal Actin Depolymerizing Factor Homology (ADF-H) domain, a central Proline-Rich Region (PRR), and a C-terminal SH3 domain. In this study, we employed sequence analysis to identify additional conserved features of the family, including sequences rich in proline, glutamic acid, serine, and threonine amino acids (PEST), which are found in all family members examined, and two motifs, Conserved Fungal Motifs 1 and 2 (CFM1 and CFM2), that are conserved in fungi. We also discovered that, similar to its mammalian homologs, Abp1p is phosphorylated in its PRR. This phosphorylation is mediated by the Cdc28p and Pho85p kinases, and it protects Abp1p from proteolysis mediated by the conserved PEST sequences. We provide evidence for an intramolecular interaction between the PRR region and SH3 domain that may be affected by phosphorylation. Although deletion of CFM1 alone caused no detectable phenotype in any genetic backgrounds or conditions tested, deletion of this motif resulted in a significant reduction of growth when it was combined with a deletion of the ADF-H domain. Importantly, this result demonstrates that deletion of highly conserved domains on its own may produce no phenotype unless the domains are assayed in conjunction with deletions of other functionally important elements within the same protein. Detection of this type of intragenic synthetic lethality provides an important approach for understanding the function of individual protein domains or motifs.
Collapse
|
24
|
Shevchuk AI, Novak P, Taylor M, Diakonov IA, Ziyadeh-Isleem A, Bitoun M, Guicheney P, Lab MJ, Gorelik J, Merrifield CJ, Klenerman D, Korchev YE. An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy. ACTA ACUST UNITED AC 2012; 197:499-508. [PMID: 22564416 PMCID: PMC3352948 DOI: 10.1083/jcb.201109130] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simultaneous ion conductance and confocal microscopy in live cells reveal a new form of asymmetric clathrin-coated pit closure. Current knowledge of the structural changes taking place during clathrin-mediated endocytosis is largely based on electron microscopy images of fixed preparations and x-ray crystallography data of purified proteins. In this paper, we describe a study of clathrin-coated pit dynamics in living cells using ion conductance microscopy to directly image the changes in pit shape, combined with simultaneous confocal microscopy to follow molecule-specific fluorescence. We find that 70% of pits closed with the formation of a protrusion that grew on one side of the pit, covered the entire pit, and then disappeared together with pit-associated clathrin–enhanced green fluorescent protein (EGFP) and actin-binding protein–EGFP (Abp1-EGFP) fluorescence. This was in contrast to conventionally closing pits that closed and cleaved from flat membrane sheets and lacked accompanying Abp1-EGFP fluorescence. Scission of both types of pits was found to be dynamin-2 dependent. This technique now enables direct spatial and temporal correlation between functional molecule-specific fluorescence and structural information to follow key biological processes at cell surfaces.
Collapse
Affiliation(s)
- Andrew I Shevchuk
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London W12 0NN, England, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Boateng LR, Cortesio CL, Huttenlocher A. Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts. J Cell Sci 2012; 125:1329-41. [PMID: 22303001 DOI: 10.1242/jcs.096529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are dynamic actin-based structures that mediate adhesion to the extracellular matrix and localize matrix degradation to facilitate cell motility and invasion. Drebrin-like protein (DBNL), which is homologous to yeast mAbp1 and is therefore known as mammalian actin-binding protein 1 (mAbp1), has been implicated in receptor-mediated endocytosis, vesicle recycling and dorsal ruffle formation. However, it is not known whether mAbp1 regulates podosome formation or cell invasion. In this study, we found that mAbp1 localizes to podosomes and is necessary for the formation of podosome rosettes in Src-transformed fibroblasts. Despite their structural similarity, mAbp1 and cortactin play distinct roles in podosome regulation. Cortactin was necessary for the formation of podosome dots, whereas mAbp1 was necessary for the formation of organized podosome rosettes in Src-transformed cells. We identified specific Src phosphorylation sites, Tyr337 and Tyr347 of mAbp1, which mediate the formation of podosome rosettes and degradation of the ECM. In contrast to dorsal ruffles, the interaction of mAbp1 with WASP-interacting protein (WIP) was not necessary for the formation of podosome rosettes. Finally, we showed that depletion of mAbp1 increased invasive cell migration, suggesting that mAbp1 differentially regulates matrix degradation and cell invasion. Collectively, our findings identify a role for mAbp1 in podosome rosette formation and cell invasion downstream of Src.
Collapse
Affiliation(s)
- Lindsy R Boateng
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti S. PDGF: the nuts and bolts of signalling toolbox. Tumour Biol 2011; 32:1057-70. [PMID: 21769672 DOI: 10.1007/s13277-011-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022] Open
Abstract
PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 km defence road, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BHC, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C. Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics 2011; 10:M110.005751. [PMID: 21725060 PMCID: PMC3205853 DOI: 10.1074/mcp.m110.005751] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.
Collapse
Affiliation(s)
- Catherine Johnson
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
King SJ, Worth DC, Scales TME, Monypenny J, Jones GE, Parsons M. β1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 2011; 30:1705-18. [PMID: 21427700 PMCID: PMC3101992 DOI: 10.1038/emboj.2011.82] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that β1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that β1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott–Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of β1 integrin within newly assembled actin-rich membrane ruffles. Active β1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of β1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.
Collapse
Affiliation(s)
- Samantha J King
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - Daniel C Worth
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - Timothy M E Scales
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - James Monypenny
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| |
Collapse
|
29
|
The mammalian actin-binding protein 1 (mAbp1): a novel molecular player in leukocyte biology. Trends Cell Biol 2011; 21:247-55. [DOI: 10.1016/j.tcb.2010.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/21/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022]
|
30
|
Goatley LC, Dixon LK. Processing and localization of the african swine fever virus CD2v transmembrane protein. J Virol 2011; 85:3294-305. [PMID: 21248037 PMCID: PMC3067853 DOI: 10.1128/jvi.01994-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022] Open
Abstract
The African swine fever virus (ASFV)-encoded CD2v transmembrane protein is required for the hemadsorption of red blood cells around infected cells and is also required for the inhibition of bystander lymphocyte proliferation in response to mitogens. We studied the expression of CD2v by expressing the gene with a V5 tag downstream from the signal peptide near the N terminus and a hemagglutinin (HA) tag at the C terminus. In ASFV-infected cells, a full-length glycosylated form of the CD2v protein, which migrated mainly as a 89-kDa product, was detected, as well as an N-terminal glycosylated fragment of 63 kDa and a C-terminal nonglycosylated fragment of 26 kDa. All of these forms of the protein were localized in the membrane fraction of cells. The 26-kDa C-terminal fragment was also produced in infected cells treated with brefeldin A. These data indicate that the CD2v protein is cleaved within the luminal domain and that this occurs in the endoplasmic reticulum or Golgi compartments. Confocal microscopy showed that most of the expressed CD2v protein was localized within cells rather than at the cell surface. Comparison of the localization of full-length CD2v with that of a deletion mutant lacking all of the cytoplasmic tail apart from the 12 membrane-proximal amino acids indicated that signals within the cytoplasmic tail are responsible for the predominant localization of the full-length and C-terminal 26-kDa fragment within membranes around the virus factories, which contain markers for the Golgi compartment. Processing of the CD2v protein was not observed in uninfected cells, indicating that it is induced by ASFV infection.
Collapse
Affiliation(s)
- Lynnette C. Goatley
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Linda K. Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
31
|
Cortesio CL, Boateng LR, Piazza TM, Bennin DA, Huttenlocher A. Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. J Biol Chem 2011; 286:9998-10006. [PMID: 21270128 DOI: 10.1074/jbc.m110.187294] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.
Collapse
Affiliation(s)
- Christa L Cortesio
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|