1
|
Iqbal A, Ali F, Ali Alharbi S, Sajid M, Alfarraj S, Hussain M, Siddique T, Mustaq R, Shafique F, Iqbal MS. Integrated analysis of hub genes and intrinsically disordered regions in triple-negative breast cancer. J Genet Eng Biotechnol 2024; 22:100408. [PMID: 39674628 PMCID: PMC11378900 DOI: 10.1016/j.jgeb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 12/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most prevalent breast cancer subtype. Its prognosis is poor because there are no effective treatment targets. Despite several attempts, the molecular pathways of TNBC remain unknown, posing a significant clinical barrier in the search for viable targets. Two microarray datasets were used to identify possible targets for TNBC, GSE38959 and GSE45827, retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in TNBC samples compared with normal samples were identified using the GEO2R program. KEGG pathway enrichment and Gene Ontology functions were assessed for DEG pathways and functional annotation using ShinyGO 0.77. The STRING database and Cytoscape program were used for protein-protein interaction (PPI) analysis. Furthermore, we evaluated the predictive significance of hub gene expression in TNBC patients using the GEPIA2 online tool. We developed a comprehensive technique to assess whether intrinsically disordered regions (IDRs) are present in the TNBC hub genes. There were 48 DEGs were identified, all of which were upregulated. A putative protein complex containing these four core genes was selected for further analysis. Breast cancer patients with TTK, TOP2A, CENPF, and CCNA2 upregulation had a poor prognosis; TTK and CCNA2 were partially disordered, whereas TOP2A and CENPF were primarily disordered, according to IDR analysis. According to our study, TOP2A and CENPF may be useful therapeutic targets for disruption of the TNBC PPI network.
Collapse
Affiliation(s)
- Azhar Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | - Faisal Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan.
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Momina Hussain
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | - Tehmina Siddique
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | - Rakhshanda Mustaq
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | | | - Muhammad Sarfaraz Iqbal
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Arslanhan MD, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P, Firat-Karalar EN. CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol 2023; 222:e202305009. [PMID: 37934472 PMCID: PMC10630097 DOI: 10.1083/jcb.202305009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.
Collapse
Affiliation(s)
- Melis D. Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Cengiz-Emek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London, UK
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Voß Y, Klaus S, Lichti NP, Ganter M, Guizetti J. Malaria parasite centrins can assemble by Ca2+-inducible condensation. PLoS Pathog 2023; 19:e1011899. [PMID: 38150475 PMCID: PMC10775985 DOI: 10.1371/journal.ppat.1011899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/09/2024] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Centrins are small calcium-binding proteins that have a variety of roles and are universally associated with eukaryotic centrosomes. Rapid proliferation of the malaria-causing parasite Plasmodium falciparum in the human blood depends on a particularly divergent and acentriolar centrosome, which incorporates several essential centrins. Their precise mode of action, however, remains unclear. In this study calcium-inducible liquid-liquid phase separation is revealed as an evolutionarily conserved principle of assembly for multiple centrins from P. falciparum and other species. Furthermore, the disordered N-terminus and calcium-binding motifs are defined as essential features for reversible biomolecular condensation, and we demonstrate that certain centrins can form co-condensates. In vivo analysis using live cell STED microscopy shows liquid-like dynamics of centrosomal centrin. Additionally, implementation of an inducible protein overexpression system reveals concentration-dependent formation of extra-centrosomal centrin assemblies with condensate-like properties. The timing of foci formation and dissolution suggests that centrin assembly is regulated. This study thereby provides a new model for centrin accumulation at eukaryotic centrosomes.
Collapse
Affiliation(s)
- Yannik Voß
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicolas P. Lichti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
5
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
6
|
Wang ZX, Ren SC, Ren J. Phosphotyrosine picked threonine kinase stimulates proliferation of human osteosarcoma cells in vitro and in vivo. Arch Med Sci 2021; 18:775-785. [PMID: 35591845 PMCID: PMC9102539 DOI: 10.5114/aoms/115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteosarcoma (OS) is the most common primary bone tumor, and the main affected population is adolescents. The survival of OS patients was 10-20% when surgery was used as a single treatment. There is less basic research on OS than other tumors, and we need more ways to improve the survival rate. Phosphotyrosine picked threonine kinase (TTK) has been widely reported as an oncogene in multiple types of cancers, and it is also known as a clinical therapeutic target. This study aims to assess TTK expression levels in human OS tissues and its link with the clinical characteristics of OS patients, and to evaluate the potential role in OS development. Material and methods Immunohistochemical (IHC) assays were conducted to detect the expression levels of TTK in a total of 74 OS tissues and the corresponding adjacent tissues. Furthermore, according to the staining intensity of TTK in tumor tissues, patients were divided into TTK high and low expression groups. The possible correlation between TTK expression levels and clinical features were analyzed, and the effects of TTK on OS cell proliferation were detected through colony formation and cell counting kit-8 (CCK8) assays. The effects of TTK on tumor growth were detected using an animal model. Results Phosphotyrosine picked threonine kinase was abnormally highly expressed in human OS tissues. Meanwhile, TTK was significantly correlated with the clinical characteristics such as tumor size (p = 0.004*) and clinical stage (p = 0.014*) of OS patients. Our results also revealed that the inhibition of TTK dramatically suppressed the proliferation of OS cells in vitro and blocked tumor growth in mice. Conclusions We demonstrated the involvement of TTK in the development of OS, and therefore we suggest that TTK should be considered as a promising therapy target for OS.
Collapse
Affiliation(s)
- Zhe-Xiang Wang
- The School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Shao-Chun Ren
- Stomatology, Tianjin Medical University, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Song Y, Liu X, Wang F, Wang X, Cheng G, Peng C. Identification of Metastasis-Associated Biomarkers in Synovial Sarcoma Using Bioinformatics Analysis. Front Genet 2020; 11:530892. [PMID: 33061942 PMCID: PMC7518102 DOI: 10.3389/fgene.2020.530892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023] Open
Abstract
Synovial sarcoma (SS) is a highly aggressive soft tissue tumor with high risk of local recurrence and metastasis. However, the mechanisms underlying SS metastasis are still largely unclear. The purpose of this study is to screen metastasis-associated biomarkers in SS by integrated bioinformatics analysis. Two mRNA datasets (GSE40018 and GSE40021) were selected to analyze the differentially expressed genes (DEGs). Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), functional and pathway enrichment analyses were performed for DEGs. Then, the protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. The module analysis of the PPI network and hub genes validation were performed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the hub genes were performed using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). The expression levels and survival analysis of hub genes were further assessed through Gene Expression Profiling Interactive Analysis (GEPIA) and the Kaplan-Meier plotter database. In total, 213 overlapping DEGs were identified, of which 109 were upregulated and 104 were downregulated. GO analysis revealed that the DEGs were predominantly involved in mitosis and cell division. KEGG pathways analysis demonstrated that most DEGs were significantly enriched in cell cycle pathway. GSEA revealed that the DEGs were mainly enriched in oocyte meiosis, cell cycle and DNA replication pathways. A key module was identified and 10 hub genes (CENPF, KIF11, KIF23, TTK, MKI67, TOP2A, CDC45, MELK, AURKB, and BUB1) were screened out. The expression and survival analysis disclosed that the 10 hub genes were upregulated in SS patients and could result in significantly reduced survival. Our study identified a series of metastasis-associated biomarkers involved in the progression of SS, and may provide novel therapeutic targets for SS metastasis.
Collapse
Affiliation(s)
- Yan Song
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanghui Cheng
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changliang Peng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Ouyang G, Yi B, Pan G, Chen X. A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma. Cancer Cell Int 2020; 20:207. [PMID: 32514252 PMCID: PMC7268417 DOI: 10.1186/s12935-020-01294-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The prognosis of hepatocellular carcinoma (HCC) patients remains poor. Identifying prognostic markers to stratify HCC patients might help to improve their outcomes. Methods Six gene expression profiles (GSE121248, GSE84402, GSE65372, GSE51401, GSE45267 and GSE14520) were obtained for differentially expressed genes (DEGs) analysis between HCC tissues and non-tumor tissues. To identify the prognostic genes and establish risk score model, univariable Cox regression survival analysis and Lasso-penalized Cox regression analysis were performed based on the integrated DEGs by robust rank aggregation method. Then Kaplan-Meier and time-dependent receiver operating characteristic (ROC) curves were generated to validate the prognostic performance of risk score in training datasets and validation datasets. Multivariable Cox regression analysis was used to identify independent prognostic factors in liver cancer. A prognostic nomogram was constructed based on The Cancer Genome Atlas (TCGA) dataset. Finally, the correlation between DNA methylation and prognosis-related genes was analyzed. Results A twelve-gene signature including SPP1, KIF20A, HMMR, TPX2, LAPTM4B, TTK, MAGEA6, ANX10, LECT2, CYP2C9, RDH16 and LCAT was identified, and risk score was calculated by corresponding coefficients. The risk score model showed a strong diagnosis performance to distinguish HCC from normal samples. The HCC patients were stratified into high-risk and low-risk group based on the cutoff value of risk score. The Kaplan-Meier survival curves revealed significantly favorable overall survival in groups with lower risk score (P < 0.0001). Time-dependent ROC analysis showed well prognostic performance of the twelve-gene signature, which was comparable or superior to AJCC stage at predicting 1-, 3-, and 5-year overall survival. In addition, the twelve-gene signature was independent with other clinical factors and performed better in predicting overall survival after combining with age and AJCC stage by nomogram. Moreover, most of the prognostic twelve genes were negatively correlated with DNA methylation in HCC tissues, which SPP1 and LCAT were identified as the DNA methylation-driven genes. Conclusions We identified a twelve-gene signature as a robust marker with great potential for clinical application in risk stratification and overall survival prediction in HCC patients.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Department of Hepatobiliary Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Bin Yi
- Department of Cardio-Vascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangdong Pan
- Department of Hepatobiliary Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Xiang Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective. Eur J Med Chem 2019; 175:247-268. [DOI: 10.1016/j.ejmech.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022]
|
10
|
Ying G, Frederick JM, Baehr W. Deletion of both centrin 2 (CETN2) and CETN3 destabilizes the distal connecting cilium of mouse photoreceptors. J Biol Chem 2019; 294:3957-3973. [PMID: 30647131 DOI: 10.1074/jbc.ra118.006371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 02/03/2023] Open
Abstract
Centrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3 GT/GT single-knockout and Cetn2 -/-;Cetn3 GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2 -/-;Cetn3 GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.
Collapse
Affiliation(s)
- Guoxin Ying
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| | - Jeanne M Frederick
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and.,the Department of Biology, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
11
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
13
|
Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells 2018; 7:cells7050042. [PMID: 29748517 PMCID: PMC5981266 DOI: 10.3390/cells7050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Collapse
|
14
|
Sugimoto Y, Sawant DB, Fisk HA, Mao L, Li C, Chettiar S, Li PK, Darby MV, Brueggemeier RW. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg Med Chem 2017; 25:2156-2166. [PMID: 28259529 DOI: 10.1016/j.bmc.2017.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 11/24/2022]
Abstract
New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers.
Collapse
Affiliation(s)
- Yasuro Sugimoto
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Dwitiya B Sawant
- Department of Molecular Genetics, College of Arts & Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Harold A Fisk
- Department of Molecular Genetics, College of Arts & Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Liguang Mao
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Somsundaram Chettiar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Michael V Darby
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Robert W Brueggemeier
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front Oncol 2016; 6:247. [PMID: 27933271 PMCID: PMC5122578 DOI: 10.3389/fonc.2016.00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases–p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases–p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase–mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
16
|
Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci U S A 2016; 113:7828-33. [PMID: 27339139 DOI: 10.1073/pnas.1607421113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.
Collapse
|
17
|
Martinez-Sanz J, Assairi L. New insights into the interaction of centrin with Sfi1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:319-30. [PMID: 26779587 DOI: 10.1016/j.bbapap.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/03/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Centrin binds to Rad4(XPC) and Sfi1 through the hydrophobic motif W(1)xxL(4)xxxL(8) in the opposite orientation. Rad4 has one motif, but Sfi1 has approximately 20 repeats, each of which interacts with a centrin molecule. To investigate the parameters involved in centrin binding, we purified a ScSfi1 domain containing 6 repeats complexed with either yeast centrin Cdc31 or human centrin 1. The present study was performed using mutagenesis of centrin and of Sfi1 residues involved in centrin binding and the stability of the centrin-centrin complexes was assessed using thermal denaturation and CD. Calcium stabilized these complexes, as indicated by the Tm increases measured by circular dichroism. The complexes, which were composed of Sfi1 variants and yeast centrin, were analysed in the presence of EDTA. The replacement of W with F within the repeat region yielded a functional repeat (Tm 45°C). The replacement of W with A in two adjacent Sfi1 repeats reduced the thermal stability of the Sfi1-centrin complexes (40°C). We analysed three HsCen1 variants that were homologous to the yeast mutants and induced cell cycle arrest during the G2/M transition. The HsCen1 variants E105K and F113L reduced the thermal stability (50°C, 50°C) of the ScSfi1-HsCen1 complexes; in contrast, the A109T variant exhibited no change in thermal stability relative to the wild-type (60°C). Conversely to ScCdc31, there were no apparent centrin-centrin interactions with wild-type HsCen1, but they did occur for the S170D mutation that mimics PKA phosphorylation at the S170 residue.
Collapse
Affiliation(s)
- Juan Martinez-Sanz
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France.
| |
Collapse
|
18
|
Sawant DB, Majumder S, Perkins JL, Yang CH, Eyers PA, Fisk HA. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function. Mol Biol Cell 2015; 26:3741-53. [PMID: 26354417 PMCID: PMC4626060 DOI: 10.1091/mbc.e14-07-1248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/04/2015] [Indexed: 11/11/2022] Open
Abstract
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.
Collapse
Affiliation(s)
- Dwitiya B Sawant
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jennifer L Perkins
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ching-Hui Yang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
20
|
Jia H, Zhang X, Wang W, Bai Y, Ling Y, Cao C, Ma RZ, Zhong H, Wang X, Xu Q. A putative N-terminal nuclear export sequence is sufficient for Mps1 nuclear exclusion during interphase. BMC Cell Biol 2015; 16:6. [PMID: 25886724 PMCID: PMC4373099 DOI: 10.1186/s12860-015-0048-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mps1, an essential component of the mitotic checkpoint, is also an important interphase regulator and has roles in DNA damage response, cytokinesis and centrosome duplication. Mps1 predominantly resides in the cytoplasm and relocates into the nucleus at the late G2 phase. So far, the mechanism underlying the Mps1 translocation between the cytoplasm and nucleus has been unclear. RESULTS In this work, a dynamic export process of Mps1 from the nucleus to cytoplasm in interphase was revealed- a process blocked by the Crm1 inhibitor, Leptomycin B, suggesting that export of Mps1 is Crm1 dependent. Consistent with this speculation, a direct association between Mps1 and Crm1 was found. Furthermore, a putative nuclear export sequence (pNES) motif at the N-terminal of Mps1 was identified by analyzing the motif of Mps1. This motif shows a high sequence similarity to the classic NES, a fusion of this motif with EGFP results in dramatic exclusion of the fusion protein from the nucleus. Additionally, Mps1 mutant loss of pNES integrity was shown by replacing leucine with alanine which produced a diffused subcellular distribution, compared to the wild type protein which resides predominantly in cytoplasm. CONCLUSION Taken these findings together, it was concluded that the pNES sequence is sufficient for the Mps1 export from nucleus during interphase.
Collapse
Affiliation(s)
- Haiwei Jia
- Navy General Hospital of China, Beijing, 100048, China.
| | - Xiaojuan Zhang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenjun Wang
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Yuanyuan Bai
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Youguo Ling
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
- Department of Life Science, Anhui University, Hefei, 230601, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Runlin Z Ma
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Zhong
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| | - Xue Wang
- West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Quanbin Xu
- Beijing Institute of Biotechnology, Taiping road 27, POB 130(8), Beijing, 100850, China.
| |
Collapse
|
21
|
Majumder S, Fisk HA. Quantitative immunofluorescence assay to measure the variation in protein levels at centrosomes. J Vis Exp 2014:52030. [PMID: 25548932 PMCID: PMC4396923 DOI: 10.3791/52030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrosomes are small but important organelles that serve as the poles of mitotic spindle to maintain genomic integrity or assemble primary cilia to facilitate sensory functions in cells. The level of a protein may be regulated differently at centrosomes than at other .cellular locations, and the variation in the centrosomal level of several proteins at different points of the cell cycle appears to be crucial for the proper regulation of centriole assembly. We developed a quantitative fluorescence microscopy assay that measures relative changes in the level of a protein at centrosomes in fixed cells from different samples, such as at different phases of the cell cycle or after treatment with various reagents. The principle of this assay lies in measuring the background corrected fluorescent intensity corresponding to a protein at a small region, and normalize that measurement against the same for another protein that does not vary under the chosen experimental condition. Utilizing this assay in combination with BrdU pulse and chase strategy to study unperturbed cell cycles, we have quantitatively validated our recent observation that the centrosomal pool of VDAC3 is regulated at centrosomes during the cell cycle, likely by proteasome-mediated degradation specifically at centrosomes.
Collapse
Affiliation(s)
| | - Harold A Fisk
- Department of Molecular Genetics, The Ohio State University
| |
Collapse
|
22
|
Vicente JJ, Cande WZ. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex. Mol Biol Cell 2014; 25:2774-87. [PMID: 25057014 PMCID: PMC4161512 DOI: 10.1091/mbc.e14-05-0975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered.
Collapse
Affiliation(s)
- Juan-Jesus Vicente
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - W Zacheus Cande
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
23
|
Lee IJ, Wang N, Hu W, Schott K, Bähler J, Giddings TH, Pringle JR, Du LL, Wu JQ. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell 2014; 25:2735-49. [PMID: 25031431 PMCID: PMC4161509 DOI: 10.1091/mbc.e13-11-0699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A previous model suggested doubling of Sfi1 as the first step of SPB assembly. Here it is shown that Sfi1 is gradually recruited to SPBs throughout the cell cycle. Conserved tryptophans in Sfi1 are required for its equal partitioning during mitosis, and unequal partitioning of Sfi1 underlies SPB assembly and mitotic defects in the next cell cycle. Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.
Collapse
Affiliation(s)
- I-Ju Lee
- Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210 Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Wen Hu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Kersey Schott
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Centrin 2 is required for mouse olfactory ciliary trafficking and development of ependymal cilia planar polarity. J Neurosci 2014; 34:6377-88. [PMID: 24790208 DOI: 10.1523/jneurosci.0067-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Centrins are ancient calmodulin-related Ca(2+)-binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2 knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus. Absence of CETN2 leads to olfactory cilia loss, impaired ciliary trafficking of olfactory signaling proteins, adenylate cyclase III (ACIII), and cyclic nucleotide-gated (CNG) channel, as well as disrupted basal body apical migration in postnatal olfactory sensory neurons (OSNs). In mutant OSNs, cilia base-anchoring of intraflagellar transport components IFT88, the kinesin-II subunit KIF3A, and cytoplasmic dynein 2 appeared compromised. Although the densities of mutant ependymal and respiratory cilia were largely normal, the planar polarity of mutant ependymal cilia was disrupted, resulting in uncoordinated flow of CSF. Transgenic expression of GFP-CETN2 rescued the Cetn2-deficiency phenotype. These results indicate that mammalian basal body replication and ciliogenesis occur independently of CETN2; however, mouse CETN2 regulates protein trafficking of olfactory cilia and participates in specifying planar polarity of ependymal cilia.
Collapse
|
25
|
Centrosomes and the Art of Mitotic Spindle Maintenance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:179-217. [DOI: 10.1016/b978-0-12-800177-6.00006-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013; 3:277. [PMID: 24282781 PMCID: PMC3824400 DOI: 10.3389/fonc.2013.00277] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.
Collapse
Affiliation(s)
- German A Pihan
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
27
|
Dantas TJ, Daly OM, Conroy PC, Tomas M, Wang Y, Lalor P, Dockery P, Ferrando-May E, Morrison CG. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair. PLoS One 2013; 8:e68487. [PMID: 23844208 PMCID: PMC3699651 DOI: 10.1371/journal.pone.0068487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022] Open
Abstract
Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC), stabilising it, and its presence slightly increases nucleotide excision repair (NER) activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Pauline C. Conroy
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Martin Tomas
- Bioimaging Center, University of Konstanz, Konstanz, Germany
- Department of Physics, Center for Applied Photonics, University of Konstanz, Konstanz, Germany
| | - Yifan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Pierce Lalor
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
28
|
Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, Ducommun B, Gabrielli B. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS One 2013; 8:e67822. [PMID: 23840880 PMCID: PMC3698172 DOI: 10.1371/journal.pone.0067822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022] Open
Abstract
CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1) at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.
Collapse
Affiliation(s)
- Rose Boutros
- Princess Alexandra Hospital, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de Graffenried CL, Anrather D, Von Raußendorf F, Warren G. Polo-like kinase phosphorylation of bilobe-resident TbCentrin2 facilitates flagellar inheritance in Trypanosoma brucei. Mol Biol Cell 2013; 24:1947-63. [PMID: 23615446 PMCID: PMC3681699 DOI: 10.1091/mbc.e12-12-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 04/16/2013] [Indexed: 11/11/2022] Open
Abstract
In the protist parasite Trypanosoma brucei, the single Polo-like kinase (TbPLK) controls the inheritance of a suite of organelles that help position the parasite's single flagellum. These include the basal bodies, the bilobe, and the flagellar attachment zone (FAZ). TbCentrin2 was previously shown to be a target for TbPLK in vitro, and this is extended in this study to in vivo studies, highlighting a crucial role for serine 54 in the N-terminal domain. Duplication of the bilobe correlates with the presence of TbPLK and phospho-TbCentrin2, identified using phosphospecific antiserum. Mutation of S54 leads to slow growth (S54A) or no growth (S54D), the latter suggesting that dephosphorylation is needed to complete bilobe duplication and subsequent downstream events necessary for flagellum inheritance.
Collapse
|
30
|
A Centrin3-dependent, Transient, Appendage of the Mother Basal Body Guides the Positioning of the Daughter Basal Body in Paramecium. Protist 2013; 164:352-68. [DOI: 10.1016/j.protis.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
|
31
|
Stemm-Wolf AJ, Meehl JB, Winey M. Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 2013; 126:1659-71. [PMID: 23426847 DOI: 10.1242/jcs.120238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.
Collapse
Affiliation(s)
- Alexander J Stemm-Wolf
- Department of Molecular, Cellular and Developmental Biology, University of Colorado - Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
32
|
Abstract
Centrosomes serve to organize new centrioles in cycling cells, whereas in quiescent cells they assemble primary cilia. We have recently shown that the mitochondrial porin VDAC3 is also a centrosomal protein that is predominantly associated with the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes. Here, we show that depletion of VDAC3 causes inappropriate ciliogenesis in cycling cells, while expression of GFP-VDAC3 suppresses ciliogenesis in quiescent cells. Mps1 also negatively regulates ciliogenesis, and the inappropriate ciliogenesis caused by VDAC3 depletion can be bypassed by targeting Mps1 to centrosomes independently of VDAC3. Thus, our data show that a VDAC3-Mps1 module at the centrosome promotes ciliary disassembly during cell cycle entry and suppresses cilia assembly in proliferating cells. Our data also suggests that VDAC3 might be a link between mitochondrial dysfunction and ciliopathies in mammalian cells.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
33
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
34
|
Majumder S, Slabodnick M, Pike A, Marquardt J, Fisk HA. VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes. Cell Cycle 2012; 11:3666-78. [PMID: 22935710 DOI: 10.4161/cc.21927] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
35
|
Li J, Kim S, Kobayashi T, Liang FX, Korzeniewski N, Duensing S, Dynlacht BD. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep 2012; 13:547-53. [PMID: 22441691 DOI: 10.1038/embor.2012.40] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/06/2023] Open
Abstract
Here we identify Neuralized homologue 4 (Neurl4) as a protein that interacts with CP110, a centrosomal protein that regulates centrosome duplication. Neurl4 uses a Neuralized homology repeat to preferentially localize to procentrioles and daughter centrioles. Neurl4 depletion results in ectopic microtubular organizing centres (MTOCs), leading to accumulation of CP110 and recruitment of a cohort of centrosomal proteins. We show that these ectopic MTOCs persist through mitosis and assemble aberrant mitotic spindles. Interestingly, Neurl4 promotes ubiquitylation of CP110, thereby destabilizing this protein. Our results indicate that Neurl4 counteracts accumulation of CP110, thereby maintaining normal centriolar homeostasis and preventing formation of ectopic MTOCs.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, OCS Microscopy Core, New York University School of Medicine and Cancer Institute, 522 First Avenue, Smilow 1106, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.
Collapse
Affiliation(s)
- Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
37
|
Liu J, Cheng X, Zhang Y, Li S, Cui H, Zhang L, Shi R, Zhao Z, He C, Wang C, Zhao H, Zhang C, Fisk HA, Guadagno TM, Cui Y. Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma. Oncogene 2012; 32:713-23. [PMID: 22430208 DOI: 10.1038/onc.2012.94] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activating BRAF mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. BRAF(V600E) induces centrosome amplification and spindle abnormalities that result in aneuploidy. We find modification of Mps1 is critical for contributing to centrosome amplification and chromosome instability induced by BRAF(V600E). Phosphorylation of Mps1 at residue S281 induced by BRAF(V600E) stabilizes Mps1 protein by preventing its ubiquitination by APC/C and subsequent degradation, allowing the non-degraded protein to accumulate at centrosomes. Cells in which endogenous Mps1 was replaced with a phospho-mimetic Mps1 mutant are viable but amplify centrosomes and missegregate chromosomes frequently. Importantly, analysis of tumor micro arrays revealed that phospho-MAPK and S281-phosphorylated Mps1 were highly correlated in human melanoma tissues, implying that MAPK contributes to defects in the degradation of Mps1 in situ. We propose that continuously activated BRAF(V600E) signaling may be a possible mechanism for the deregulation of Mps1 stability and kinase activity in human tumors, and that persistent phosphorylation of Mps1 through BRAF(V600E) signaling is a key event in disrupting the control of centrosome duplication and chromosome stability that may contribute to tumorigenesis. Our findings raise the possibility that targeting the oncogenic BRAF and S281-phosphorylated Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- J Liu
- Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Delaval B, Covassin L, Lawson ND, Doxsey S. Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish. Cell Cycle 2011; 10:3964-72. [PMID: 22142866 DOI: 10.4161/cc.10.22.18150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most bona fide centrosome proteins including centrins, small calcium-binding proteins, participate in spindle function during mitosis and play a role in cilia assembly in non-cycling cells. Although the basic cellular functions of centrins have been studied in lower eukaryotes and vertebrate cells in culture, phenotypes associated with centrin depletion in vertebrates in vivo has not been directly addressed. To test this, we depleted centrin2 in zebrafish and found that it leads to ciliopathy phenotypes including enlarged pronephric tubules and pronephric cysts. Consistent with the ciliopathy phenotypes, cilia defects were observed in differentiated epithelial cells of ciliated organs such as the olfactory bulb and pronephric duct. The organ phenotypes were also accompanied by cell cycle deregulation namely mitotic delay resulting from mitotic defects. Overall, this work demonstrates that centrin2 depletion causes cilia-related disorders in zebrafish. Moreover, given the presence of both cilia and mitotic defects in the affected organs, it suggests that cilia disorders may arise from a combination of these defects.
Collapse
Affiliation(s)
- Benedicte Delaval
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | |
Collapse
|
39
|
Vonderfecht T, Stemm-Wolf AJ, Hendershott M, Giddings TH, Meehl JB, Winey M. The two domains of centrin have distinct basal body functions in Tetrahymena. Mol Biol Cell 2011; 22:2221-34. [PMID: 21562224 PMCID: PMC3128525 DOI: 10.1091/mbc.e11-02-0151] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/15/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022] Open
Abstract
The basal body is a microtubule-organizing center responsible for organizing the cilium, a structure important for cell locomotion and sensing of the surrounding environment. A widely conserved basal body component is the Ca(2+)-binding protein centrin. Analyses of centrin function suggest a role in basal body assembly and stability; however, its molecular mechanisms remain unclear. Here we describe a mutagenic strategy to study the function and essential nature of the various structural features of Cen1 in the ciliate Tetrahymena. We find that the two domains of Cen1 are both essential, and examination of strains containing mutant CEN1 alleles indicates that there are two predominant basal body phenotypes: misorientation of newly assembled basal bodies and stability defects. The results also show that the two domains of Cen1 are able to bind Ca(2+) and that perturbation of Ca(2+) binding affects Cen1 function. In all, the data suggest that the two domains of Cen1 have distinct functions.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Alexander J. Stemm-Wolf
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | | | - Thomas H. Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Janet B. Meehl
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| | - Mark Winey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado–Boulder, Boulder, CO 80309
| |
Collapse
|
40
|
Lukasiewicz KB, Greenwood TM, Negron VC, Bruzek AK, Salisbury JL, Lingle WL. Control of centrin stability by Aurora A. PLoS One 2011; 6:e21291. [PMID: 21731694 PMCID: PMC3121746 DOI: 10.1371/journal.pone.0021291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 05/28/2011] [Indexed: 01/06/2023] Open
Abstract
Aurora A is an oncogenic serine/threonine kinase which can cause cell transformation and centrosome amplification when over-expressed. Human breast tumors show excess Aurora A and phospho-centrin in amplified centrosomes. Here, we show that Aurora A mediates the phosphorylation of and localizes with centrin at the centrosome, with both proteins reaching maximum abundance from prophase through metaphase, followed by their precipitous loss in late stages of mitosis. Over-expression of Aurora A results in excess phospho-centrin and centrosome amplification. In contrast, centrosome amplification is not seen in cells over-expressing Aurora A in the presence of a recombinant centrin mutant lacking the serine phosphorylation site at residue 170. Expression of a kinase dead Aurora A results in a decrease in mitotic index and abrogation of centrin phosphorylation. Finally, a recombinant centrin mutation that mimics centrin phosphorylation increases centrin's stability against APC/C-mediated proteasomal degradation. Taken together, these results suggest that the stability of centrin is regulated in part by Aurora A, and that excess phosphorylated centrin may promote centrosome amplification in cancer.
Collapse
Affiliation(s)
- Kara B. Lukasiewicz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tammy M. Greenwood
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Vivian C. Negron
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amy K. Bruzek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jeffrey L. Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (WLL); (JLS)
| | - Wilma L. Lingle
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (WLL); (JLS)
| |
Collapse
|
41
|
Pike AN, Fisk HA. Centriole assembly and the role of Mps1: defensible or dispensable? Cell Div 2011; 6:9. [PMID: 21492451 PMCID: PMC3094359 DOI: 10.1186/1747-1028-6-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022] Open
Abstract
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.
Collapse
Affiliation(s)
- Amanda N Pike
- Department of Molecular Genetics, The Ohio State University, 484 W, 12th Avenue, Columbus OH 43210-1292, USA.
| | | |
Collapse
|
42
|
Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG. Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. ACTA ACUST UNITED AC 2011; 193:307-18. [PMID: 21482720 PMCID: PMC3080269 DOI: 10.1083/jcb.201012093] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Centrin-null cells undergo normal division but are highly sensitive to UV irradiation as a result of impaired DNA repair. The principal microtubule-organizing center in animal cells, the centrosome, contains centrin, a small, conserved calcium-binding protein unique to eukaryotes. Several centrin isoforms exist and have been implicated in various cellular processes including nuclear export and deoxyribonucleic acid (DNA) repair. Although centrins are required for centriole/basal body duplication in lower eukaryotes, centrin functions in vertebrate centrosome duplication are less clear. To define these roles, we used gene targeting in the hyperrecombinogenic chicken DT40 cell line to delete all three centrin genes in individual clones. Unexpectedly, centrin-deficient cells underwent normal cellular division with no detectable cell cycle defects. Light and electron microscopy analyses revealed no significant difference in centrosome composition or ultrastructure. However, centrin deficiency made DT40 cells highly sensitive to ultraviolet (UV) irradiation, with Cetn3 deficiency exacerbating the sensitivity of Cetn4/Cetn2 double mutants. DNA damage checkpoints were intact, but repair of UV-induced DNA damage was delayed in centrin nulls. These data demonstrate a role for vertebrate centrin in nucleotide excision repair.
Collapse
Affiliation(s)
- Tiago J Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway 091 524 411, Ireland
| | | | | | | | | |
Collapse
|
43
|
Mattison CP, Stumpff J, Wordeman L, Winey M. Mip1 associates with both the Mps1 kinase and actin, and is required for cell cortex stability and anaphase spindle positioning. Cell Cycle 2011; 10:783-93. [PMID: 21325884 DOI: 10.4161/cc.10.5.14955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting protein we have termed Mps1 interacting protein-1 (Mip1). Mip1 defines an uncharacterized family of conserved proteins that contain coiled-coil and calponin homology domains. We demonstrate that Mip1 is a phosphoprotein that interacts with hMps1 in vitro and in vivo and is a hMps1 substrate. Mip1 exhibits dynamic localization during the cell cycle; Mip1 localizes to the actin cytoskeleton during interphase, the spindle in early mitosis, and the cleavage furrow during cytokinesis. Mip1 function is required to ensure proper spindle positioning at the onset of anaphase after cells begin furrow ingression. Cells depleted of Mip1 exhibit aberrant mitotic actin filament organization, excessive membrane blebbing, dramatic spindle rocking, and chromosome distribution errors during early cytokinesis producing high numbers of binucleate cells. Our data indicate that Mip1 is a newly recognized component of the actin cytoskeleton that interacts with hMps1 and that it is essential to ensure proper segregation of the genome during cell cleavage.
Collapse
Affiliation(s)
- Christopher P Mattison
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | | | | | | |
Collapse
|
44
|
Kasbek C, Yang CH, Fisk HA. Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol Biol Cell 2010; 21:3878-89. [PMID: 20861309 PMCID: PMC2982088 DOI: 10.1091/mbc.e10-04-0281] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The failure to degrade Mps1 at centrosomes causes centrosome overproduction, but the factors that target Mps1 for degradation are unknown. This study shows that antizyme, a mediator of ubiquitin-independent degradation, binds to Mps1 and modulates centrosomal Mps1 via the proteasome, revealing a role for Mps1 in procentriole assembly. Extra centrosomes are found in many tumors, and their appearance is an early event that can generate aberrant mitotic spindles and aneuploidy. Because the failure to appropriately degrade the Mps1 protein kinase correlates with centrosome overproduction in tumor-derived cells, defects in the factors that promote Mps1 degradation may contribute to extra centrosomes in tumors. However, while we have recently characterized an Mps1 degradation signal, the factors that regulate Mps1 centrosomal Mps1 are unknown. Antizyme (OAZ), a mediator of ubiquitin-independent degradation and a suspected tumor suppressor, was recently shown to localize to centrosomes and modulate centrosome overproduction, but the known OAZ substrates were not responsible for its effect on centrosomes. We have found that OAZ exerts its effect on centrosomes via Mps1. OAZ promotes the removal of Mps1 from centrosomes, and centrosome overproduction caused by reducing OAZ activity requires Mps1. OAZ binds to Mps1 via the Mps1 degradation signal and modulates the function of Mps1 in centrosome overproduction. Moreover, OAZ regulates the canonical centrosome duplication cycle, and reveals a function for Mps1 in procentriole assembly. Together, our data suggest that OAZ restrains the assembly of centrioles by controlling the levels of centrosomal Mps1 through the Cdk2-regulated Mps1 degradation signal.
Collapse
Affiliation(s)
- Christopher Kasbek
- Department of Molecular Genetics, The Ohio State University, Columbus OH 43210-1292, USA
| | | | | |
Collapse
|