1
|
Koch LB, Marston AL. The functional organisation of the centromere and kinetochore during meiosis. Curr Opin Cell Biol 2025; 94:102486. [PMID: 40015116 PMCID: PMC7617577 DOI: 10.1016/j.ceb.2025.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Meiosis generates gametes through a specialised cell cycle that reduces the genome by half. Homologous chromosomes are segregated in meiosis I and sister chromatids are segregated in meiosis II. Centromeres and kinetochores play central roles in instructing this specialised chromosome segregation pattern. Accordingly, kinetochores acquire meiosis-specific modifications. Here we contextualise recent highlights in our understanding of how centromeres and kinetochores direct the sorting of chromosomes into gametes via meiosis.
Collapse
Affiliation(s)
- Lori B Koch
- Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Adele L Marston
- Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
2
|
Kolbin D, Locatelli M, Stanton J, Kesselman K, Kokkanti A, Li J, Yeh E, Bloom K. Centromeres are stress-induced fragile sites. Curr Biol 2025; 35:1197-1210.e4. [PMID: 39970915 PMCID: PMC11945498 DOI: 10.1016/j.cub.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Centromeres are unique loci on eukaryotic chromosomes and are complexed with centromere-specific histone H3 molecules (CENP-A in mammals, Cse4 in yeast). The centromere provides the binding site for the kinetochore that captures microtubules and provides the mechanical linkage required for chromosome segregation. Centromeres encounter fluctuations in force as chromosomes jockey for position on the metaphase spindle. We have developed biological assays to examine the response of centromeres to high force. Torsional stress is induced on covalently closed DNA circles from supercoiling. Plasmid-borne centromeres with single-nucleotide inactivating mutations exhibit a high conversion frequency to plasmid dimer species. Conversion to dimers is dependent on the activity of the Rad1 single-strand endonuclease, indicative of unwinding a region of the centromere sequence in the absence of a functional kinetochore. To determine the region of unwinding, we used conditionally functional dicentric chromosomes to exert tension. Centromere DNA is exquisitely sensitive to cleavage following activation of the dicentric chromosome. Cleavage is dependent on the action of Rad1, highlighting the propensity of centromeres to unwind in response to supercoiling or mechanical stress. These studies provide mechanistic insights into the evolution of AT-rich pericentromere DNA throughout phylogeny and suggest a mechanism for stress-induced error correction at the centromere.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Maëlle Locatelli
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie Kesselman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aryan Kokkanti
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinghan Li
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
4
|
Lauer S, Luo J, Lazar-Stefanita L, Zhang W, McCulloch LH, Fanfani V, Lobzaev E, Haase MA, Easo N, Zhao Y, Yu F, Cai J, Bader JS, Stracquadanio G, Boeke JD. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. CELL GENOMICS 2023; 3:100437. [PMID: 38020969 PMCID: PMC10667555 DOI: 10.1016/j.xgen.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Max A.B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Easo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Fangzhou Yu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
5
|
Sidhwani P, Straight AF. Epigenetic inheritance and boundary maintenance at human centromeres. Curr Opin Struct Biol 2023; 82:102694. [PMID: 37657353 PMCID: PMC10530090 DOI: 10.1016/j.sbi.2023.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Centromeres are chromosomal regions that provide the foundation for microtubule attachment during chromosome segregation. Centromeres are epigenetically defined by nucleosomes containing the histone H3 variant centromere protein A (CENP-A) and, in many organisms, are surrounded by transcriptionally repressed pericentromeric chromatin marked by trimethylation of histone H3 lysine 9 (H3K9me3). Pericentromeric regions facilitate sister chromatid cohesion during mitosis, thereby supporting centromere function. Heterochromatin has a known propensity to spread into adjacent euchromatic domains unless it is properly bounded. Heterochromatin spreading into the centromere can disrupt kinetochore function, perturbing chromosome segregation and genome stability. In the fission yeast Schizosaccharomyces pombe, tRNA genes provide barriers to heterochromatin spread at the centromere, the absence of which results in abnormal meiotic chromosome segregation. How heterochromatin-centromere boundaries are established in humans is not understood. We propose models for stable epigenetic inheritance of centromeric domains in humans and discuss advances that will enable the discovery of novel regulators of this process.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States. https://twitter.com/@pra_sidh
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
6
|
Clarke MN, Marsoner T, Adell MAY, Ravichandran MC, Campbell CS. Adaptation to high rates of chromosomal instability and aneuploidy through multiple pathways in budding yeast. EMBO J 2023; 42:e111500. [PMID: 36530167 PMCID: PMC10106982 DOI: 10.15252/embj.2022111500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Both an increased frequency of chromosome missegregation (chromosomal instability, CIN) and the presence of an abnormal complement of chromosomes (aneuploidy) are hallmarks of cancer. To better understand how cells are able to adapt to high levels of chromosomal instability, we previously examined yeast cells that were deleted of the gene BIR1, a member of the chromosomal passenger complex (CPC). We found bir1Δ cells quickly adapted by acquiring specific combinations of beneficial aneuploidies. In this study, we monitored these yeast strains for longer periods of time to determine how cells adapt to high levels of both CIN and aneuploidy in the long term. We identify suppressor mutations that mitigate the chromosome missegregation phenotype. The mutated proteins fall into four main categories: outer kinetochore subunits, the SCFCdc4 ubiquitin ligase complex, the mitotic kinase Mps1, and the CPC itself. The identified suppressor mutations functioned by reducing chromosomal instability rather than alleviating the negative effects of aneuploidy. Following the accumulation of suppressor point mutations, the number of beneficial aneuploidies decreased. These experiments demonstrate a time line of adaptation to high rates of CIN.
Collapse
Affiliation(s)
- Matthew N Clarke
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter (VBC)University of ViennaViennaAustria
| | - Theodor Marsoner
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter (VBC)University of ViennaViennaAustria
| | - Manuel Alonso Y Adell
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter (VBC)University of ViennaViennaAustria
| | - Madhwesh C Ravichandran
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter (VBC)University of ViennaViennaAustria
| | - Christopher S Campbell
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter (VBC)University of ViennaViennaAustria
| |
Collapse
|
7
|
Centromere defects, chromosome instability, and cGAS-STING activation in systemic sclerosis. Nat Commun 2022; 13:7074. [PMID: 36400785 PMCID: PMC9674829 DOI: 10.1038/s41467-022-34775-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
Centromere defects in Systemic Sclerosis (SSc) have remained unexplored despite the fact that many centromere proteins were discovered in patients with SSc. Here we report that lesion skin fibroblasts from SSc patients show marked alterations in centromeric DNA. SSc fibroblasts also show DNA damage, abnormal chromosome segregation, aneuploidy (only in diffuse cutaneous (dcSSc)) and micronuclei (in all types of SSc), some of which lose centromere identity while retaining centromere DNA sequences. Strikingly, we find cytoplasmic "leaking" of centromere proteins in limited cutaneous SSc (lcSSc) fibroblasts. Cytoplasmic centromere proteins co-localize with antigen presenting MHC Class II molecules, which correlate precisely with the presence of anti-centromere antibodies. CENPA expression and micronuclei formation correlate highly with activation of the cGAS-STING/IFN-β pathway as well as markers of reactive oxygen species (ROS) and fibrosis, ultimately suggesting a link between centromere alterations, chromosome instability, SSc autoimmunity, and fibrosis.
Collapse
|
8
|
CCAR2 controls mitotic progression through spatiotemporal regulation of Aurora B. Cell Death Dis 2022; 13:534. [PMID: 35672287 PMCID: PMC9174277 DOI: 10.1038/s41419-022-04990-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) is a multifaceted protein involved in cell survival and death following cytotoxic stress. However, little is known about the physiological functions of CCAR2 in regulating cell proliferation in the absence of external stimuli. The present study shows that CCAR2-deficient cells possess multilobulated nuclei, suggesting a defect in cell division. In particular, the duration of mitotic phase was perturbed. This disturbance of mitotic progression resulted from premature loss of cohesion with the centromere, and inactivation of the spindle assembly checkpoint during prometaphase and metaphase. It resulted in the formation of lagging chromosomes during anaphase, leading ultimately to the activation of the abscission checkpoint to halt cytokinesis. The CCAR2-dependent mitotic progression was related to spatiotemporal regulation of active Aurora B. In conclusion, the results suggest that CCAR2 governs mitotic events, including proper chromosome segregation and cytokinetic division, to maintain chromosomal stability.
Collapse
|
9
|
Abstract
The centromere serves as the binding site for the kinetochore and is essential for the faithful segregation of chromosomes throughout cell division. The point centromere in yeast is encoded by a ∼115 bp specific DNA sequence, whereas regional centromeres range from 6-10 kbp in fission yeast to 5-10 Mbp in humans. Understanding the physical structure of centromere chromatin (pericentromere in yeast), defined as the chromatin between sister kinetochores, will provide fundamental insights into how centromere DNA is woven into a stiff spring that is able to resist microtubule pulling forces during mitosis. One hallmark of the pericentromere is the enrichment of the structural maintenance of chromosome (SMC) proteins cohesin and condensin. Based on studies from population approaches (ChIP-seq and Hi-C) and experimentally obtained images of fluorescent probes of pericentromeric structure, as well as quantitative comparisons between simulations and experimental results, we suggest a mechanism for building tension between sister kinetochores. We propose that the centromere is a chromatin bottlebrush that is organized by the loop-extruding proteins condensin and cohesin. The bottlebrush arrangement provides a biophysical means to transform pericentromeric chromatin into a spring due to the steric repulsion between radial loops. We argue that the bottlebrush is an organizing principle for chromosome organization that has emerged from multiple approaches in the field.
Collapse
|
10
|
Mehta G, Sanyal K, Abhishek S, Rajakumara E, Ghosh SK. Minichromosome maintenance proteins in eukaryotic chromosome segregation. Bioessays 2021; 44:e2100218. [PMID: 34841543 DOI: 10.1002/bies.202100218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Minichromosome maintenance (Mcm) proteins are well-known for their functions in DNA replication. However, their roles in chromosome segregation are yet to be reviewed in detail. Following the discovery in 1984, a group of Mcm proteins, known as the ARS-nonspecific group consisting of Mcm13, Mcm16-19, and Mcm21-22, were characterized as bonafide kinetochore proteins and were shown to play significant roles in the kinetochore assembly and high-fidelity chromosome segregation. This review focuses on the structure, function, and evolution of this group of Mcm proteins. Our in silico analysis of the physical interactors of these proteins reveals that they share non-overlapping functions despite being copurified in biochemically stable complexes. We have discussed the contrasting results reported in the literature and experimental strategies to address them. Taken together, this review focuses on the structure-function of the ARS-nonspecific Mcm proteins and their evolutionary flexibility to maintain genome stability in various organisms.
Collapse
Affiliation(s)
- Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
11
|
The Proteomic Landscape of Centromeric Chromatin Reveals an Essential Role for the Ctf19 CCAN Complex in Meiotic Kinetochore Assembly. Curr Biol 2021; 31:283-296.e7. [PMID: 33157029 PMCID: PMC7846277 DOI: 10.1016/j.cub.2020.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis. The composition of meiotic centromeres and kinetochores is revealed Kinetochores undergo extensive changes between meiotic prophase I and metaphase I The Ctf19CCAN orchestrates meiotic kinetochore specialization A Ctf19CCAN-directed kinetochore assembly pathway is uniquely critical in meiosis
Collapse
|
12
|
Mishra PK, Chakraborty A, Yeh E, Feng W, Bloom KS, Basrai MA. R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 2020; 32:74-89. [PMID: 33147102 PMCID: PMC8098821 DOI: 10.1091/mbc.e20-06-0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Wenyi Feng
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Meiotic CENP-C is a shepherd: bridging the space between the centromere and the kinetochore in time and space. Essays Biochem 2020; 64:251-261. [PMID: 32794572 DOI: 10.1042/ebc20190080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.
Collapse
|
14
|
Paldi F, Alver B, Robertson D, Schalbetter SA, Kerr A, Kelly DA, Baxter J, Neale MJ, Marston AL. Convergent genes shape budding yeast pericentromeres. Nature 2020; 582:119-123. [PMID: 32494069 PMCID: PMC7279958 DOI: 10.1038/s41586-020-2244-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022]
Abstract
The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.
Collapse
Affiliation(s)
- Flora Paldi
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Bonnie Alver
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Kerr
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
17
|
Estrem C, Moore JK. Help or hindrance: how do microtubule-based forces contribute to genome damage and repair? Curr Genet 2019; 66:303-311. [PMID: 31501990 DOI: 10.1007/s00294-019-01033-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Forces generated by molecular motors and the cytoskeleton move the nucleus and genome during many cellular processes, including cell migration and division. How these forces impact the genome, and whether cells regulate cytoskeletal forces to preserve genome integrity is unclear. We recently demonstrated that, in budding yeast, mutants that stabilize the microtubule cytoskeleton cause excessive movement of the mitotic spindle and nucleus. We found that increased nuclear movement results in DNA damage and increased time to repair the damage through homology-directed repair. Our results indicate that nuclear movement impairs DNA repair through increased tension on chromosomes and nuclear deformation. However, the previous studies have shown genome mobility, driven by cytoskeleton-based forces, aids in homology-directed DNA repair. This sets up an apparent paradox, where genome mobility may prevent or promote DNA repair. Hence, this review explores how the genome is affected by nuclear movement and how genome mobility could aid or hinder homology-directed repair.
Collapse
Affiliation(s)
- Cassi Estrem
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
18
|
Mirkovic M, Oliveira RA. Centromeric Cohesin: Molecular Glue and Much More. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:485-513. [PMID: 28840250 DOI: 10.1007/978-3-319-58592-5_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as "molecular glue", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.
Collapse
Affiliation(s)
- Mihailo Mirkovic
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal.
| |
Collapse
|
19
|
Estrem C, Moore JK. Astral microtubule forces alter nuclear organization and inhibit DNA repair in budding yeast. Mol Biol Cell 2019; 30:2000-2013. [PMID: 31067146 PMCID: PMC6727761 DOI: 10.1091/mbc.e18-12-0808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dividing cells must balance the maintenance of genome integrity with the generation of cytoskeletal forces that control chromosome position. In this study, we investigate how forces on astral microtubules impact the genome during cell division by using live-cell imaging of the cytoskeleton, chromatin, and DNA damage repair in budding yeast. Our results demonstrate that dynein-dependent forces on astral microtubules are propagated through the spindle during nuclear migration and when in excess can increase the frequency of double-stranded breaks (DSBs). Under these conditions, we find that homology-directed repair of DSBs is delayed, indicating antagonism between nuclear migration and the mechanism of homology-directed repair. These effects are partially rescued by mutants that weaken pericentric cohesion or mutants that decrease constriction on the nucleus as it moves through the bud neck. We propose that minimizing nuclear movement aids in finding a donor strand for homologous recombination.
Collapse
Affiliation(s)
- Cassi Estrem
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
20
|
García-Rodríguez LJ, Kasciukovic T, Denninger V, Tanaka TU. Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast. Curr Biol 2019; 29:1536-1544.e4. [PMID: 31006569 PMCID: PMC6509284 DOI: 10.1016/j.cub.2019.03.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
For proper chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (chromosome bi-orientation) [1, 2]. To promote bi-orientation, Aurora B kinase disrupts aberrant kinetochore-microtubule interactions [3, 4, 5, 6]. It has long been debated how Aurora B halts this action when bi-orientation is established and tension is applied across sister kinetochores. A popular explanation for it is that, upon bi-orientation, sister kinetochores are pulled in opposite directions, stretching the outer kinetochores [7, 8] and moving Aurora B substrates away from Aurora-B-localizing sites at centromeres (spatial separation model) [3, 5, 9]. This model predicts that Aurora B localization at centromeres is required for bi-orientation. However, this notion was challenged by the observation that Bir1 (yeast survivin), which recruits Ipl1-Sli15 (yeast Aurora B-INCENP) to centromeres, can become dispensable for bi-orientation [10]. This raised the possibility that Aurora B localization at centromeres is dispensable for bi-orientation. Alternatively, there might be a Bir1-independent mechanism for recruiting Ipl1-Sli15 to centromeres or inner kinetochores [5, 9]. Here, we show that the COMA inner kinetochore sub-complex physically interacts with Sli15, recruits Ipl1-Sli15 to the inner kinetochore, and promotes chromosome bi-orientation, independently of Bir1, in budding yeast. Moreover, using an engineered recruitment of Ipl1-Sli15 to the inner kinetochore when both Bir1 and COMA are defective, we show that localization of Ipl1-Sli15 at centromeres or inner kinetochores is required for bi-orientation. Our results give important insight into how Aurora B disrupts kinetochore-microtubule interaction in a tension-dependent manner to promote chromosome bi-orientation. The COMA inner kinetochore sub-complex facilitates chromosome bi-orientation COMA physically interacts with Sli15 and recruits Ipl1-Sli15 to the inner kinetochore This function of COMA is independent of Bir1 and its role supporting robust cohesion Localizing Ipl1-Sli15 at centromeres/inner kinetochores is crucial for bi-orientation
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Viola Denninger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
21
|
Mishra PK, Olafsson G, Boeckmann L, Westlake TJ, Jowhar ZM, Dittman LE, Baker RE, D’Amours D, Thorpe PH, Basrai MA. Cell cycle-dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast. Mol Biol Cell 2019; 30:1020-1036. [PMID: 30726152 PMCID: PMC6589903 DOI: 10.1091/mbc.e18-09-0584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans), associates with kinetochores during mitosis; however, the role of cell cycle-dependent centromeric ( CEN) association of Cdc5 and its substrates that exclusively localize to the kinetochore have not been characterized. Here we report that evolutionarily conserved CEN histone H3 variant, Cse4 (CENP-A in humans), is a substrate of Cdc5, and that the cell cycle-regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated Cse4. The cell cycle-regulated association of Cdc5 with Cse4 is essential for cell viability as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gudjon Olafsson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Timothy J. Westlake
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ziad M. Jowhar
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lauren E. Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Damien D’Amours
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
23
|
Lawrimore J, Doshi A, Friedman B, Yeh E, Bloom K. Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 2018; 29:2737-2750. [PMID: 30207827 PMCID: PMC6249845 DOI: 10.1091/mbc.e18-02-0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
24
|
Mehta G, Anbalagan GK, Bharati AP, Gadre P, Ghosh SK. An interplay between Shugoshin and Spo13 for centromeric cohesin protection and sister kinetochore mono-orientation during meiosis I in Saccharomyces cerevisiae. Curr Genet 2018; 64:1141-1152. [PMID: 29644457 DOI: 10.1007/s00294-018-0832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Meiosis is a specialized cell division process by which haploid gametes are produced from a diploid mother cell. Reductional chromosome segregation during meiosis I (MI) is achieved by two unique and conserved events: centromeric cohesin protection (CCP) and sister kinetochore mono-orientation (SKM). In Saccharomyces cerevisiae, a meiosis-specific protein Spo13 plays a role in both these centromere-specific events. Despite genome-wide association of Spo13, we failed to detect its function in global processes such as cohesin loading, cohesion establishment and homologs pairing. While Shugoshin (Sgo1) and protein phosphatase 2A (PP2ARts1) play a central role in CCP, it is not fully understood whether Spo13 functions in the process through a Sgo1- PP2ARts1-dependent or -independent mechanism. To delineate this and to find the relative contribution of each of these proteins in CCP and SKM, we meticulously observed the sister chromatid segregation pattern in the wild type, sgo1Δ, rts1Δ and spo13Δ single mutants and in their respective double mutants. We found that Spo13 protects centromeric cohesin through a Sgo1- PP2ARts1-independent mechanism. To our surprise, we observed a hitherto unknown role of Sgo1 in SKM. Further investigation revealed that Sgo1-mediated recruitment of aurora kinase Ipl1 to the centromere facilitates monopolin loading at the kinetochore during MI. Hence, this study uncovers the role of Sgo1 in SKM and demonstartes how the regulators (Sgo1, PP2ARts1, Spo13) work in a coordinated manner to achieve faithful chromosome segregation during meiosis, the failure of which leads to aneuploidy and birth defects.
Collapse
Affiliation(s)
- Gunjan Mehta
- National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | | | - Akhilendra Pratap Bharati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Purna Gadre
- B231, Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
25
|
Ravindran R, Polk P, Robinson LC, Tatchell K. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. J Cell Sci 2018; 131:jcs.217620. [PMID: 30054382 DOI: 10.1242/jcs.217620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paula Polk
- Research Core Facility Genomics Core, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
26
|
Lianga N, Doré C, Kennedy EK, Yeh E, Williams EC, Fortinez CM, Wang A, Bloom KS, Rudner AD. Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genet 2018; 14:e1007029. [PMID: 29561844 PMCID: PMC5880407 DOI: 10.1371/journal.pgen.1007029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/02/2018] [Accepted: 09/17/2017] [Indexed: 12/27/2022] Open
Abstract
Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.
Collapse
Affiliation(s)
- Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Doré
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin K. Kennedy
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elaine Yeh
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Elizabeth C. Williams
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Camille Marie Fortinez
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alick Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kerry S. Bloom
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Adam D. Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-A Cse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 2018; 17:11-23. [PMID: 28980861 DOI: 10.1080/15384101.2017.1380129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Kriti S Thapa
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Panyue Chen
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Suyu Wang
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Tony R Hazbun
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Munira A Basrai
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
28
|
Lacefield S. Chromosome Biology: Specification of the Kinetochore for Cohesin Recruitment. Curr Biol 2017; 27:R1319-R1321. [PMID: 29257967 DOI: 10.1016/j.cub.2017.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Additional cohesin loaded at the centromere helps to facilitate proper chromosome segregation. A new study reveals the mechanism by which kinetochores recruit the cohesin loader to establish centromere cohesion.
Collapse
Affiliation(s)
- Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
29
|
Dhatchinamoorthy K, Shivaraju M, Lange JJ, Rubinstein B, Unruh JR, Slaughter BD, Gerton JL. Structural plasticity of the living kinetochore. J Cell Biol 2017; 216:3551-3570. [PMID: 28939613 PMCID: PMC5674893 DOI: 10.1083/jcb.201703152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022] Open
Abstract
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells.
Collapse
Affiliation(s)
- Karthik Dhatchinamoorthy
- Stowers Institute for Medical Research, Kansas City, MO
- The Open University, Milton Keynes, England, UK
| | | | | | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
30
|
Schmitzberger F, Richter MM, Gordiyenko Y, Robinson CV, Dadlez M, Westermann S. Molecular basis for inner kinetochore configuration through RWD domain-peptide interactions. EMBO J 2017; 36:3458-3482. [PMID: 29046335 PMCID: PMC5709738 DOI: 10.15252/embj.201796636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 01/05/2023] Open
Abstract
Kinetochores are dynamic cellular structures that connect chromosomes to microtubules. They form from multi‐protein assemblies that are evolutionarily conserved between yeasts and humans. One of these assemblies—COMA—consists of subunits Ame1CENP‐U, Ctf19CENP‐P, Mcm21CENP‐O and Okp1CENP‐Q. A description of COMA molecular organization has so far been missing. We defined the subunit topology of COMA, bound with inner kinetochore proteins Nkp1 and Nkp2, from the yeast Kluyveromyces lactis, with nanoflow electrospray ionization mass spectrometry, and mapped intermolecular contacts with hydrogen‐deuterium exchange coupled to mass spectrometry. Our data suggest that the essential Okp1 subunit is a multi‐segmented nexus with distinct binding sites for Ame1, Nkp1‐Nkp2 and Ctf19‐Mcm21. Our crystal structure of the Ctf19‐Mcm21 RWD domains bound with Okp1 shows the molecular contacts of this important inner kinetochore joint. The Ctf19‐Mcm21 binding motif in Okp1 configures a branch of mitotic inner kinetochores, by tethering Ctf19‐Mcm21 and Chl4CENP‐N‐Iml3CENP‐L. Absence of this motif results in dependence on the mitotic checkpoint for viability.
Collapse
Affiliation(s)
- Florian Schmitzberger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA .,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Magdalena M Richter
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Yuliya Gordiyenko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Biology Department, Warsaw University, Warsaw, Poland
| | | |
Collapse
|
31
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
32
|
Kinetochore Function from the Bottom Up. Trends Cell Biol 2017; 28:22-33. [PMID: 28985987 DOI: 10.1016/j.tcb.2017.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.
Collapse
|
33
|
Hinshaw SM, Makrantoni V, Harrison SC, Marston AL. The Kinetochore Receptor for the Cohesin Loading Complex. Cell 2017; 171:72-84.e13. [PMID: 28938124 PMCID: PMC5610175 DOI: 10.1016/j.cell.2017.08.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/03/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives the recruitment of high levels of cohesin to link sister chromatids together. We have exploited this system to determine the mechanism of specific cohesin recruitment. We show that phosphorylation of the Ctf19 kinetochore protein by a conserved kinase, DDK, provides a binding site for the Scc2/4 cohesin loading complex, thereby directing cohesin loading to centromeres. A similar mechanism targets cohesin to chromosomes in vertebrates. These findings represent a complete molecular description of targeted cohesin loading, a phenomenon with wide-ranging importance in chromosome segregation and, in multicellular organisms, transcription regulation.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vasso Makrantoni
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
34
|
Makrantoni V, Ciesiolka A, Lawless C, Fernius J, Marston A, Lydall D, Stark MJR. A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (BETHESDA, MD.) 2017; 7:3203-3215. [PMID: 28754723 PMCID: PMC5592945 DOI: 10.1534/g3.117.300089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Abstract
The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3∆ or chl4∆ in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3 Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1.
Collapse
Affiliation(s)
- Vasso Makrantoni
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adam Ciesiolka
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Josefin Fernius
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adele Marston
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| |
Collapse
|
35
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
36
|
Abstract
At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.
Collapse
Affiliation(s)
- Edward D Salmon
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Inner centromere localization of the CPC maintains centromere cohesion and allows mitotic checkpoint silencing. Nat Commun 2017; 8:15542. [PMID: 28561035 PMCID: PMC5460030 DOI: 10.1038/ncomms15542] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Faithful chromosome segregation during mitosis requires that the kinetochores of all sister chromatids become stably connected to microtubules derived from opposite spindle poles. How stable chromosome bi-orientation is accomplished and coordinated with anaphase onset remains incompletely understood. Here we show that stable chromosome bi-orientation requires inner centromere localization of the non-enzymatic subunits of the chromosomal passenger complex (CPC) to maintain centromeric cohesion. Precise inner centromere localization of the CPC appears less relevant for Aurora B-dependent resolution of erroneous kinetochore-microtubule (KT-MT) attachments and for the stabilization of bi-oriented KT-MT attachments once sister chromatid cohesion is preserved via knock-down of WAPL. However, Aurora B inner centromere localization is essential for mitotic checkpoint silencing to allow spatial separation from its kinetochore substrate KNL1. Our data infer that the CPC is localized at the inner centromere to sustain centromere cohesion on bi-oriented chromosomes and to coordinate mitotic checkpoint silencing with chromosome bi-orientation.
Collapse
|
38
|
Lawrimore J, Barry TM, Barry RM, York AC, Friedman B, Cook DM, Akialis K, Tyler J, Vasquez P, Yeh E, Bloom K. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 2017; 28:1701-1711. [PMID: 28450453 PMCID: PMC5469612 DOI: 10.1091/mbc.e16-12-0846] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Mechanisms that drive DNA damage-induced chromosome mobility include relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers. Together with microtubule dynamics, these can mobilize the genome in response to DNA damage. Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage–induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alyssa C York
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristen Akialis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jolien Tyler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Abstract
The kollerin complex, consisting of Scc2/Scc4 in yeast and Nipbl/Mau2 in vertebrates, is crucial for the chromatin-association of the cohesin complex and therefore for the critical functions of cohesin in cell division, transcriptional regulation and chromatin organisation. Despite the recent efforts to determine the genomic localization of the kollerin complex in different cell lines, major questions still remain unresolved, for instance where cohesin is actually loaded onto chromatin. Further, Nipbl seems to have also additional roles, for instance as transcription factor.This chapter summarizes our current knowledge on kollerin function and the recent studies on the genomic localization of Scc2, highlighting and critically discussing controversial data.
Collapse
Affiliation(s)
- Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee1020, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Histone H4 Facilitates the Proteolysis of the Budding Yeast CENP-ACse4 Centromeric Histone Variant. Genetics 2016; 205:113-124. [PMID: 27794026 DOI: 10.1534/genetics.116.194027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
The incorporation of histone variants into nucleosomes can alter chromatin-based processes. CENP-A is the histone H3 variant found exclusively at centromeres that serves as an epigenetic mark for centromere identity and is required for kinetochore assembly. CENP-A mislocalization to ectopic sites appears to contribute to genomic instability, transcriptional misregulation, and tumorigenesis, so mechanisms exist to ensure its exclusive localization to centromeres. One conserved process is proteolysis, which is mediated by the Psh1 E3 ubiquitin ligase in Saccharomyces cerevisiae (budding yeast). To determine whether there are features of the CENP-A nucleosome that facilitate proteolysis, we performed a genetic screen to identify histone H4 residues that regulate CENP-ACse4 degradation. We found that H4-R36 is a key residue that promotes the interaction between CENP-ACse4 and Psh1 Consistent with this, CENP-ACse4 protein levels are stabilized in H4-R36A mutant cells and CENP-ACse4 is enriched in the euchromatin. We propose that the defects in CENP-ACse4 proteolysis may be related to changes in Psh1 localization, as Psh1 becomes enriched at some 3' intergenic regions in H4-R36A mutant cells. Together, these data reveal a key residue in histone H4 that is important for efficient CENP-ACse4 degradation, likely by facilitating the interaction between Psh1 and CENP-ACse4.
Collapse
|
42
|
Chen YF, Chou CC, Gartenberg MR. Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 2016; 36:2039-50. [PMID: 27185881 PMCID: PMC4946433 DOI: 10.1128/mcb.00057-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
43
|
Mishra PK, Ciftci-Yilmaz S, Reynolds D, Au WC, Boeckmann L, Dittman LE, Jowhar Z, Pachpor T, Yeh E, Baker RE, Hoyt MA, D'Amours D, Bloom K, Basrai MA. Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell 2016; 27:2286-300. [PMID: 27226485 PMCID: PMC4945145 DOI: 10.1091/mbc.e16-01-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sultan Ciftci-Yilmaz
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Reynolds
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lauren E Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ziad Jowhar
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tejaswini Pachpor
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - M Andrew Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Tsabar M, Haase J, Harrison B, Snider CE, Eldridge B, Kaminsky L, Hine RM, Haber JE, Bloom K. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genet 2016; 12:e1006021. [PMID: 27128635 PMCID: PMC4851351 DOI: 10.1371/journal.pgen.1006021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/08/2016] [Indexed: 12/24/2022] Open
Abstract
Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Julian Haase
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin Harrison
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chloe E. Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brittany Eldridge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lila Kaminsky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Rebecca M. Hine
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Hildebrand EM, Biggins S. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects. PLoS Genet 2016; 12:e1005930. [PMID: 26982580 PMCID: PMC4794243 DOI: 10.1371/journal.pgen.1005930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. Chromosomes carry the genetic material in cells. When cells divide, each daughter cell must inherit a single copy of each chromosome. The centromere is the locus on each chromosome that ensures the equal distribution of chromosomes during cell division. One essential protein involved in this task is CENP-ACse4, which normally localizes exclusively to centromeres. Here, we investigated where CENP-ACse4 spreads in the genome when parts of its regulatory machinery are removed. We found that CENP-ACse4 becomes mislocalized to promoters, the region upstream of each gene that controls the activity of the gene. Consistent with this, the mislocalization of CENP-ACse4 to promoters leads to problems with gene activity. Our work shows that mislocalization of centromeric proteins can have effects beyond chromosome segregation defects, such as interfering with gene expression on chromosome arms.
Collapse
Affiliation(s)
- Erica M. Hildebrand
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015. [PMID: 26653857 DOI: 10.7554/elife.10850.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015; 4. [PMID: 26653857 PMCID: PMC4749563 DOI: 10.7554/elife.10850] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/13/2015] [Indexed: 11/13/2022] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nat Commun 2015; 6:8962. [PMID: 26643143 PMCID: PMC4686863 DOI: 10.1038/ncomms9962] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022] Open
Abstract
PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH−/− cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localizes with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH−/− cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis. During mitosis the translocase PICH binds to ultrafine bridges formed from DNA catenanes that are unresolved by topoisomerase II. In this study, the authors show that PICH stimulates toposiomerase II activity and that they cooperate to resolve these structures.
Collapse
|
49
|
Krenn V, Musacchio A. The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling. Front Oncol 2015; 5:225. [PMID: 26528436 PMCID: PMC4607871 DOI: 10.3389/fonc.2015.00225] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore–microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review, we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.
Collapse
Affiliation(s)
- Veronica Krenn
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology , Dortmund , Germany ; Faculty of Biology, Centre for Medical Biotechnology, University Duisburg-Essen , Essen , Germany
| |
Collapse
|
50
|
Meyer RE, Chuong HH, Hild M, Hansen CL, Kinter M, Dawson DS. Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2986-3000. [PMID: 26157162 PMCID: PMC4551314 DOI: 10.1091/mbc.e15-01-0032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022] Open
Abstract
In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Marrett Hild
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Christina L Hansen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael Kinter
- Program in Free Radical Biology and Aging, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|