1
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
2
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
3
|
Kunzelmann K, Centeio R, Ousingsawat J, Talbi K, Seidler U, Schreiber R. SLC26A9 in airways and intestine: secretion or absorption? Channels (Austin) 2023; 17:2186434. [PMID: 36866602 PMCID: PMC9988340 DOI: 10.1080/19336950.2023.2186434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
- CONTACT Karl Kunzelmann
| | - Raquel Centeio
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
4
|
Sato Y, Kim D, Turner MJ, Luo Y, Zaidi SSZ, Thomas DY, Hanrahan JW. Ionocyte-Specific Regulation of Cystic Fibrosis Transmembrane Conductance Regulator. Am J Respir Cell Mol Biol 2023; 69:281-294. [PMID: 36952679 DOI: 10.1165/rcmb.2022-0241oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a tightly regulated anion channel that mediates chloride and bicarbonate conductance in many epithelia and in other tissues, but whether its regulation varies depending on the cell type has not been investigated. Epithelial CFTR expression is highest in rare cells called ionocytes. We studied CFTR regulation in control and ionocyte-enriched cultures by transducing bronchial basal cells with adenoviruses that encode only eGFP or FOXI1 (forkhead box I1) + eGFP as separate polypeptides. FOXI1 dramatically increased the number of transcripts for ionocyte markers ASCL3 (Achaete-Scute Family BHLH Transcription Factor 3), BSND, ATP6V1G3, ATP6V0D2, KCNMA1, and CFTR without altering those for secretory (SCGB1A1), basal (KRT5, KRT6, TP63), goblet (MUC5AC), or ciliated (FOXJ1) cells. The number of cells displaying strong FOXI1 expression was increased 7-fold, and there was no evidence for a broad increase in background immunofluorescence. Total CFTR mRNA and protein levels increased 10-fold and 2.5-fold, respectively. Ionocyte-enriched cultures displayed elevated basal current, increased adenylyl cyclase 5 expression, and tonic suppression of CFTR activity by the phosphodiesterase PDE1C, which has not been shown previously to regulate CFTR activity. The results indicate that CFTR regulation depends on cell type and identifies PDE1C as a potential target for therapeutics that aim to increase CFTR function specifically in ionocytes.
Collapse
Affiliation(s)
- Yukiko Sato
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Dusik Kim
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Mark J Turner
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Yishan Luo
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Center
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, and
| | - John W Hanrahan
- Department of Physiology
- Cystic Fibrosis Translational Research Center
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
6
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
7
|
Pereira C, Mazein A, Farinha CM, Gray MA, Kunzelmann K, Ostaszewski M, Balaur I, Amaral MD, Falcao AO. CyFi-MAP: an interactive pathway-based resource for cystic fibrosis. Sci Rep 2021; 11:22223. [PMID: 34782688 PMCID: PMC8592983 DOI: 10.1038/s41598-021-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal recessive disease caused by more than 2100 mutations in the CF transmembrane conductance regulator (CFTR) gene, generating variability in disease severity among individuals with CF sharing the same CFTR genotype. Systems biology can assist in the collection and visualization of CF data to extract additional biological significance and find novel therapeutic targets. Here, we present the CyFi-MAP-a disease map repository of CFTR molecular mechanisms and pathways involved in CF. Specifically, we represented the wild-type (wt-CFTR) and the F508del associated processes (F508del-CFTR) in separate submaps, with pathways related to protein biosynthesis, endoplasmic reticulum retention, export, activation/inactivation of channel function, and recycling/degradation after endocytosis. CyFi-MAP is an open-access resource with specific, curated and continuously updated information on CFTR-related pathways available online at https://cysticfibrosismap.github.io/ . This tool was developed as a reference CF pathway data repository to be continuously updated and used worldwide in CF research.
Collapse
Affiliation(s)
- Catarina Pereira
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Carlos M Farinha
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Michael A Gray
- Biosciences Institute, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Margarida D Amaral
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Andre O Falcao
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
- LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
8
|
Zhong L, Gleason EL. Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Front Cell Neurosci 2021; 15:726605. [PMID: 34456687 PMCID: PMC8385318 DOI: 10.3389/fncel.2021.726605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The strength and sign of synapses involving ionotropic GABA and glycine receptors are dependent upon the Cl- gradient. We have shown that nitric oxide (NO) elicits the release of Cl- from internal acidic stores in retinal amacrine cells (ACs); temporarily altering the Cl- gradient and the strength or even sign of incoming GABAergic or glycinergic synapses. The underlying mechanism for this effect of NO requires the cystic fibrosis transmembrane regulator (CFTR) but the link between NO and CFTR activation has not been determined. Here, we test the hypothesis that NO-dependent Ca2+ elevations activate the Ca2+-dependent adenylate cyclase 1 (AdC1) leading to activation of protein kinase A (PKA) whose activity is known to open the CFTR channel. Using the reversal potential of GABA-gated currents to monitor cytosolic Cl-, we established the requirement for Ca2+ elevations. Inhibitors of AdC1 suppressed the NO-dependent increases in cytosolic Cl- whereas inhibitors of other AdC subtypes were ineffective suggesting that AdC1 is involved. Inhibition of PKA also suppressed the action of NO. To address the sufficiency of this pathway in linking NO to elevations in cytosolic Cl-, GABA-gated currents were measured under internal and external zero Cl- conditions to isolate the internal Cl- store. Activators of the cAMP pathway were less effective than NO in producing GABA-gated currents. However, coupling the cAMP pathway activators with the release of Ca2+ from stores produced GABA-gated currents indistinguishable from those stimulated with NO. Together, these results demonstrate that cytosolic Ca2+ links NO to the activation of CFTR and the elevation of cytosolic Cl-.
Collapse
Affiliation(s)
- Li Zhong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Evanna L Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Okuda K, Dang H, Kobayashi Y, Carraro G, Nakano S, Chen G, Kato T, Asakura T, Gilmore RC, Morton LC, Lee RE, Mascenik T, Yin WN, Barbosa Cardenas SM, O'Neal YK, Minnick CE, Chua M, Quinney NL, Gentzsch M, Anderson CW, Ghio A, Matsui H, Nagase T, Ostrowski LE, Grubb BR, Olsen JC, Randell SH, Stripp BR, Tata PR, O'Neal WK, Boucher RC. Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. Am J Respir Crit Care Med 2021; 203:1275-1289. [PMID: 33321047 DOI: 10.1164/rccm.202008-3198oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Yoshihiko Kobayashi
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Satoko Nakano
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Gang Chen
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Takafumi Kato
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | - Wei-Ning Yin
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | | | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | - Carlton W Anderson
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew Ghio
- Clinical Research Branch, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hirotoshi Matsui
- Center for Respiratory Disease, National Hospital Organization Tokyo Hospital, Kiyose, Tokyo, Japan; and
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - John C Olsen
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Purushothama Rao Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | |
Collapse
|
10
|
CLCA1 Regulates Airway Mucus Production and Ion Secretion Through TMEM16A. Int J Mol Sci 2021; 22:ijms22105133. [PMID: 34066250 PMCID: PMC8151571 DOI: 10.3390/ijms22105133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.
Collapse
|
11
|
Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance. Life (Basel) 2021; 11:life11050430. [PMID: 34064654 PMCID: PMC8151306 DOI: 10.3390/life11050430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.
Collapse
|
12
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Grebert C, Becq F, Vandebrouck C. Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 320:L205-L219. [PMID: 33236921 DOI: 10.1152/ajplung.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCβ3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCβ3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCβ3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Collapse
Affiliation(s)
- Chloé Grebert
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
14
|
Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nat Commun 2020; 11:4320. [PMID: 32859916 PMCID: PMC7455562 DOI: 10.1038/s41467-020-18104-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) multiple bilateral renal cysts gradually enlarge, leading to a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) are known to drive cyst enlargement. Here we demonstrate that loss of Pkd1 increased expression of TMEM16A and CFTR and Cl- secretion in murine kidneys, with TMEM16A essentially contributing to cyst growth. Upregulated TMEM16A enhanced intracellular Ca2+ signaling and proliferation of Pkd1-deficient renal epithelial cells. In contrast, increase in Ca2+ signaling, cell proliferation and CFTR expression was not observed in Pkd1/Tmem16a double knockout mice. Knockout of Tmem16a or inhibition of TMEM16A in vivo by the FDA-approved drugs niclosamide and benzbromarone, as well as the TMEM16A-specific inhibitor Ani9 largely reduced cyst enlargement and abnormal cyst cell proliferation. The present data establish a therapeutic concept for the treatment of ADPKD.
Collapse
|
15
|
Transport properties in CFTR-/- knockout piglets suggest normal airway surface liquid pH and enhanced amiloride-sensitive Na + absorption. Pflugers Arch 2020; 472:1507-1519. [PMID: 32712714 PMCID: PMC7476968 DOI: 10.1007/s00424-020-02440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Previous analysis of CFTR-knockout (CFTR-/-) in piglets has provided important insights into the pathology of cystic fibrosis. However, controversies exist as to the true contribution of CFTR to the pH balance in airways and intestine. We therefore compared ion transport properties in newborn wild-type (CFTR+/+) and CFTR-knockout (CFTR-/- piglets). Tracheas of CFTR-/- piglets demonstrated typical cartilage malformations and muscle cell bundles. CFTR-/- airway epithelial cells showed enhanced lipid peroxidation, suggesting inflammation early in life. CFTR was mainly expressed in airway submucosal glands and was absent in lungs of CFTR-/- piglets, while expression of TMEM16A was uncompromised. mRNA levels for TMEM16A, TMEM16F, and αβγENaC were unchanged in CFTR-/- airways, while mRNA for SLC26A9 appeared reduced. CFTR was undetectable in epithelial cells of CFTR-/- airways and intestine. Small intestinal epithelium of CFTR-/- piglets showed mucus accumulation. Secretion of both electrolytes and mucus was activated by stimulation with prostaglandin E2 and ATP in the intestine of CFTR+/+, but not of CFTR-/- animals. pH was measured inside small bronchi using a pH microelectrode and revealed no difference between CFTR+/+ and CFTR-/- piglets. Intracellular pH in porcine airway epithelial cells revealed only a small contribution of CFTR to bicarbonate secretion, which was absent in cells from CFTR-/- piglets. In contrast to earlier reports, our data suggest a minor impact of CFTR on ASL pH. In contrast, enhanced amiloride-sensitive Na+ absorption may contribute to lung pathology in CFTR-/- piglets, along with a compromised CFTR- and TMEM16A-dependent Cl- transport.
Collapse
|
16
|
van Heusden C, Button B, Anderson WH, Ceppe A, Morton LC, O'Neal WK, Dang H, Alexis NE, Donaldson S, Stephan H, Boucher RC, Lazarowski ER. Inhibition of ATP hydrolysis restores airway surface liquid production in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2020; 318:L356-L365. [PMID: 31800264 PMCID: PMC7052677 DOI: 10.1152/ajplung.00449.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.
Collapse
Affiliation(s)
- Catharina van Heusden
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Biophysics and Biochemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Wayne H Anderson
- Marsico Lung Institute/Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Agathe Ceppe
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa C Morton
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott Donaldson
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Richard C Boucher
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Eduardo R Lazarowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Genovese M, Borrelli A, Venturini A, Guidone D, Caci E, Viscido G, Gambardella G, di Bernardo D, Scudieri P, Galietta LJV. TRPV4 and purinergic receptor signalling pathways are separately linked in airway epithelia to CFTR and TMEM16A chloride channels. J Physiol 2019; 597:5859-5878. [PMID: 31622498 DOI: 10.1113/jp278784] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Eact is a putative pharmacological activator of TMEM16A. Eact is strongly effective in recombinant Fischer rat thyroid (FRT) cells but not in airway epithelial cells with endogenous TMEM16A expression. Transcriptomic analysis, gene silencing and functional studies in FRT cells reveal that Eact is actually an activator of the Ca2+ -permeable TRPV4 channel. In airway epithelial cells TRPV4 and TMEM16A are expressed in separate cell types. Intracellular Ca2+ elevation by TRPV4 stimulation leads to CFTR channel activation. ABSTRACT TMEM16A is a Ca2+ -activated Cl- channel expressed in airway epithelial cells, particularly under conditions of mucus hypersecretion. To investigate the role of TMEM16A, we used Eact, a putative TMEM16A pharmacological activator. However, in contrast to purinergic stimulation, we found little effect of Eact on bronchial epithelial cells under conditions of high TMEM16A expression. We hypothesized that Eact is an indirect activator of TMEM16A. By a combination of approaches, including short-circuit current recordings, bulk and single cell RNA sequencing, intracellular Ca2+ imaging and RNA interference, we found that Eact is actually an activator of the Ca2+ -permeable TRPV4 channel and that the modest effect of this compound in bronchial epithelial cells is due to a separate expression of TMEM16A and TRPV4 in different cell types. Importantly, we found that TRPV4 stimulation induced activation of the CFTR Cl- channel. Our study reveals the existence of separate Ca2+ signalling pathways linked to different Cl- secretory processes.
Collapse
Affiliation(s)
- Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gaetano Viscido
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
18
|
Yu B, Zhu X, Yang X, Jin L, Xu J, Ma T, Yang H. Plumbagin Prevents Secretory Diarrhea by Inhibiting CaCC and CFTR Channel Activities. Front Pharmacol 2019; 10:1181. [PMID: 31649543 PMCID: PMC6795057 DOI: 10.3389/fphar.2019.01181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Secretory diarrhea, which primarily originates through intestinal pathogens and viruses, is a health burden in many regions worldwide. Enterocyte Cl− channels, as the final step in enterotoxin-induced fluid secretion, constitute an attractive class of targets for diarrhea therapy. Chloride channel inhibitors have become a new class of candidates for antisecretion and anti-intestinal motility agents. In the present study, we identified plumbagin as a transmembrane protein 16A (TMEM16A) inhibitor in a cell-based fluorescence-quenching assay, and the IC50 value was ∼12.46 µM. Short-circuit current measurements showed that plumbagin reversibly inhibited the Eact-induced Cl− current on the apical side of TMEM16A-transfected Fischer rat thyroid (FRT) cells with no significant effect on cytoplasmic Ca2+ signaling. Notably, plumbagin also inhibited the activity of intestinal epithelial calcium-activated chloride channel (CaCC) and cystic fibrosis transmembrane conductance regulator (CFTR) in both HT-29 cells and mouse colons, but had no effects on the activity of the Na+-K+ ATPase or K+ channels. In in vivo experiments, the administration of plumbagin reduced both Escherichia coli heat-stable enterotoxin (STa)- and cholera toxin (CT)-induced intestinal fluid secretion. In neonatal mouse models of CT- and rotavirus infection-induced diarrhea, 0.4 µg plumbagin inhibited secretory diarrhea by >40% and 50%, respectively, without affecting intestinal epithelial integrity or the rotaviral infection. In addition, plumbagin exerted inhibitory effects on the vasoactive intestinal peptide (VIP)-, prostaglandin E2 (PGE2)-, and 5-hydroxytryptamine (5-HT)-stimulated Cl− currents. In the evaluations of intestinal motility, plumbagin significantly delayed intestinal motility and inhibited intestinal smooth muscle contractility without an evident impact on contractive frequency. Collectively, our results indicate that plumbagin inhibits both Ca2+- and cAMP-activated Cl− channels, accounting for the mechanisms of plumbagin inhibition of chloride secretion and intestinal motility. Thus, plumbagin can be a lead compound in the treatment of CT-induced, Traveler’s, and rotaviral diarrhea, as well as other types of secretory diarrhea that result from excessive intestinal fluid secretion and increased intestinal peristalsis.
Collapse
Affiliation(s)
- Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiaojuan Zhu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xinyu Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Xu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Tonghui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
19
|
Cho DY, Skinner D, Zhang S, Lazrak A, Lim DJ, Weeks CG, Banks CG, Han CK, Kim SK, Tearney GJ, Matalon S, Rowe SM, Woodworth BA. Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion. J Ginseng Res 2019; 45:66-74. [PMID: 33437158 PMCID: PMC7790903 DOI: 10.1016/j.jgr.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results RGAE (at 30μg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = μA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 μm vs control, 3.9+/-0.09 μm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dong Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher G Weeks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Catherine G Banks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chang Kyun Han
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju, Republic of Korea
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
20
|
Kunzelmann K, Ousingsawat J, Cabrita I, Doušová T, Bähr A, Janda M, Schreiber R, Benedetto R. TMEM16A in Cystic Fibrosis: Activating or Inhibiting? Front Pharmacol 2019; 10:3. [PMID: 30761000 PMCID: PMC6362895 DOI: 10.3389/fphar.2019.00003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The inflammatory airway disease cystic fibrosis (CF) is characterized by airway obstruction due to mucus hypersecretion, airway plugging, and bronchoconstriction. The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is dysfunctional in CF, leading to defects in epithelial transport. Although CF pathogenesis is still disputed, activation of alternative Cl- channels is assumed to improve lung function in CF. Two suitable non-CFTR Cl- channels are present in the airway epithelium, the Ca2+ activated channel TMEM16A and SLC26A9. Activation of these channels is thought to be feasible to improve hydration of the airway mucus and to increase mucociliary clearance. Interestingly, both channels are upregulated during inflammatory lung disease. They are assumed to support fluid secretion, necessary to hydrate excess mucus and to maintain mucus clearance. During inflammation, however, TMEM16A is upregulated particularly in mucus producing cells, with only little expression in ciliated cells. Recently it was shown that knockout of TMEM16A in ciliated cells strongly compromises Cl- conductance and attenuated mucus secretion, but does not lead to a CF-like lung disease and airway plugging. Along this line, activation of TMEM16A by denufosol, a stable purinergic ligand, failed to demonstrate any benefit to CF patients in earlier studies. It rather induced adverse effects such as cough. A number of studies suggest that TMEM16A is essential for mucus secretion and possibly also for mucus production. Evidence is now provided for a crucial role of TMEM16A in fusion of mucus-filled granules with the apical plasma membrane and cellular exocytosis. This is probably due to local Ca2+ signals facilitated by TMEM16A. Taken together, TMEM16A supports fluid secretion by ciliated airway epithelial cells, but also maintains excessive mucus secretion during inflammatory airway disease. Because TMEM16A also supports airway smooth muscle contraction, inhibition rather than activation of TMEM16A might be the appropriate treatment for CF lung disease, asthma and COPD. As a number of FDA-approved and well-tolerated drugs have been shown to inhibit TMEM16A, evaluation in clinical trials appears timely.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Tereza Doušová
- Department of Pediatrics, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Innere Medizin I, Klinikum Rechts der Isar der TU München, München, Germany
| | - Melanie Janda
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca 2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018; 9:1585. [PMID: 30618777 PMCID: PMC6306458 DOI: 10.3389/fphys.2018.01585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder that causes a significant damage in secretory epithelial cells due to the defective ion flux across the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Pancreas is one of the organs most frequently damaged by the disease leading to pancreatic insufficiency, abdominal pain and an increased risk of acute pancreatitis in CF patients causing a significant decrease in the quality of life. CFTR plays a central role in the pancreatic ductal secretory functions by carrying Cl- and HCO3 - ions across the apical membrane. Therefore pathophysiological studies in CF mostly focused on the effects of impaired ion secretion by pancreatic ductal epithelial cells leading to exocrine pancreatic damage. However, several studies indicated that CFTR has a central role in the regulation of intracellular signaling processes and is now more widely considered as a signaling hub in epithelial cells. In contrast, elevated intracellular Ca2+ level was observed in the lack of functional CFTR in different cell types including airway epithelial cells. In addition, impaired CFTR expression has been correlated with damaged mitochondrial function in epithelial cells. These alterations of intracellular signaling in CF are not well characterized in the exocrine pancreas yet. Therefore in this review we would like to summarize the complex role of CFTR in the exocrine pancreas with a special focus on the intracellular signaling and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Madácsy
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary.,Department of Public Health, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Sweat rate analysis of ivacaftor potentiation of CFTR in non-CF adults. Sci Rep 2018; 8:16233. [PMID: 30389955 PMCID: PMC6214959 DOI: 10.1038/s41598-018-34308-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
To determine if ivacaftor (Kalydeco) influences non-CF human CFTR function in vivo, we measured CFTR-dependent (C-sweat) and CFTR-independent (M-sweat) rates from multiple identified sweat glands in 8 non-CF adults. The two types of sweating were stimulated sequentially with intradermal injections of appropriate reagents; each gland served as its own control via alternating off-on drug tests on both arms, given at weekly intervals with 3 off and 3 on tests per subject. We compared drug effects on C-sweating stimulated by either high or low concentrations of β-adrenergic cocktail, and on methacholine-stimulated M-sweating. For each subject we measured ~700 sweat volumes from ~75 glands per arm (maximum 12 readings per gland), and sweat volumes were log-transformed for statistical analysis. T-tests derived from linear mixed models (LMMs) were more conservative than the familiar paired sample t-tests, and show that ivacaftor significantly increased C-sweating stimulated by both levels of agonist, with a larger effect in the low cocktail condition; ivacaftor did not increase M-sweat. Concurrent sweat chloride tests detected no effect of ivacaftor. We conclude that ivacaftor in vivo increases the open channel probability (PO) of WT CFTR, provided it is not already maximally stimulated.
Collapse
|
23
|
Sun DI, Tasca A, Haas M, Baltazar G, Harland RM, Finkbeiner WE, Walentek P. Na+/H+ Exchangers Are Required for the Development and Function of Vertebrate Mucociliary Epithelia. Cells Tissues Organs 2018; 205:279-292. [PMID: 30300884 DOI: 10.1159/000492973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.
Collapse
Affiliation(s)
- Dingyuan I Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Department of Pathology, University of California, San Francisco, California, USA
| | - Alexia Tasca
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Grober Baltazar
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard M Harland
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, California, USA
| | - Peter Walentek
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, .,Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg,
| |
Collapse
|
24
|
Avramescu RG, Kai Y, Xu H, Bidaud-Meynard A, Schnúr A, Frenkiel S, Matouk E, Veit G, Lukacs GL. Mutation-specific downregulation of CFTR2 variants by gating potentiators. Hum Mol Genet 2018; 26:4873-4885. [PMID: 29040544 DOI: 10.1093/hmg/ddx367] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Approximately 50% of cystic fibrosis (CF) patients are heterozygous with a rare mutation on at least one allele. Several mutants exhibit functional defects, correctable by gating potentiators. Long-term exposure (≥24 h) to the only available potentiator drug, VX-770, leads to the biochemical and functional downregulation of F508del-CFTR both in immortalized and primary human airway cells, and possibly other CF mutants, attenuating its beneficial effect. Based on these considerations, we wanted to determine the effect of chronic VX-770 exposure on the functional and biochemical expression of rare CF processing/gating mutants in human airway epithelia. Expression of CFTR2 mutants was monitored in the human bronchial epithelial cell line (CFBE41o-) and in patient-derived conditionally reprogrammed bronchial and nasal epithelia by short-circuit current measurements, cell surface ELISA and immunoblotting in the absence or presence of CFTR modulators. The VX-770 half-maximal effective (EC50) concentration for G551D-CFTR activation was ∼0.63 μM in human nasal epithelia, implying that comparable concentration is required in the lung to attain clinical benefit. Five of the twelve rare CFTR2 mutants were susceptible to ∼20-70% downregulation by chronic VX-770 exposure with an IC50 of ∼1-20 nM and to destabilization by other investigational potentiators, thereby diminishing the primary functional gain of CFTR modulators. Thus, chronic exposure to VX-770 and preclinical potentiators can destabilize CFTR2 mutants in human airway epithelial models in a mutation and compound specific manner. This highlights the importance of selecting potentiator drugs with minimal destabilizing effects on CF mutants, advocating a precision medicine approach.
Collapse
Affiliation(s)
- Radu G Avramescu
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Yukari Kai
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | - Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Saul Frenkiel
- Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, Montréal, QC H2T 1E2, Canada
| | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, Respiratory Division, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
25
|
Rottgen TS, Nickerson AJ, Minor EA, Stewart AB, Harold AD, Rajendran VM. Dextran sulfate sodium-induced chronic colitis attenuates Ca 2+-activated Cl - secretion in murine colon by downregulating TMEM16A. Am J Physiol Cell Physiol 2018; 315:C10-C20. [PMID: 29561662 PMCID: PMC6087728 DOI: 10.1152/ajpcell.00328.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022]
Abstract
Attenuated Ca2+-activated Cl- secretion has previously been observed in the model of dextran sulfate sodium (DSS)-induced colitis. Prior studies have implicated dysfunctional muscarinic signaling from basolateral membranes as the potential perpetrator leading to decreased Ca2+-activated Cl- secretion. However, in our chronic model of DSS-colitis, cholinergic receptor muscarinic 3 ( Chrm3) transcript (1.028 ± 0.12 vs. 1.029 ± 0.27, P > 0.05) and CHRM3 protein expression (1.021 ± 0.24 vs. 0.928 ± 0.09, P > 0.05) were unchanged. Therefore, we hypothesized that decreased carbachol (CCH)-stimulated Cl- secretion in DSS-induced colitis could be attributed to a loss of Ca2+-activated Cl- channels (CaCC) in apical membranes of colonic epithelium. To establish this chemically-induced colitis, Balb/C mice were exposed to 4% DSS for five alternating weeks to stimulate a more moderate, chronic colitis. Upon completion of the protocol, whole thickness sections of colon were mounted in an Ussing chamber under voltage-clamp conditions. DSS-induced colitis demonstrated a complete inhibition of basolateral administration of CCH-stimulated Cl- secretion that actually displayed a reversal in polarity (15.40 ± 2.22 μA/cm2 vs. -2.47 ± 0.25 μA/cm2). Western blotting of potential CaCCs, quantified by densitometric analysis, demonstrated no change in bestrophin-2 and cystic fibrosis transmembrane regulator, whereas anoctamin-1 [ANO1, transmembrane protein 16A (TMEM16A)] was significantly downregulated (1.001 ± 0.13 vs. 0.510 ± 0.12, P < 0.05). Our findings indicate that decreased expression of TMEM16A in DSS-induced colitis contributes to the decreased Ca2+-activated Cl- secretion in murine colon.
Collapse
Affiliation(s)
- Trey S Rottgen
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrew J Nickerson
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Emily A Minor
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine , Morgantown, West Virginia
| | | | - Abby D Harold
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
26
|
Lérias J, Pinto M, Benedetto R, Schreiber R, Amaral M, Aureli M, Kunzelmann K. Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1. Cell Signal 2018; 44:10-19. [PMID: 29331508 DOI: 10.1016/j.cellsig.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Airway epithelial cells express both Ca2+ activated TMEM16A/ANO1 and cAMP activated CFTR anion channels. Previous work suggested a significant crosstalk of intracellular Ca2+ and cAMP signaling pathways, leading to activation of both chloride channels. We demonstrate that in airway epithelial cells, stimulation of purinergic or muscarinic G-protein coupled receptors (GPCRs) activates TMEM16A and CFTR. Additional expression of Gq/11 and phospholipase C coupled GPCRs strongly enhanced the crosstalk between Ca2+- and cAMP-dependent signaling. Knockdown of endogenous GRCRs attenuated crosstalk and functional coupling between TMEM16A and CFTR. The number of receptors did not affect expression or membrane localization of TMEM16A or CFTR, but controlled assembly of the local signalosome. GPCRs translocate Ca2+-sensitive adenylate cyclase type 1 (ADCY1) and exchange protein directly activated by cAMP (EPAC1) to particular plasma membrane domains containing GPCRs, CFTR and TMEM16A, thereby producing compartmentalized Ca2+ and cAMP signals and significant crosstalk. While biosynthesis and membrane trafficking of CFTR requires a functional Golgi apparatus, maturation and membrane trafficking of TMEM16A may occur independent of the Golgi. Because Ca2+ activated TMEM16A currents are only transient, continuous Cl- secretion by airway epithelial cells requires CFTR. The present data also explain why receptor-dependent activation of TMEM16A is more efficient than direct stimulation by Ca2+.
Collapse
Affiliation(s)
- Joana Lérias
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Madalena Pinto
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
27
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
Affiliation(s)
- Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| | - Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Miriam Frankenthal Figueira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Gopika Hari
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| | - Eric Sibley
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
| | - Jackson Souza-Menezes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Marcelo M. Morales
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
28
|
Yu B, Jiang Y, Zhang B, Yang H, Ma T. Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharmacol Res 2017; 129:453-461. [PMID: 29155014 DOI: 10.1016/j.phrs.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
We previously identified, by a natural-product screen, resveratrol oligomers as inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Here, we report the resveratrol dimer trans-ε-viniferin (TV) and tetramer r-2-viniferin (RV) as inhibitors of the intestinal calcium-activated chloride channel (CaCC) and demonstrate their antisecretory efficacy in a neonatal mouse model of rotaviral diarrhea. Short-circuit measurements show inhibition of CaCC current in the human colonic cell line HT-29 by TV and RV with IC50∼1 and 20μM, respectively. TV primarily inhibited the physiologically relevant, long-term CaCC current following agonist stimulation, without effect on cytoplasmic Ca2+ signaling. TV and RV inhibited short-circuit current in mouse colon as well. In a neonatal mouse model of rotaviral secretory diarrhea produced by oral inoculation with rotavirus, 2μg TV or 11μg RV inhibited secretory diarrhea by >50%, without effect on the rotaviral infection. Our results support the antisecretory efficacy of non-toxic, natural-product resveratrol oligomers for diarrheas produced by CaCC activation. Because these compounds also inhibit the CFTR chloride channel, they may be useful for antisecretory therapy of a wide range of diarrheas.
Collapse
Affiliation(s)
- Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China
| | - Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China; College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Bo Zhang
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China.
| | - Tonghui Ma
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
29
|
Benedetto R, Ousingsawat J, Wanitchakool P, Zhang Y, Holtzman MJ, Amaral M, Rock JR, Schreiber R, Kunzelmann K. Epithelial Chloride Transport by CFTR Requires TMEM16A. Sci Rep 2017; 7:12397. [PMID: 28963502 PMCID: PMC5622110 DOI: 10.1038/s41598-017-10910-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-activated Cl− currents, but unexpectedly also abrogates CFTR-mediated Cl− secretion and completely abolishes cAMP-activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.
Collapse
Affiliation(s)
- Roberta Benedetto
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Podchanart Wanitchakool
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Margarida Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016, Lisboa, Portugal
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, USA
| | - Rainer Schreiber
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
30
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
31
|
Char JE, Dunn C, Davies Z, Milla C, Moss RB, Wine JJ. The magnitude of ivacaftor effects on fluid secretion via R117H-CFTR channels: Human in vivo measurements. PLoS One 2017; 12:e0175486. [PMID: 28419121 PMCID: PMC5395152 DOI: 10.1371/journal.pone.0175486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
We optically measured effects of orally available ivacaftor (Kalydeco®) on sweat rates of identified glands in 3 R117H subjects, each having a unique set of additional mutations, and compared them with 5 healthy control subjects tested contemporaneously. We injected β-adrenergic agonists intradermally to stimulate CFTR-dependent 'C-sweat' and methacholine to stimulate 'M-sweat', which persists in CF subjects. We focused on an R117H-7T/F508del subject who produced quantifiable C-sweat off ivacaftor and was available for 1 blinded, 3 off ivacaftor, and 3 on ivacaftor tests, allowing us to estimate in vivo fold-increase in sweat rates produced by ivacaftor's effect on the open probability (PO) of R117H-CFTR. Measured sweat rates must be corrected for sweat losses. With estimated sweat losses of 0.023 to 0.08 nl·gland-1·min-1, ivacaftor increased the average C-sweat rates 3-7 fold, and estimated function as % of WT were 4.1-12% off ivacaftor and 21.9-32% on ivacaftor (larger values reflect increased loss estimates). Based on single tests, an R117H-7T/ R117H-7T subject showed 6-9% WT function off ivacaftor and 28-43% on ivacaftor. Repeat testing of an R117H-5T/F508del subject detected only trace responding to ivacaftor. We conclude that in vivo, R117H PO is strongly increased by ivacaftor, but channel number, mainly determined by variable deletion of exon 10, has a marked influence on outcomes.
Collapse
Affiliation(s)
- Jessica E. Char
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Colleen Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zoe Davies
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard B. Moss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
32
|
Cabrita I, Benedetto R, Fonseca A, Wanitchakool P, Sirianant L, Skryabin BV, Schenk LK, Pavenstädt H, Schreiber R, Kunzelmann K. Differential effects of anoctamins on intracellular calcium signals. FASEB J 2017; 31:2123-2134. [PMID: 28183802 DOI: 10.1096/fj.201600797rr] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
The Ca2+-activated Cl- channel TMEM16A [anoctamin (ANO)1] is homologous to yeast Ist2 and has been shown to tether the cortical endoplasmic reticulum (ER) to the plasma membrane. We therefore examined whether ANO1 and other members of the ANO family affect intracellular Ca2+ ([Ca2+]i) signals. It is shown that expression of ANO1 augments Ca2+ store release upon stimulation of GPCRs, whereas knockdown of ANO1, or lack of Ano1 expression in Ano1-/- animals, as shown in an earlier report, inhibits Ca2+ release. ANO6, and -10 show similar effects, whereas expression of ANO4, -8, and -9 attenuate filling of the ER store. The impact of ANO1 and -4 were examined in more detail. ANO1 colocalized and interacted with IP3R, whereas ANO4 colocalized with SERCA Ca2+ pumps and interacted with ORAI-1 channels, respectively. ANO1 Cl currents were rapidly activated exclusively through Ca2+ store release, and remained untouched by influx of extracellular Ca2+ In contrast expression of ANO4 caused a delayed activation of membrane-localized ANO6 channels, solely through store-operated Ca2+ entry via ORAI. Ca2+ signals were inhibited by knocking down expression of endogenous ANO1, -5, -6, and -10 and were also reduced in epithelial cells from Ano10-/- mice. The data suggest that ANOs affect compartmentalized [Ca2+]i signals, which may explain some of the cellular defects related to ANO mutations.-Cabrita, I., Benedetto, R., Fonseca, A., Wanitchakool, P., Sirianant, L., Skryabin, B. V., Schenk, L. K., Pavenstädt, H., Schreiber, R., Kunzelmann, K. Differential effects of anoctamins on intracellular calcium signals.
Collapse
Affiliation(s)
- Inês Cabrita
- Physiological Institute, University of Regensburg, Regensburg, Germany;
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Ana Fonseca
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Lalida Sirianant
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Boris V Skryabin
- Department of Medicine (TRAM), University of Münster, Münster, Germany; and
| | - Laura K Schenk
- Department of Internal Medicine D, Universitätsklinikum Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine D, Universitätsklinikum Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany;
| |
Collapse
|
33
|
Cil O, Phuan PW, Gillespie AM, Lee S, Tradtrantip L, Yin J, Tse M, Zachos NC, Lin R, Donowitz M, Verkman AS. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. FASEB J 2016; 31:751-760. [PMID: 27871064 DOI: 10.1096/fj.201600891r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
Abstract
Secretory diarrheas caused by bacterial enterotoxins, including cholera and traveler's diarrhea, remain a major global health problem. Inappropriate activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel occurs in these diarrheas. We previously reported that the benzopyrimido-pyrrolo-oxazinedione (R)-BPO-27 inhibits CFTR chloride conductance with low-nanomolar potency. Here, we demonstrate using experimental mouse models and human enterocyte cultures the potential utility of (R)-BPO-27 for treatment of secretory diarrheas caused by cholera and Escherichia coli enterotoxins. (R)-BPO-27 fully blocked CFTR chloride conductance in epithelial cell cultures and intestine after cAMP agonists, cholera toxin, or heat-stable enterotoxin of E. coli (STa toxin), with IC50 down to ∼5 nM. (R)-BPO-27 prevented cholera toxin and STa toxin-induced fluid accumulation in small intestinal loops, with IC50 down to 0.1 mg/kg. (R)-BPO-27 did not impair intestinal fluid absorption or inhibit other major intestinal transporters. Pharmacokinetics in mice showed >90% oral bioavailability with sustained therapeutic serum levels for >4 h without the significant toxicity seen with 7-d administration at 5 mg/kg/d. As evidence to support efficacy in human diarrheas, (R)-BPO-27 blocked fluid secretion in primary cultures of enteroids from human small intestine and anion current in enteroid monolayers. These studies support the potential utility of (R)-BPO-27 for therapy of CFTR-mediated secretory diarrheas.-Cil, O., Phuan, P.-W., Gillespie, A. M., Lee, S., Tradtrantip, L., Yin, J., Tse, M., Zachos, N. C., Lin, R., Donowitz, M., Verkman, A. S. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins.
Collapse
Affiliation(s)
- Onur Cil
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Puay-Wah Phuan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Sujin Lee
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Lukmanee Tradtrantip
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Jianyi Yin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ming Tse
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas C Zachos
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruxian Lin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California, USA; .,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl - channels in apoptosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:599-610. [PMID: 27270446 DOI: 10.1007/s00249-016-1140-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022]
Abstract
A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K+, Cl-, and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl- channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl- currents and AVD, but it remains unclear whether these anoctamins operate as Cl- channels or as regulators of other apoptotic Cl- channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
35
|
P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth of renal cyst-forming epithelial cells. Purinergic Signal 2016; 12:687-695. [PMID: 27565965 DOI: 10.1007/s11302-016-9532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney diseases are characterized by numerous renal cysts that continuously enlarge resulting in compression of intact nephrons and tissue hypoxia. Recently, we have shown that hypoxia-inducible factor (HIF)-1α promotes secretion-dependent cyst expansion, presumably by transcriptional regulation of proteins that are involved in calcium-activated chloride secretion. Here, we report that HIF-1α directly activates expression of the purinergic receptor P2Y2R in human primary renal tubular cells. In addition, we found that P2Y2R is highly expressed in cyst-lining cells of human ADPKD kidneys as well as PKD1 orthologous mouse kidneys. Knockdown of P2Y2R in renal collecting duct cells inhibited calcium-dependent chloride secretion in Ussing chamber analyses. In line with these findings, knockdown of P2Y2R retarded cyst expansion in vitro and prevented ATP- and HIF-1α-dependent cyst growth. In conclusion, P2Y2R mediates ATP-dependent cyst growth and is transcriptionally regulated by HIF-1α. These findings provide further mechanistic evidence on how hypoxia promotes cyst growth.
Collapse
|
36
|
Haggie PM, Phuan PW, Tan JA, Zlock L, Finkbeiner WE, Verkman AS. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis. FASEB J 2016; 30:2187-97. [PMID: 26932931 DOI: 10.1096/fj.201600223r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
Pendrin (SLC26A4) is a Cl(-)/anion exchanger expressed in the epithelium of inflamed airways where it is thought to facilitate Cl(-) absorption and HCO3 (-) secretion. Studies using pendrin knockout mice and airway epithelial cells from hearing-impaired subjects with pendrin loss of function suggest involvement of pendrin in inflammatory lung diseases, including cystic fibrosis (CF), perhaps by regulation of airway surface liquid (ASL) volume. Here we identified small-molecule pendrin inhibitors and demonstrated their efficacy in increasing ASL volume. A cell-based, functional high-throughput screen of ∼36,000 synthetic small molecules produced 3 chemical classes of inhibitors of human pendrin. After structure-activity studies, tetrahydropyrazolopyridine and pyrazolothiophenesulfonamide compounds reversibly inhibited pendrin-facilitated Cl(-) exchange with SCN(-), I(-), NO3 (-), and HCO3 (-) with drug concentration causing 50% inhibition down to ∼2.5 μM. In well-differentiated primary cultures of human airway epithelial cells from non-CF and CF subjects, treatment with IL-13, which causes inflammation with strong pendrin up-regulation, strongly increased Cl(-)/HCO3 (-) exchange and the increase was blocked by pendrin inhibition. Pendrin inhibition significantly increased ASL depth (by ∼8 μm) in IL-13-treated non-CF and CF cells but not in untreated cells. These studies implicate the involvement of pendrin-facilitated Cl(-)/HCO3 (-) in the regulation of ASL volume and suggest the utility of pendrin inhibitors in inflammatory lung diseases, including CF.-Haggie, P. M., Phuan, P.-W., Tan, J.-A., Zlock, L., Finkbeiner, W. E., Verkman, A. S. Inhibitors of pendrin anion exchange identified in a small molecule screen increase airway surface liquid volume in cystic fibrosis.
Collapse
Affiliation(s)
- Peter M Haggie
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA; and
| | - Puay-Wah Phuan
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA; and
| | - Joseph-Anthony Tan
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA; and
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - A S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA; and
| |
Collapse
|
37
|
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR. Sci Rep 2016; 6:21975. [PMID: 26911344 PMCID: PMC4766410 DOI: 10.1038/srep21975] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/24/2022] Open
Abstract
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.
Collapse
|
38
|
Glucose promotes secretion-dependent renal cyst growth. J Mol Med (Berl) 2015; 94:107-17. [PMID: 26334260 DOI: 10.1007/s00109-015-1337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Polycystic kidney diseases are characterized by the development of numerous bilateral renal cysts that continuously enlarge resulting in a decline of kidney function due to compression of intact nephrons. Cyst growth is driven by transepithelial chloride secretion which depends on both intracellular cAMP and calcium. Mechanisms that are involved in the regulation of the underlying secretory pathways remain incompletely understood. Here we show that glucose concentration has a strong impact on cyst growth of renal tubular cells within a collagen matrix as well as in embryonic kidneys deficient or competent for Pkd1. Glucose-dependent cyst growth correlates with the transcriptional induction of the calcium-activated chloride channel anoctamin 1 (ANO1) and its increased expression in the apical membrane of cyst-forming cells. Inhibition of ANO1 with the specific inhibitor CaCCinh-AO1 significantly decreases glucose-dependent cyst growth in both models. Ussing chamber analyses revealed increased apical chloride secretion of renal tubular cells upon exposure to high glucose medium which can also be inhibited by the use of CaCCinh-AO1. These data suggest that glycemic control may help to reduce renal cyst growth in patients with polycystic kidney disease. KEY MESSAGE Renal cyst growth depends on glucose concentration in two in vitro cyst models. High glucose leads to upregulation of the calcium-activated chloride channel ANO1. High glucose promotes calcium-activated chloride secretion via ANO1. Glucose-dependent secretion can be inhibited by a specific inhibitor of ANO1.
Collapse
|
39
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
40
|
Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med 2015; 6:246ra97. [PMID: 25101887 DOI: 10.1126/scitranslmed.3008889] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Miklos Bagdany
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Pirjo M Apaja
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Florence Borot
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Daniel Szollosi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Yu-Sheng Wu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0511, USA
| | - Tamas Hegedus
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada. Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada. Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
41
|
Ivonnet P, Salathe M, Conner GE. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling. Br J Pharmacol 2014; 172:173-84. [PMID: 25220136 DOI: 10.1111/bph.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE H2 O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2 O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion. This study investigated signalling downstream of the receptors activated by H2 O2 . EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2 O2 , an EP4 receptor agonist or β2 -adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca(2+) ]I ) changes were followed by microscopy using fura-2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2 O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2 O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca(2+) ]i via Ca(2+) store release (and not entry). Increased [Ca(2+) ]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3 (-) ]. Ca(2+) -activated apical KCa 1.1 channels and cAMP-activated basolateral KV 7.1 channels contributed to H2 O2 -stimulated anion currents. A similar Epac-mediated pathway was seen following β2 -adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2 O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca(2+) crosstalk to activate sAC. The Epac-mediated Ca(2+) signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli.
Collapse
Affiliation(s)
- P Ivonnet
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida, USA
| | | | | |
Collapse
|
42
|
Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 2014; 467:1203-13. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.
Collapse
|
43
|
Tradtrantip L, Ko EA, Verkman AS. Antidiarrheal efficacy and cellular mechanisms of a Thai herbal remedy. PLoS Negl Trop Dis 2014; 8:e2674. [PMID: 24551253 PMCID: PMC3923670 DOI: 10.1371/journal.pntd.0002674] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Screening of herbal remedies for Cl(-) channel inhibition identified Krisanaklan, a herbal extract used in Thailand for treatment of diarrhea, as an effective antidiarrheal in mouse models of secretory diarrheas with inhibition activity against three Cl(-) channel targets. Krisanaklan fully inhibited cholera toxin-induced intestinal fluid secretion in a closed-loop mouse model with ∼50% inhibition at a 1 ∶ 50 dilution of the extract. Orally administered Krisanaklan (5 µL/g) prevented rotavirus-induced diarrhea in neonatal mice. Short-circuit current measurements showed full inhibition of cAMP and Ca(2+) agonist-induced Cl(-) conductance in human colonic epithelial T84 cells, with ∼ 50% inhibition at a 1 ∶ 5,000 dilution of the extract. Krisanaklan also strongly inhibited intestinal smooth muscle contraction in an ex vivo preparation. Together with measurements using specific inhibitors, we conclude that the antidiarrheal actions of Krisanaklan include inhibition of luminal CFTR and Ca(2+)-activated Cl(-) channels in enterocytes. HPLC fractionation indicated that the three Cl(-) inhibition actions of Krisanaklan are produced by different components in the herbal extract. Testing of individual herbs comprising Krisanaklan indicated that agarwood and clove extracts as primarily responsible for Cl(-) channel inhibition. The low cost, broad antidiarrheal efficacy, and defined cellular mechanisms of Krisanaklan suggests its potential application for antisecretory therapy of cholera and other enterotoxin-mediated secretory diarrheas in developing countries.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Eun-A Ko
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Char JE, Wolfe MH, Cho HJ, Park IH, Jeong JH, Frisbee E, Dunn C, Davies Z, Milla C, Moss RB, Thomas EAC, Wine JJ. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor. PLoS One 2014; 9:e88564. [PMID: 24520399 PMCID: PMC3919757 DOI: 10.1371/journal.pone.0088564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/12/2014] [Indexed: 01/02/2023] Open
Abstract
To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (-) ivacaftor, 3 only (+) ivacaftor and 3 (+/-) ivacaftor (1-5 tests per condition). The total number of gland measurements was 852 (-) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.
Collapse
Affiliation(s)
- Jessica E. Char
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Marlene H. Wolfe
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Hyung-ju Cho
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Il-Ho Park
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Jin Hyeok Jeong
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Eric Frisbee
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
| | - Colleen Dunn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zoe Davies
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard B. Moss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ewart A. C. Thomas
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Psychology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
45
|
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl(-) and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca(2+) elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC-forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca(2+)-activated Cl(-) currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca(2+)-dependent Cl(-) secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl(-) transport.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
46
|
Verkman AS, Synder D, Tradtrantip L, Thiagarajah JR, Anderson MO. CFTR inhibitors. Curr Pharm Des 2013; 19:3529-41. [PMID: 23331030 DOI: 10.2174/13816128113199990321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/16/2013] [Indexed: 12/16/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease.
Collapse
Affiliation(s)
- Alan S Verkman
- University of California-San Francisco, CA 94143-0521, U.S.A.
| | | | | | | | | |
Collapse
|
47
|
Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 2013; 13:888-94. [PMID: 23992767 DOI: 10.1016/j.coph.2013.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/18/2022]
Abstract
Secretory diarrheas caused by bacterial and viral enterotoxins remain a significant cause of morbidity and mortality. Enterocyte Cl(-) channels represent an attractive class of targets for diarrhea therapy, as they are the final, rate-limiting step in enterotoxin-induced fluid secretion in the intestine. Activation of cyclic nucleotide and/or Ca(2+) signaling pathways in secretory diarrheas increases the conductance of Cl(-) channels at the enterocyte luminal membrane, which include the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) channels (CaCCs). High-throughput screens have yielded several chemical classes of small molecule CFTR and CaCC inhibitors that show efficacy in animal models of diarrheas. Natural-product diarrhea remedies with Cl(-) channel inhibition activity have also been identified, with one product recently receiving FDA approval for HIV-associated diarrhea.
Collapse
|
48
|
Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2013; 2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes.
Collapse
Affiliation(s)
- Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
49
|
Amin R, Sharma S, Ratakonda S, Hassan HA. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation. Am J Physiol Cell Physiol 2013; 305:C78-89. [PMID: 23596171 DOI: 10.1152/ajpcell.00339.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nephrolithiasis remains a major health problem in Western countries. Seventy to 80% of kidney stones are composed of calcium oxalate, and small changes in urinary oxalate affect risk of kidney stone formation. Intestinal oxalate secretion mediated by the anion exchanger SLC26A6 plays an essential role in preventing hyperoxaluria and calcium oxalate nephrolithiasis, indicating that understanding the mechanisms regulating intestinal oxalate transport is critical for management of hyperoxaluria. Purinergic signaling modulates several intestinal processes through pathways including PKC activation, which we previously found to inhibit Slc26a6 activity in mouse duodenal tissue. We therefore examined whether purinergic stimulation with ATP and UTP affects oxalate transport by human intestinal Caco-2-BBe (C2) cells. We measured [¹⁴C]oxalate uptake in the presence of an outward Cl⁻ gradient as an assay of Cl⁻/oxalate exchange activity, ≥50% of which is mediated by SLC26A6. We found that ATP and UTP significantly inhibited oxalate transport by C2 cells, an effect blocked by the PKC inhibitor Gö-6983. Utilizing pharmacological agonists and antagonists, as well as PKC-δ knockdown studies, we observed that ATP inhibits oxalate transport through the P2Y₂ receptor, PLC, and PKC-δ. Biotinylation studies showed that ATP inhibits oxalate transport by lowering SLC26A6 surface expression. These findings are of potential relevance to pathophysiology of inflammatory bowel disease-associated hyperoxaluria, where supraphysiological levels of ATP/UTP are expected and overexpression of the P2Y₂ receptor has been reported. We conclude that ATP and UTP inhibit oxalate transport by lowering SLC26A6 surface expression in C2 cells through signaling pathways including the P2Y₂ purinergic receptor, PLC, and PKC-δ.
Collapse
Affiliation(s)
- Ruhul Amin
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
50
|
Buyck JM, Verriere V, Benmahdi R, Higgins G, Guery B, Matran R, Harvey BJ, Faure K, Urbach V. P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. J Cyst Fibros 2012; 12:60-7. [PMID: 22809761 DOI: 10.1016/j.jcf.2012.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa airway infection is associated with a high mortality rate in cystic fibrosis. Lipopolysaccharide (LPS), a main constituent of the outer membrane of P. aeruginosa, is responsible for activation of innate immune response but its role on airway epithelium ion transport, is not well known. The aim of this study was to determine the role for P. aeruginosa LPS in modulating chloride secretion and intracellular calcium in the human bronchial epithelial cell line, 16HBE14o-. METHODS We used intracellular calcium imaging and short-circuit current measurement upon exposure of cells to P. aeruginosa LPS. RESULTS Apical LPS stimulated intracellular calcium release and calcium entry and enhanced chloride secretion. This latter effect was significantly inhibited by CFTR(inh)-172 and BAPTA-AM (intracellular Ca(2+) chelator). CONCLUSIONS Our data provides evidence for a new role of P. aeruginosa LPS in stimulating calcium entry and release and a subsequent chloride secretion via CFTR in human bronchial epithelium.
Collapse
Affiliation(s)
- J M Buyck
- Laboratoire de Physiologie, EA2689, IMPRT IFR 114, Université de Lille, Lille cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|