1
|
Wenli Y, Wei W, Yubiao P, Hua H, Hongyan T. ARF3 as a novel biomarker and target in acute myeloid leukemia: Insights from pan-cancer analysis. Genomics 2025; 117:110984. [PMID: 39756487 DOI: 10.1016/j.ygeno.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Acute myeloid leukemia is a malignant hematologic disorder characterized by the excessive proliferation and accumulation of immature myeloid cells. This abnormality disrupts normal hematopoiesis, leading to symptoms such as anemia, increased susceptibility to infections and bleeding. ADP-ribosylation factors (ARFs) are critical in various cellular functions, including vesicular trafficking, membrane dynamics, cytoskeleton organization, signal transduction, endocytosis, exocytosis, and maintaining organelle integrity. Among ARF family members, ARF3 has garnered relatively less attention compared to other members like ARF1 and ARF6, leaving its role less understood. In this study, we found that the higher expression of ARF3 is correlated with poorer prognosis in AML patients. Silencing ARF3 in AML cells interrupted cell cycle progression and promote cell death as well as inhibit leukemogenesis in vivo. Mechanically, ARF3 knockdown suppressed AML progression by inhibiting PI3K/Akt signaling pathway. Our results indicate that ARF3 is linked to poor outcomes in AML patients and can serve as a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Yang Wenli
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Clinical Research Center For Hematological Disorder, Hangzhou, Zhejiang, PR China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China
| | - Wang Wei
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Clinical Research Center For Hematological Disorder, Hangzhou, Zhejiang, PR China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China
| | - Pan Yubiao
- Department of Hematology, Zhejiang Hospital, Zhejiang, PR China
| | - Huang Hua
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Clinical Research Center For Hematological Disorder, Hangzhou, Zhejiang, PR China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China
| | - Tong Hongyan
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Provincial Clinical Research Center For Hematological Disorder, Hangzhou, Zhejiang, PR China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Wong-Dilworth L, Rodilla-Ramirez C, Fox E, Restel SD, Stockhammer A, Adarska P, Bottanelli F. STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. J Cell Biol 2023; 222:e202205107. [PMID: 37102998 PMCID: PMC10140647 DOI: 10.1083/jcb.202205107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
ADP-ribosylation factor (ARF) GTPases are major regulators of cellular membrane homeostasis. High sequence similarity and multiple, possibly redundant functions of the five human ARFs make investigating their function a challenging task. To shed light on the roles of the different Golgi-localized ARF members in membrane trafficking, we generated CRISPR-Cas9 knockins (KIs) of type I (ARF1 and ARF3) and type II ARFs (ARF4 and ARF5) and mapped their nanoscale localization with stimulated emission depletion (STED) super-resolution microscopy. We find ARF1, ARF4, and ARF5 on segregated nanodomains on the cis-Golgi and ER-Golgi intermediate compartments (ERGIC), revealing distinct roles in COPI recruitment on early secretory membranes. Interestingly, ARF4 and ARF5 define Golgi-tethered ERGIC elements decorated by COPI and devoid of ARF1. Differential localization of ARF1 and ARF4 on peripheral ERGICs suggests the presence of functionally different classes of intermediate compartments that could regulate bi-directional transport between the ER and the Golgi. Furthermore, ARF1 and ARF3 localize to segregated nanodomains on the trans-Golgi network (TGN) and are found on TGN-derived post-Golgi tubules, strengthening the idea of distinct roles in post-Golgi sorting. This work provides the first map of the nanoscale organization of human ARF GTPases on cellular membranes and sets the stage to dissect their numerous cellular roles.
Collapse
Affiliation(s)
| | | | - Eleanor Fox
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
B.R. R, Shah N, Joshi P, Madhusudan MS, Balasubramanian N. Kinetics of Arf1 inactivation regulates Golgi organisation and function in non-adherent fibroblasts. Biol Open 2023; 12:bio059669. [PMID: 36946871 PMCID: PMC10187640 DOI: 10.1242/bio.059669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Arf1 belongs to the Arf family of small GTPases that localise at the Golgi and plasma membrane. Active Arf1 plays a crucial role in regulating Golgi organisation and function. In mouse fibroblasts, loss of adhesion triggers a consistent drop (∼50%) in Arf1 activation that causes the Golgi to disorganise but not fragment. In suspended cells, the trans-Golgi (GalTase) disperses more prominently than cis-Golgi (Man II), accompanied by increased active Arf1 (detected using GFP-ABD: ARHGAP10 Arf1 binding domain) associated with the cis-Golgi compartment. Re-adhesion restores Arf1 activation at the trans-Golgi as it reorganises. Arf1 activation at the Golgi is regulated by Arf1 Guanine nucleotide exchange factors (GEFs), GBF1, and BIG1/2. In non-adherent fibroblasts, the cis-medial Golgi provides a unique setting to test and understand the role GEF-mediated Arf1 activation has in regulating Golgi organisation. Labelled with Man II-GFP, non-adherent fibroblasts treated with increasing concentrations of Brefeldin-A (BFA) (which inhibits BIG1/2 and GBF1) or Golgicide A (GCA) (which inhibits GBF1 only) comparably decrease active Arf1 levels. They, however, cause a concentration-dependent increase in cis-medial Golgi fragmentation and fusion with the endoplasmic reticulum (ER). Using selected BFA and GCA concentrations, we find a change in the kinetics of Arf1 inactivation could mediate this by regulating cis-medial Golgi localisation of GBF1. On loss of adhesion, a ∼50% drop in Arf1 activation over 120 min causes the Golgi to disorganise. The kinetics of this drop, when altered by BFA or GCA treatment causes a similar decline in Arf1 activation but over 10 min. This causes the Golgi to now fragment which affects cell surface glycosylation and re-adherent cell spreading. Using non-adherent fibroblasts this study reveals the kinetics of Arf1 inactivation, with active Arf1 levels, to be vital for Golgi organisation and function.
Collapse
Affiliation(s)
- Rajeshwari B.R.
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Nikita Shah
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Prachi Joshi
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - M. S. Madhusudan
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Sandilands E, Freckmann EC, Cumming EM, Román-Fernández A, McGarry L, Anand J, Galbraith L, Mason S, Patel R, Nixon C, Cartwright J, Leung HY, Blyth K, Bryant DM. The small GTPase ARF3 controls invasion modality and metastasis by regulating N-cadherin levels. J Cell Biol 2023; 222:e202206115. [PMID: 36880595 PMCID: PMC9997661 DOI: 10.1083/jcb.202206115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023] Open
Abstract
ARF GTPases are central regulators of membrane trafficking that control local membrane identity and remodeling facilitating vesicle formation. Unraveling their function is complicated by the overlapping association of ARFs with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and numerous interactors. Through a functional genomic screen of three-dimensional (3D) prostate cancer cell behavior, we explore the contribution of ARF GTPases, GEFs, GAPs, and interactors to collective invasion. This revealed that ARF3 GTPase regulates the modality of invasion, acting as a switch between leader cell-led chains of invasion or collective sheet movement. Functionally, the ability of ARF3 to control invasion modality is dependent on association and subsequent control of turnover of N-cadherin. In vivo, ARF3 levels acted as a rheostat for metastasis from intraprostatic tumor transplants and ARF3/N-cadherin expression can be used to identify prostate cancer patients with metastatic, poor-outcome disease. Our analysis defines a unique function for the ARF3 GTPase in controlling how cells collectively organize during invasion and metastasis.
Collapse
Affiliation(s)
- Emma Sandilands
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Eva C. Freckmann
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Erin M. Cumming
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Alvaro Román-Fernández
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | | | | | - Hing Y. Leung
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M. Bryant
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| |
Collapse
|
5
|
Taylor RJ, Tagiltsev G, Briggs JAG. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett 2023; 597:819-835. [PMID: 36513395 DOI: 10.1002/1873-3468.14560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.
Collapse
Affiliation(s)
- Rebecca J Taylor
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Grigory Tagiltsev
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development. Nat Commun 2022; 13:7397. [PMID: 36456556 PMCID: PMC9715697 DOI: 10.1038/s41467-022-35101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
7
|
Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, Paradisi G, Zara E, Bazgir F, Ziegler A, Chillemi G, Bertuccini L, Tinari A, Vetro A, Pantaleoni F, Pizzi S, Conti LA, Petrini S, Bruselles A, Prandi IG, Mancini C, Chandramouli B, Barth M, Bris C, Milani D, Selicorni A, Macchiaiolo M, Gonfiantini MV, Bartuli A, Mariani R, Curry CJ, Guerrini R, Slavotinek A, Iascone M, Dallapiccola B, Ahmadian MR, Lauri A, Tartaglia M. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun 2022; 13:6841. [PMID: 36369169 PMCID: PMC9652361 DOI: 10.1038/s41467-022-34354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Collapse
Affiliation(s)
- Giulia Fasano
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Niloufar Mosaddeghzadeh
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simona Coppola
- grid.416651.10000 0000 9120 6856National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziamaria Paradisi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Erika Zara
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Università “Sapienza”, Rome, 00185 Italy
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alban Ziegler
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Giovanni Chillemi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Lucia Bertuccini
- grid.416651.10000 0000 9120 6856Servizio grandi strumentazioni e core facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Tinari
- grid.416651.10000 0000 9120 6856Centro di riferimento per la medicina di genere, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Annalisa Vetro
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Francesca Pantaleoni
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Libenzio Adrian Conti
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessandro Bruselles
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ingrid Guarnetti Prandi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cecilia Mancini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Balasubramanian Chandramouli
- grid.431603.30000 0004 1757 1950Super Computing Applications and Innovation, CINECA, 40033 Casalecchio di Reno, Italy
| | - Magalie Barth
- grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Céline Bris
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Donatella Milani
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Selicorni
- grid.512106.1Mariani Center for Fragile Children Pediatric Unit, Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy
| | - Marina Macchiaiolo
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Michaela V. Gonfiantini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Bartuli
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Riccardo Mariani
- grid.414603.4Department of Laboratories Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cynthia J. Curry
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Renzo Guerrini
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Anne Slavotinek
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Maria Iascone
- grid.460094.f0000 0004 1757 8431Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Bruno Dallapiccola
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Mohammad Reza Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonella Lauri
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
8
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
9
|
Del Giudice S, De Luca V, Parizadeh S, Russo D, Luini A, Di Martino R. Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Front Cell Dev Biol 2022; 10:833663. [PMID: 35399533 PMCID: PMC8984190 DOI: 10.3389/fcell.2022.833663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
The biosynthetic transport route that constitutes the secretory pathway plays a fundamental role in the cell, providing to the synthesis and transport of around one third of human proteins and most lipids. Signaling molecules within autoregulatory circuits on the intracellular membranes of the secretory pathway regulate these processes, especially at the level of the Golgi complex. Indeed, cancer cells can hijack several of these signaling molecules, and therefore also the underlying regulated processes, to bolster their growth or gain more aggressive phenotypes. Here, we review the most important autoregulatory circuits acting on the Golgi, emphasizing the role of specific signaling molecules in cancer. In fact, we propose to draw awareness to highlight the Golgi-localized regulatory systems as potential targets in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Luini
- *Correspondence: Alberto Luini, ; Rosaria Di Martino,
| | | |
Collapse
|
10
|
Pennauer M, Buczak K, Prescianotto-Baschong C, Spiess M. Shared and specific functions of Arfs 1-5 at the Golgi revealed by systematic knockouts. J Cell Biol 2022; 221:212750. [PMID: 34749397 PMCID: PMC8579194 DOI: 10.1083/jcb.202106100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
ADP-ribosylation factors (Arfs) are small GTPases regulating membrane traffic in the secretory pathway. They are closely related and appear to have overlapping functions, regulators, and effectors. The functional specificity of individual Arfs and the extent of redundancy are still largely unknown. We addressed these questions by CRISPR/Cas9-mediated genomic deletion of the human class I (Arf1/3) and class II (Arf4/5) Arfs, either individually or in combination. Most knockout cell lines were viable with slight growth defects only when lacking Arf1 or Arf4. However, Arf1+4 and Arf4+5 could not be deleted simultaneously. Class I Arfs are nonessential, and Arf4 alone is sufficient for viability. Upon Arf1 deletion, the Golgi was enlarged, and recruitment of vesicle coats decreased, confirming a major role of Arf1 in vesicle formation at the Golgi. Knockout of Arf4 caused secretion of ER-resident proteins, indicating specific defects in coatomer-dependent ER protein retrieval by KDEL receptors. The knockout cell lines will be useful tools to study other Arf-dependent processes.
Collapse
|
11
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
12
|
Sakamoto M, Sasaki K, Sugie A, Nitta Y, Kimura T, Gürsoy S, Cinleti T, Iai M, Sengoku T, Ogata K, Suzuki A, Okamoto N, Iwama K, Tsuchida N, Uchiyama Y, Koshimizu E, Fujita A, Hamanaka K, Miyatake S, Mizuguchi T, Taguri M, Ito S, Takahashi H, Miyake N, Matsumoto N. De novo ARF3 variants cause neurodevelopmental disorder with brain abnormality. Hum Mol Genet 2021; 31:69-81. [PMID: 34346499 DOI: 10.1093/hmg/ddab224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy, and brain abnormalities, there were differences in severity, clinical course, and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tetsuaki Kimura
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Semra Gürsoy
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, 35210, Turkey
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Dokuz Eylul University, Faculty of Medicine, Izumir, 35340, Turkey
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, 232-8555, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, 230-0045, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, 594-1101, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University School of Data Science, Yokohama, 236-0027, Japan
| | - Shuuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
13
|
Adarska P, Wong-Dilworth L, Bottanelli F. ARF GTPases and Their Ubiquitous Role in Intracellular Trafficking Beyond the Golgi. Front Cell Dev Biol 2021; 9:679046. [PMID: 34368129 PMCID: PMC8339471 DOI: 10.3389/fcell.2021.679046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular switches of the ADP-ribosylation factor (ARF) GTPase family coordinate intracellular trafficking at all sorting stations along the secretory pathway, from the ER-Golgi-intermediate compartment (ERGIC) to the plasma membrane (PM). Their GDP-GTP switch is essential to trigger numerous processes, including membrane deformation, cargo sorting and recruitment of downstream coat proteins and effectors, such as lipid modifying enzymes. While ARFs (in particular ARF1) had mainly been studied in the context of coat protein recruitment at the Golgi, COPI/clathrin-independent roles have emerged in the last decade. Here we review the roles of human ARF1-5 GTPases in cellular trafficking with a particular emphasis on their roles in post-Golgi secretory trafficking and in sorting in the endo-lysosomal system.
Collapse
Affiliation(s)
- Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
14
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
15
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
16
|
Walton K, Leier A, Sztul E. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs. FEBS Lett 2020; 594:2213-2226. [PMID: 32333796 DOI: 10.1002/1873-3468.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Membrane traffic between secretory and endosomal compartments is vesicle-mediated and must be tightly balanced to maintain a physiological compartment size. Vesicle formation is initiated by guanine nucleotide exchange factors (GEFs) that activate the ARF family of small GTPases. Regulatory mechanisms, including reversible phosphorylation, allow ARF-GEFs to support vesicle formation only at the right time and place in response to cellular needs. Here, we review current knowledge of how the Golgi-specific brefeldin A-resistance factor 1 (GBF1)/brefeldin A-inhibited guanine nucleotide exchange protein (BIG) family of ARF-GEFs is influenced by phosphorylation and use predictive paradigms to propose new regulatory paradigms. We describe a conserved cluster of phosphorylation sites within the N-terminal domains of the GBF1/BIG ARF-GEFs and suggest that these sites may respond to homeostatic signals related to cell growth and division. In the C-terminal region, GBF1 shows phosphorylation sites clustered differently as compared with the similar configuration found in both BIG1 and BIG2. Despite this similarity, BIG1 and BIG2 phosphorylation patterns are divergent in other domains. The different clustering of phosphorylation sites suggests that the nonconserved sites may represent distinct regulatory nodes and specify the function of GBF1, BIG1, and BIG2.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Andre Leier
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
17
|
Chen Y, Frost S, Khushi M, Cantrill LC, Yu H, Arthur JW, Bright RK, Groblewski GE, Byrne JA. Delayed recruiting of TPD52 to lipid droplets - evidence for a "second wave" of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment. Sci Rep 2019; 9:9790. [PMID: 31278300 PMCID: PMC6611826 DOI: 10.1038/s41598-019-46156-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Tumor protein D52 (TPD52) is amplified and overexpressed in breast and prostate cancers which are frequently characterised by dysregulated lipid storage and metabolism. TPD52 expression increases lipid storage in mouse 3T3 fibroblasts, and co-distributes with the Golgi marker GM130 and lipid droplets (LDs). We examined the effects of Brefeldin A (BFA), a fungal metabolite known to disrupt the Golgi structure, in TPD52-expressing 3T3 cells, and in human AU565 and HMC-1-8 breast cancer cells that endogenously express TPD52. Five-hour BFA treatment reduced median LD numbers, but increased LD sizes. TPD52 knockdown decreased both LD sizes and numbers, and blunted BFA's effects on LD numbers. Following BFA treatment for 1-3 hours, TPD52 co-localised with the trans-Golgi network protein syntaxin 6, but after 5 hours BFA treatment, TPD52 showed increased co-localisation with LDs, which was disrupted by microtubule depolymerising agent nocodazole. BFA treatment also increased perilipin (PLIN) family protein PLIN3 but reduced PLIN2 detection at LDs in TPD52-expressing 3T3 cells, with PLIN3 recruitment to LDs preceding that of TPD52. An N-terminally deleted HA-TPD52 mutant (residues 40-184) almost exclusively targeted to LDs in both vehicle and BFA treated cells. In summary, delayed recruitment of TPD52 to LDs suggests that TPD52 participates in a temporal hierarchy of LD-associated proteins that responds to altered LD packaging requirements induced by BFA treatment.
Collapse
Affiliation(s)
- Yuyan Chen
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| | - Sarah Frost
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Matloob Khushi
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
- The University of Sydney School of Information Technologies, Darlington, NSW, 2008, Australia
| | - Laurence C Cantrill
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Kids Research Microscope Facility, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Hong Yu
- Cell Imaging Facility, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology and TTUHSC Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- The University of Sydney Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
18
|
Cargo Sorting at the trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Cells 2019; 8:cells8060531. [PMID: 31163688 PMCID: PMC6627992 DOI: 10.3390/cells8060531] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023] Open
Abstract
The trans-Golgi network (TGN) is responsible for selectively recruiting newly synthesized cargo into transport carriers for delivery to their appropriate destination. In addition, the TGN is responsible for receiving and recycling cargo from endosomes. The membrane organization of the TGN facilitates the sorting of cargoes into distinct populations of transport vesicles. There have been significant advances in defining the molecular mechanism involved in the recognition of membrane cargoes for recruitment into different populations of transport carriers. This machinery includes cargo adaptors of the adaptor protein (AP) complex family, and monomeric Golgi-localized γ ear-containing Arf-binding protein (GGA) family, small G proteins, coat proteins, as well as accessory factors to promote budding and fission of transport vesicles. Here, we review this literature with a particular focus on the transport pathway(s) mediated by the individual cargo adaptors and the cargo motifs recognized by these adaptors. Defects in these cargo adaptors lead to a wide variety of diseases.
Collapse
|
19
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
20
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
21
|
Lopes-da-Silva M, McCormack JJ, Burden JJ, Harrison-Lavoie KJ, Ferraro F, Cutler DF. A GBF1-Dependent Mechanism for Environmentally Responsive Regulation of ER-Golgi Transport. Dev Cell 2019; 49:786-801.e6. [PMID: 31056345 PMCID: PMC6764485 DOI: 10.1016/j.devcel.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
How can anterograde membrane trafficking be modulated by physiological cues? A screen of Golgi-associated proteins revealed that the ARF-GEF GBF1 can selectively modulate the ER-Golgi trafficking of prohaemostatic von Willebrand factor (VWF) and extracellular matrix (ECM) proteins in human endothelial cells and in mouse fibroblasts. The relationship between levels of GBF1 and the trafficking of VWF into forming secretory granules confirmed GBF1 is a limiting factor in this process. Further, GBF1 activation by AMPK couples its control of anterograde trafficking to physiological cues; levels of glucose control GBF1 activation in turn modulating VWF trafficking into secretory granules. GBF1 modulates both ER and TGN exit, the latter dramatically affecting the size of the VWF storage organelles, thereby influencing the hemostatic capacity of the endothelium. The role of AMPK as a central integrating element of cellular pathways with intra- and extra-cellular cues can now be extended to modulation of the anterograde secretory pathway. The Arf-GEF GBF1 modulates anterograde trafficking of VWF and ECM proteins Loss of GBF1 slows ER and TGN exit, producing swollen ER and giant WPBs Activation of GBF1 via AMPK reduces endothelial WPB size and secretion Metabolic change alters anterograde trafficking and cargo secretion via AMPK-GBF1
Collapse
Affiliation(s)
- Mafalda Lopes-da-Silva
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Jessica J McCormack
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jemima J Burden
- Electron Microscopy Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Kimberly J Harrison-Lavoie
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Francesco Ferraro
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
22
|
A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genet 2018; 14:e1007795. [PMID: 30439956 PMCID: PMC6264874 DOI: 10.1371/journal.pgen.1007795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/29/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, GTP-bound ARF GTPases promote intracellular membrane traffic by mediating the recruitment of coat proteins, which in turn sort cargo proteins into the forming membrane vesicles. Mammals employ several classes of ARF GTPases which are activated by different ARF guanine-nucleotide exchange factors (ARF-GEFs). In contrast, flowering plants only encode evolutionarily conserved ARF1 GTPases (class I) but not the other classes II and III known from mammals, as suggested by phylogenetic analysis of ARF family members across the five major clades of eukaryotes. Instead, flowering plants express plant-specific putative ARF GTPases such as ARFA and ARFB, in addition to evolutionarily conserved ARF-LIKE (ARL) proteins. Here we show that all eight ARF-GEFs of Arabidopsis interact with the same ARF1 GTPase, whereas only a subset of post-Golgi ARF-GEFs also interacts with ARFA, as assayed by immunoprecipitation. Both ARF1 and ARFA were detected at the Golgi stacks and the trans-Golgi network (TGN) by both live-imaging with the confocal microscope and nano-gold labeling followed by EM analysis. ARFB representing another plant-specific putative ARF GTPase was detected at both the plasma membrane and the TGN. The activation-impaired form (T31N) of ARF1, but neither ARFA nor ARFB, interfered with development, although ARFA-T31N interfered, like ARF1-T31N, with the GDP-GTP exchange. Mutant plants lacking both ARFA and ARFB transcripts were viable, suggesting that ARF1 is sufficient for all essential trafficking pathways under laboratory conditions. Detailed imaging of molecular markers revealed that ARF1 mediated all known trafficking pathways whereas ARFA was not essential to any major pathway. In contrast, the hydrolysis-impaired form (Q71L) of both ARF1 and ARFA, but not ARFB, had deleterious effects on development and various trafficking pathways. However, the deleterious effects of ARFA-Q71L were abolished by ARFA-T31N inhibiting cognate ARF-GEFs, both in cis (ARFA-T31N,Q71L) and in trans (ARFA-T31N + ARFA-Q71L), suggesting indirect effects of ARFA-Q71L on ARF1-mediated trafficking. The deleterious effects of ARFA-Q71L were also suppressed by strong over-expression of ARF1, which was consistent with a subset of BIG1-4 ARF-GEFs interacting with both ARF1 and ARFA. Indeed, the SEC7 domain of BIG5 activated both ARF1 and ARFA whereas the SEC7 domain of BIG3 only activated ARF1. Furthermore, ARFA-T31N impaired root growth if ARF1-specific BIG3 was knocked out and only ARF1- and ARFA-activating BIG4 was functional. Activated ARF1 recruits different coat proteins to different endomembrane compartments, depending on its activation by different ARF-GEFs. Unlike ARF GTPases, ARF-GEFs not only localize at distinct compartments but also regulate specific trafficking pathways, suggesting that ARF-GEFs might play specific roles in traffic regulation beyond the activation of ARF1 by GDP-GTP exchange.
Collapse
|
23
|
Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell 2018; 29:937-947. [PMID: 29467256 PMCID: PMC5896932 DOI: 10.1091/mbc.e17-11-0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold temperature blocks used to synchronize protein trafficking inhibit GBF1 function, leading to a decrease in ARF1-GTP levels and mislocalization of the ARF1 effector golgin-160. Several other, but not all, Golgi proteins including ARL1 also mislocalize. ARF1 activity and golgin-160 localization require more than 30 min to recover from these blocks. ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.
Collapse
Affiliation(s)
- Catherine E Gilbert
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35924
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
24
|
Jackson CL. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle. Front Cell Dev Biol 2018; 6:29. [PMID: 29632863 PMCID: PMC5879097 DOI: 10.3389/fcell.2018.00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, Centre Nationnal de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Kaczmarek B, Verbavatz JM, Jackson CL. GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol Cell 2017; 109:391-399. [PMID: 28985001 DOI: 10.1111/boc.201700042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| |
Collapse
|
26
|
Ignashkova TI, Gendarme M, Peschk K, Eggenweiler HM, Lindemann RK, Reiling JH. Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents. Traffic 2017; 18:530-544. [PMID: 28485883 DOI: 10.1111/tra.12493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP-ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF-26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF-26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF-26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP-ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.
Collapse
Affiliation(s)
- Tatiana I Ignashkova
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Mathieu Gendarme
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Katrin Peschk
- Medicinal Chemistry, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | - Jan H Reiling
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| |
Collapse
|
27
|
Ramírez-Peinado S, Ignashkova TI, van Raam BJ, Baumann J, Sennott EL, Gendarme M, Lindemann RK, Starnbach MN, Reiling JH. TRAPPC13 modulates autophagy and the response to Golgi stress. J Cell Sci 2017; 130:2251-2265. [PMID: 28536105 DOI: 10.1242/jcs.199521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
Tether complexes play important roles in endocytic and exocytic trafficking of lipids and proteins. In yeast, the multisubunit transport protein particle (TRAPP) tether regulates endoplasmic reticulum (ER)-to-Golgi and intra-Golgi transport and is also implicated in autophagy. In addition, the TRAPP complex acts as a guanine nucleotide exchange factor (GEF) for Ypt1, which is homologous to human Rab1a and Rab1b. Here, we show that human TRAPPC13 and other TRAPP subunits are critically involved in the survival response to several Golgi-disrupting agents. Loss of TRAPPC13 partially preserves the secretory pathway and viability in response to brefeldin A, in a manner that is dependent on ARF1 and the large GEF GBF1, and concomitant with reduced caspase activation and ER stress marker induction. TRAPPC13 depletion reduces Rab1a and Rab1b activity, impairs autophagy and leads to increased infectivity to the pathogenic bacterium Shigella flexneri in response to brefeldin A. Thus, our results lend support for the existence of a mammalian TRAPPIII complex containing TRAPPC13, which is important for autophagic flux under certain stress conditions.
Collapse
Affiliation(s)
- Silvia Ramírez-Peinado
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| | - Tatiana I Ignashkova
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| | - Bram J van Raam
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| | - Jan Baumann
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| | - Erica L Sennott
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathieu Gendarme
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| | - Ralph K Lindemann
- Merck Serono TA Oncology, Merck KGaA, Frankfurter Str. 250, Darmstadt D-64293, Germany
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jan H Reiling
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Im Neuenheimer Feld 583, Heidelberg 69120, Germany
| |
Collapse
|
28
|
Wu JY, Kuo CC. ADP-Ribosylation Factor 3 Mediates Cytidine-Phosphate-Guanosine Oligodeoxynucleotide-Induced Responses by Regulating Toll-Like Receptor 9 Trafficking. J Innate Immun 2015; 7:623-36. [PMID: 26067373 DOI: 10.1159/000430785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/17/2015] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) trafficking from the endoplasmic reticulum (ER) into endolysosomes is critical for eliciting cytidine-phosphate-guanosine (CpG) DNA-mediated immune responses. ADP-ribosylation factor 3 (ARF3) is a member of the Ras superfamily, which is crucial for a wide variety of cellular events including protein trafficking. In this study, we found that the inhibition of ARF3 by dominant mutants and siRNA impaired CpG oligodeoxynucleotide (ODN)-mediated responses whereas cells expressing the constitutively active ARF3 mutant enhanced CpG ODN-induced NF-x03BA;B activation and cytokine production. Further experiments with MyD88-overexpressing fibroblast cells transfected with a dominant-negative mutant and a constitutively active mutant of ARF3 demonstrated that ARF3 regulated CpG ODN-mediated signaling upstream of MyD88. Additional studies have shown that ARF3 inhibition impairs TLR9 trafficking from the ER into endolysosomes, thereby inhibiting the functional cleavage of TLR9, although it has no significant effect on CpG ODN uptake. Furthermore, activated ARF3 is associated with Unc93B1 and TLR9, suggesting that ARF3 conducts TLR9 trafficking by forming the TLR9-Unc93B1-ARF3 complex. Overall, our findings demonstrate that a novel ARF3 axis pathway mediates CpG ODN-induced responses by regulating TLR9 trafficking.
Collapse
Affiliation(s)
- Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, ROC
| | | |
Collapse
|
29
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|
30
|
Abstract
The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.
Collapse
Affiliation(s)
- Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Samuel Bouvet
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| |
Collapse
|
31
|
Wang J, Du J, Jin Q. Class I ADP-ribosylation factors are involved in enterovirus 71 replication. PLoS One 2014; 9:e99768. [PMID: 24911624 PMCID: PMC4049829 DOI: 10.1371/journal.pone.0099768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
32
|
D'Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE. Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 2014; 24:1187-98. [PMID: 24835460 PMCID: PMC4059052 DOI: 10.1016/j.cub.2014.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early, sorting endosomes are a major crossroad of membrane traffic, at the intersection of the endocytic and exocytic pathways. The sorting of endosomal cargo for delivery to different subcellular destinations is mediated by a number of distinct coat protein complexes, including adaptor protein 1 (AP-1), AP-3, and Golgi-localized, gamma adaptin ear-containing, Arf-binding (GGAs) protein. Ultrastructural studies suggest that these coats assemble onto tubular subdomains of the endosomal membrane, but the mechanisms of coat recruitment and assembly at this site remain poorly understood. RESULTS Here we report that the endosomal Rab protein Rab4 orchestrates a GTPase cascade that results in the sequential recruitment of the ADP-ribosylation factor (Arf)-like protein Arl1; the Arf-specific guanine nucleotide exchange factors BIG1 and BIG2; and the class I Arfs, Arf1 and Arf3. Knockdown of Arf1, or inhibition of BIG1 and BIG2 activity with brefeldin A results in the loss of AP-1, AP-3, and GGA-3, but not Arl1, from endosomal membranes and the formation of elongated tubules. In contrast, depletion of Arl1 randomizes the distribution of Rab4 on endosomal membranes, inhibits the formation of tubular subdomains, and blocks recruitment of BIG1 and BIG2, Arfs, and adaptor protein complexes to the endosome. CONCLUSIONS Together these findings indicate that Arl1 links Rab4-dependent formation of endosomal sorting domains with downstream assembly of adaptor protein complexes that constitute the endosomal sorting machinery.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Rachel Semus
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Emily A Billings
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Corey B Meyer
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Kathryn Conger
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
33
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
34
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
35
|
Quilty D, Gray F, Summerfeldt N, Cassel D, Melançon P. Arf activation at the Golgi is modulated by feed-forward stimulation of the exchange factor GBF1. J Cell Sci 2013; 127:354-64. [PMID: 24213530 DOI: 10.1242/jcs.130591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ADP-ribosylation factors (Arfs) play central roles in the regulation of vesicular trafficking through the Golgi. Arfs are activated at the Golgi membrane by guanine-nucleotide-exchange factors (GEFs) that are recruited from cytosol. Here, we describe a novel mechanism for the regulation of recruitment and activity of the ArfGEF Golgi-specific BFA resistance factor 1 (GBF1). Conditions that alter the cellular Arf-GDP:Arf-GTP ratio result in GBF1 recruitment. This recruitment of GBF1 occurs selectively on cis-Golgi membranes in direct response to increased Arf-GDP. GBF1 recruitment requires Arf-GDP myristoylation-dependent interactions suggesting regulation of a membrane-bound factor. Once recruited, GBF1 causes increased Arf-GTP production at the Golgi, consistent with a feed-forward self-limiting mechanism of Arf activation. This mechanism is proposed to maintain steady-state levels of Arf-GTP at the cis-Golgi during cycles of Arf-dependent trafficking events.
Collapse
Affiliation(s)
- Douglas Quilty
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
36
|
A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 2013; 15:1473-85. [PMID: 24185178 DOI: 10.1038/ncb2865] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Treatment of cells with brefeldin A (BFA) blocks secretory vesicle transport and causes a collapse of the Golgi apparatus. To gain more insight into the cellular mechanisms mediating BFA toxicity, we conducted a genome-wide haploid genetic screen that led to the identification of the small G protein ADP-ribosylation factor 4 (ARF4). ARF4 depletion preserves viability, Golgi integrity and cargo trafficking in the presence of BFA, and these effects depend on the guanine nucleotide exchange factor GBF1 and other ARF isoforms including ARF1 and ARF5. ARF4 knockdown cells show increased resistance to several human pathogens including Chlamydia trachomatis and Shigella flexneri. Furthermore, ARF4 expression is induced when cells are exposed to several Golgi-disturbing agents and requires the CREB3 (also known as Luman or LZIP) transcription factor, whose downregulation mimics ARF4 loss. Thus, we have uncovered a CREB3-ARF4 signalling cascade that may be part of a Golgi stress response set in motion by stimuli compromising Golgi capacity.
Collapse
|
37
|
Schlacht A, Mowbrey K, Elias M, Kahn RA, Dacks JB. Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins. Traffic 2013; 14:636-49. [PMID: 23433073 DOI: 10.1111/tra.12063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
The organelle paralogy hypothesis is one model for the acquisition of nonendosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase activating proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of the Arf GAP protein family. Of the 10 subfamilies previously defined in humans, we find that 5 were likely present in the last eukaryotic common ancestor. Of the 3 most recently derived subfamilies, 1 was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while 2 arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor and integrate the Arf GAP family into a proposed mechanism for the evolution of nonendosymbiotic organelles.
Collapse
Affiliation(s)
- Alexander Schlacht
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
38
|
Lowery J, Szul T, Styers M, Holloway Z, Oorschot V, Klumperman J, Sztul E. The Sec7 guanine nucleotide exchange factor GBF1 regulates membrane recruitment of BIG1 and BIG2 guanine nucleotide exchange factors to the trans-Golgi network (TGN). J Biol Chem 2013; 288:11532-45. [PMID: 23386609 PMCID: PMC3630886 DOI: 10.1074/jbc.m112.438481] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three Sec7 guanine nucleotide exchange factors (GEFs) activate ADP-ribosylation factors (ARFs) to facilitate coating of transport vesicles within the secretory and endosomal pathways. GBF1 recruits COPI to pre-Golgi and Golgi compartments, whereas BIG1 and BIG2 recruit AP1 and GGA clathrin adaptors to the trans-Golgi network (TGN) and endosomes. Here, we report a functional cascade between these GEFs by showing that GBF1-activated ARFs (ARF4 and ARF5, but not ARF3) facilitate BIG1 and BIG2 recruitment to the TGN. We localize GBF1 ultrastructurally to the pre-Golgi, the Golgi, and also the TGN. Our findings suggest a model in which GBF1 localized within pre-Golgi and Golgi compartments mediates ARF activation to facilitate recruitment of COPI to membranes, whereas GBF1 localized at the TGN mediates ARF activation that leads to the recruitment of BIG1 and BIG2 to the TGN. Membrane-associated BIG1/2 then activates ARFs that recruit clathrin adaptors. In this cascade, an early acting GEF (GBF1) activates ARFs that mediate recruitment of late acting GEFs (BIG1/2) to coordinate coating events within the pre-Golgi/Golgi/TGN continuum. Such coordination may optimize the efficiency and/or selectivity of cargo trafficking through the compartments of the secretory pathway.
Collapse
Affiliation(s)
- Jason Lowery
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Richardson BC, McDonold CM, Fromme JC. The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev Cell 2012; 22:799-810. [PMID: 22516198 DOI: 10.1016/j.devcel.2012.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Arf GTPases are key regulators of both retrograde and anterograde traffic at the Golgi complex. The Golgi-localized Arf activators, Arf-GEFs (guanine exchange factor) of the BIG/GBF family, are poorly understood in terms of both their regulatory and localization mechanisms. We have performed a detailed kinetic characterization of a functional Golgi Arf-GEF, the trans-Golgi network (TGN)-localized Sec7 protein from yeast. We demonstrate that Sec7 is regulated by both autoinhibition and positive feedback. We show that positive feedback arises through the stable recruitment of Sec7 to membranes via its HDS1 domain by interaction with its product, activated Arf1. This interaction mediates localization of Sec7 to the TGN, because deletion of the HDS1 domain or mutation of the HDS1 domain in combination with deletion of Arf1 significantly increases cytoplasmic localization of Sec7. Our results lead us to propose a model in which Arf-GEF recruitment is linked to Golgi maturation via Arf1 activation.
Collapse
Affiliation(s)
- Brian C Richardson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | |
Collapse
|
40
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
41
|
Popoff V, Langer JD, Reckmann I, Hellwig A, Kahn RA, Brügger B, Wieland FT. Several ADP-ribosylation factor (Arf) isoforms support COPI vesicle formation. J Biol Chem 2011; 286:35634-35642. [PMID: 21844198 DOI: 10.1074/jbc.m111.261800] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Newly synthesized proteins and lipids are transported in vesicular carriers along the secretory pathway. Arfs (ADP-ribosylation factors), a family of highly conserved GTPases within the Ras superfamily, control recruitment of molecular coats to membranes, the initial step of coated vesicle biogenesis. Arf1 and coatomer constitute the minimal cytosolic machinery leading to COPI vesicle formation from Golgi membranes. Although some functional redundancies have been suggested, other Arf isoforms have been poorly analyzed in this context. In this study, we found that Arf1, Arf4, and Arf5, but not Arf3 and Arf6, associate with COPI vesicles generated in vitro from Golgi membranes and purified cytosol. Using recombinant myristoylated proteins, we show that Arf1, Arf4, and Arf5 each support COPI vesicle formation individually. Unexpectedly, we found that Arf3 could also mediate vesicle biogenesis. However, Arf3 was excluded from the vesicle fraction in the presence of the other isoforms, highlighting a functional competition between the different Arf members.
Collapse
Affiliation(s)
- Vincent Popoff
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ingeborg Reckmann
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology IZN, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75. [PMID: 21587297 PMCID: PMC3245550 DOI: 10.1038/nrm3117] [Citation(s) in RCA: 711] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF proteins, ARF-like (ARL) proteins and SAR1, regulates membrane traffic and organelle structure, and each family member is regulated through a cycle of GTP binding and GTP hydrolysis, which activate and inactivate, respectively, the G protein. Traditionally, ARFs have been characterized for their immediate effects in the recruitment of coat proteins to drive cargo sorting, the recruitment of enzymes that can alter membrane lipid composition and the regulation of cytoskeletal factors. Now, new roles for ARFs have been discovered at the Golgi complex, for example in driving lipid transport. ARL proteins are also being increasingly linked to coordination of trafficking with cytoskeletal processes, for example during ciliogenesis. There is particular interest in the mechanisms that control recruitment of the ARF guanine nucleotide exchange factors (GEFs) that mediate GTP binding to ARFs and, in the case of the cytohesin (also known as ARNO) GEF, membrane recruitment is coupled to relief of autoinhibition. GEFs such as cytohesin may also participate in a cascade of activation between particular pairs of ARFs. Traditionally, G protein signalling has been viewed as a linear pathway, with the GDP-bound form of an ARF protein being inactive; however, more recent studies have highlighted novel roles for these GDP-bound forms and have also shown that GEFs and GTPase-activating proteins (GAPs) themselves can engage in distinct signalling responses through scaffolding functions.
The ADP-ribosylation factor (ARF) and ARF-like (ARL) family of G proteins, which are known to regulate membrane traffic and organelle structure, are emerging as regulators of diverse processes, including lipid and cytoskeletal transport. Although traditionally viewed as part of a linear signalling pathway, ARFs and their regulators must now be considered to exist within functional networks, in which both the 'inactive' ARF and the regulators themselves can mediate distinct effects. Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Collapse
|
43
|
Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem 2011; 286:11569-78. [PMID: 21239483 DOI: 10.1074/jbc.m110.201442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arfaptins (arfaptin-1 and arfaptin-2/POR1) were originally identified as binding partners of the Arf small GTPases. Both proteins contain a BAR (Bin/Amphiphysin/Rvs) domain, which participates in membrane deformation. Here we show that arfaptins associate with trans-Golgi membranes. Unexpectedly, Arl1 (Arf-like 1), but not Arfs, determines the trans-Golgi association of arfaptins. We also demonstrate that arfaptins interact with Arl1 through their BAR domain-containing region and compete for Arl1 binding with golgin-97 and golgin-245/p230, both of which also bind to Arl1 through their GRIP (golgin-97/RanBP2/Imh1p/p230) domains. However, arfaptins and these golgins show only limited colocalization at the trans-Golgi. Time-lapse imaging of cells overexpressing fluorescent protein-tagged arfaptins and golgin-97 reveals that arfaptins, but not golgin-97, are included in vesicular and tubular structures emanating from the Golgi region. These observations indicate that arfaptins are recruited onto trans-Golgi membranes by interacting with Arl1, and capable of inducing membrane deformation via their BAR domains.
Collapse
Affiliation(s)
- Zhiqiu Man
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|