1
|
Huang SW, Yao YY, Zhang HX, Guo WY, Fang MH, Wang HB, Sun YJ, Li MH. Novel mechanisms for selenite biotransformation and selenium nanoparticles biogenesis in Acinetobacter sp. SX5 isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137694. [PMID: 39986103 DOI: 10.1016/j.jhazmat.2025.137694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The high biotoxicity of selenium (Se) has spurred research into its microbial biotransformation into less toxic Se nanoparticles (SeNPs). However, the molecular mechanisms underlying microbially driven selenite transformation remain largely unknown. In the present study, Acinetobacter sp. SX5, a bacterial strain with high Se reduction capacity, was isolated from soil. The biotransformation of selenite by SX5 and the molecular mechanisms underlying the formation of SeNPs were investigated. SX5 almost completely transformed 5.0 mM selenite into intracellular and extracellular spherical SeNPs within 48 h. Fourier-transform infrared spectroscopy indicated that lipids, proteins, and carbohydrates were present on the surface of these SeNPs. Transcriptomic data subsequently revealed the significant upregulation of genes related to redox homeostasis and arsenate, pyruvate, and butanoate metabolism pathways. Gene mutation/complementation analysis confirmed that arsenate reductase (arsC) and NAD(P)-dependent alcohol dehydrogenase (dhaT1) facilitated selenite reduction in vivo. In vitro assays found that arsC and dhaT1 catalyzed Se(IV) reduction with NADPH acting as co-factor. To the best of our knowledge, this study is the first to present evidence for the participation of arsC and dhaT1 in selenite reduction in vivo, providing important insights into the molecular mechanisms underlying the biotransformation of Se(IV) and the biogenesis of SeNPs using Se-reducing bacteria.
Collapse
Affiliation(s)
- Sheng-Wei Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Yuan-Yuan Yao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Xu Zhang
- School of Food and Bioengineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Wan-Ying Guo
- School of Food and Bioengineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Ming-Hui Fang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Hai-Bo Wang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Yu-Jun Sun
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Ming-Hao Li
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
2
|
Yang H, Wang S, Zhao M, Liao Y, Wang F, Yin X. Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production. J Biotechnol 2024; 395:22-30. [PMID: 39260702 DOI: 10.1016/j.jbiotec.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules-the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules-and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.
Collapse
Affiliation(s)
- Hulin Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Shizhuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Meiyi Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Yonghong Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China.
| |
Collapse
|
3
|
Ma JY, Jiang YQ, Liu XY, Sun XD, Jia YN, Wang Y, Tan MM, Duan JL, Yuan XZ. Amplified selenite toxicity in methanogenic archaea mediated by cysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117263. [PMID: 39486247 DOI: 10.1016/j.ecoenv.2024.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The challenge of understanding the interaction between trace elements and microbial life is critical for assessing environmental and ecological impacts. Nevertheless, cysteine (Cys), a low molecular weight thiol substance prevalent in the ecosystem, is able to influence the fate of certain trace elements, which increases the complexity of the interaction between trace elements and microorganisms. Therefore, we chose Cys, selenite and the model methanogenic archaeon Methanosarcina acetivorans C2A as research targets, and comprehensively explored the intricate role of Cys in modulating the biological effects of selenite on M. acetivorans C2A in terms of population growth, methane production and oxidative stress. Our results demonstrate that Cys significantly exacerbates the inhibitory effects of selenite on growth and methane production in M. acetivorans C2A. This increased toxicity is linked to heightened membrane permeability and oxidative stress, with a marked upregulation in reactive oxygen species and changes in NADPH levels. Transcriptomic analysis reveals alterations in genes associated with transmembrane transport and methanogenesis. Intriguingly, we also observed a potential interaction between selenite and phosphate transmembrane transporters, suggesting a novel pathway for selenite entry into cells. These findings highlight the complex interplay between trace elements and microbial processes, with significant implications for understanding environmental risks and developing remediation strategies.
Collapse
Affiliation(s)
- Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Qian Jiang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Ning Jia
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yue Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Miao-Miao Tan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
4
|
Lashani E, Moghimi H, Turner RJ, Amoozegar MA. Characterization and biological activity of selenium nanoparticles biosynthesized by Yarrowia lipolytica. Microb Biotechnol 2024; 17:e70013. [PMID: 39364622 PMCID: PMC11450378 DOI: 10.1111/1751-7915.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/28/2024] [Indexed: 10/05/2024] Open
Abstract
In this research, biogenic selenium nanoparticles were produced by the fungi Yarrowia lipolytica, and the biological activity of its nanoparticles was studied for the first time. The electron microscopy analyses showed the production of nanoparticles were intracellular and the resulting particles were extracted and characterized by XRD, zeta potential, FESEM, EDX, FTIR spectroscopy and DLS. These analyses showed amorphous spherical nanoparticles with an average size of 110 nm and a Zeta potential of -34.51 ± 2.41 mV. Signatures of lipids and proteins were present in the capping layer of biogenic selenium nanoparticles based on FTIR spectra. The antimicrobial properties of test strains showed that Serratia marcescens, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis were inhibited at concentrations between 160 and 640 μg/mL, while the growth of Candida albicans was hindered by 80 μg/mL of biogenic selenium nanoparticles. At concentrations between 0.5 and 1.5 mg/mL of biogenic selenium nanoparticles inhibited up to 50% of biofilm formation of Klebsiella pneumonia, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, the concentration of 20-640 μg/mL of these bioSeNPs showed antioxidant activity. Evaluating the cytotoxicity of these nanoparticles on the HUVEC and HepG2 cell lines did not show any significant toxicity within MIC concentrations of SeNPs. This defines that Y. lipolytica synthesized SeNPs have strong potential to be exploited as antimicrobial agents against pathogens of WHO concern.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran
| |
Collapse
|
5
|
Du M, Huang S, Huang Z, Qian L, Gui Y, Hu J, Sun Y. De novo assembly and characterization of the transcriptome of Morchella esculenta growth with selenium supplementation. PeerJ 2024; 12:e17426. [PMID: 38832042 PMCID: PMC11146319 DOI: 10.7717/peerj.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Although Morchella esculenta (L.) Pers. is an edible and nutritious mushroom with significant selenium (Se)-enriched potential, its biological response to selenium stimuli remains unclear. This study explored the effect of selenium on mushroom growth and the global gene expression profiles of M. esculenta. While 5 µg mL-1selenite treatment slightly promoted mycelia growth and mushroom yield, 10 µg mL-1significantly inhibited growth. Based on comparative transcriptome analysis, samples treated with 5 µg mL-1 and 10 µg mL-1 of Se contained 16,061 (452 upregulated and 15,609 downregulated) and 14,155 differentially expressed genes (DEGs; 800 upregulated and 13,355 downregulated), respectively. Moreover, DEGs were mainly enriched in the cell cycle, meiosis, aminoacyl-tRNA biosynthesis, spliceosome, protein processing in endoplasmic reticulum pathway, and mRNA surveillance pathway in both selenium-treated groups. Among these, MFS substrate transporter and aspartate aminotransferase genes potentially involved in Se metabolism and those linked to redox homeostasis were significantly upregulated, while genes involved in isoflavone biosynthesis and flavonoid metabolism were significantly downregulated. Gene expression levels increased alongside selenite treatment concentration, suggesting that high Se concentrations promoted M. esculenta detoxification. These results can be used to thoroughly explain the potential detoxification and Se enrichment processes in M. esculenta and edible fungi.
Collapse
Affiliation(s)
- Mengxiang Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shengwei Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Zihan Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Lijuan Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yang Gui
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Jing Hu
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| |
Collapse
|
6
|
Firrincieli A, Tornatore E, Piacenza E, Cappelletti M, Saiano F, Pavia FC, Alduina R, Zannoni D, Presentato A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. CHEMOSPHERE 2024; 354:141712. [PMID: 38484991 DOI: 10.1016/j.chemosphere.2024.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Enrico Tornatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze Ed. 4, 90128, Palermo, Italy.
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128, Palermo, Italy.
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
7
|
Klaczek CE, Goss GG, Glover CN. Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters. CONSERVATION PHYSIOLOGY 2024; 12:coad108. [PMID: 38293640 PMCID: PMC10823350 DOI: 10.1093/conphys/coad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Concentrations of selenium that exceed regulatory guidelines have been associated with coal mining activities and have been linked to detrimental effects on aquatic ecosystems and the organisms therein. Although the major route of selenium uptake in macroinvertebrates is via the diet, the uptake of waterborne selenite (HSeO3-), the prominent form at circumneutral pH, can be an important contributor to selenium body burden and thus selenium toxicity. In the current study, radiolabelled selenite (Se75) was used to characterize the mechanism of selenite uptake in the water flea, Daphnia magna. The concentration dependence (1-32 μM) of selenite uptake was determined in 1-hour uptake assays in artificial waters that independently varied in bicarbonate, chloride, sulphate, phosphate and selenate concentrations. At concentrations representative of those found in highly contaminated waters, selenite uptake was phosphate-dependent and inhibited by foscarnet, a phosphate transport inhibitor. At higher concentrations, selenite uptake was dependent on waterborne bicarbonate concentration and inhibited by the bicarbonate transporter inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid). These findings suggest that concentrations of phosphate in coal mining-affected waters could alter selenite uptake in aquatic organisms and could ultimately affect the toxic impacts of selenium in such waters.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Dr., Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
8
|
Kałucka M, Roszczyk A, Klimaszewska M, Kaleta B, Drelich E, Błażewicz A, Górska-Jakubowska S, Malinowska E, Król M, Prus AM, Trześniowska K, Wołczyńska A, Dorożyński P, Zagożdżon R, Turło J. Optimization of Se- and Zn-Enriched Mycelium of Lentinula edodes (Berk.) Pegler as a Dietary Supplement with Immunostimulatory Activity. Nutrients 2023; 15:4015. [PMID: 37764798 PMCID: PMC10535943 DOI: 10.3390/nu15184015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different.
Collapse
Affiliation(s)
- Małgorzata Kałucka
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Marzenna Klimaszewska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Ewelina Drelich
- Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (E.D.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisiciplinary Applications of Ion Chromatography, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Sandra Górska-Jakubowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Eliza Malinowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | | | - Katarzyna Trześniowska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Aleksandra Wołczyńska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| |
Collapse
|
9
|
Brandt P, Mirhakkak MH, Wagner L, Driesch D, Möslinger A, Fänder P, Schäuble S, Panagiotou G, Vylkova S. High-Throughput Profiling of Candida auris Isolates Reveals Clade-Specific Metabolic Differences. Microbiol Spectr 2023; 11:e0049823. [PMID: 37097196 PMCID: PMC10269459 DOI: 10.1128/spectrum.00498-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen that causes outbreaks of invasive infections, emerged as four distinct geographical clades. Previous studies identified genomic and proteomic differences in nutrient utilization on comparison to Candida albicans, suggesting that certain metabolic features may contribute to C. auris emergence. Since no high-throughput clade-specific metabolic characterization has been described yet, we performed a phenotypic screening of C. auris strains from all 4 clades on 664 nutrients, 120 chemicals, and 24 stressors. We identified common and clade- or strain-specific responses, including the preferred utilization of various dipeptides as nitrogen source and the inability of the clade II isolate AR 0381 to withstand chemical stress. Further analysis of the metabolic properties of C. auris isolates showed robust growth on intermediates of the tricarboxylic acid cycle, such as citrate and succinic and malic acids. However, there was reduced or no growth on pyruvate, lactic acid, or acetate, likely due to the lack of the monocarboxylic acid transporter Jen1, which is conserved in most pathogenic Candida species. Comparison of C. auris and C. albicans transcriptomes of cells grown on alternative carbon sources and dipeptides as a nitrogen source revealed common as well as species-unique responses. C. auris induced a significant number of genes with no ortholog in C. albicans, e.g., genes similar to the nicotinic acid transporter TNA1 (alternative carbon sources) and to the oligopeptide transporter (OPT) family (dipeptides). Thus, C. auris possesses unique metabolic features which could have contributed to its emergence as a pathogen. IMPORTANCE Four main clades of the emerging, multidrug-resistant human pathogen Candida auris have been identified, and they differ in their susceptibilities to antifungals and disinfectants. Moreover, clade- and strain-specific metabolic differences have been identified, but a comprehensive overview of nutritional characteristics and resistance to various stressors is missing. Here, we performed high-throughput phenotypic characterization of C. auris on various nutrients, stressors, and chemicals and obtained transcriptomes of cells grown on selected nutrients. The generated data sets identified multiple clade- and strain-specific phenotypes and induction of C. auris-specific metabolic genes, showing unique metabolic properties. The presented work provides a large amount of information for further investigations that could explain the role of metabolism in emergence and pathogenicity of this multidrug-resistant fungus.
Collapse
Affiliation(s)
- Philipp Brandt
- Septomics Research Center, Friedrich Schiller University, and Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mohammad H. Mirhakkak
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University, and Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Anna Möslinger
- Septomics Research Center, Friedrich Schiller University, and Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Pauline Fänder
- Septomics Research Center, Friedrich Schiller University, and Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University, and Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
10
|
Gong A, Liu W, Lin Y, Huang L, Xie Z. Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0132623. [PMID: 37098949 PMCID: PMC10269739 DOI: 10.1128/spectrum.01326-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Selenium (Se) is a micronutrient in most eukaryotes, and Se-enriched yeast is the most common selenium supplement. However, selenium metabolism and transport in yeast have remained unclear, greatly hindering the application of this element. To explore the latent selenium transport and metabolism mechanisms, we performed adaptive laboratory evolution under the selective pressure of sodium selenite and successfully obtained selenium-tolerant yeast strains. Mutations in the sulfite transporter gene ssu1 and its transcription factor gene fzf1 were found to be responsible for the tolerance generated in the evolved strains, and the selenium efflux process mediated by ssu1 was identified in this study. Moreover, we found that selenite is a competitive substrate for sulfite during the efflux process mediated by ssu1, and the expression of ssu1 is induced by selenite rather than sulfite. Based on the deletion of ssu1, we increased the intracellular selenomethionine content in Se-enriched yeast. This work confirms the existence of the selenium efflux process, and our findings may benefit the optimization of Se-enriched yeast production in the future. IMPORTANCE Selenium is an essential micronutrient for mammals, and its deficiency severely threatens human health. Yeast is the model organism for studying the biological role of selenium, and Se-enriched yeast is the most popular selenium supplement to solve Se deficiency. The cognition of selenium accumulation in yeast always focuses on the reduction process. Little is known about selenium transport, especially selenium efflux, which may play a crucial part in selenium metabolism. The significance of our research is in determining the selenium efflux process in Saccharomyces cerevisiae, which will greatly enhance our knowledge of selenium tolerance and transport, facilitating the production of Se-enriched yeast. Moreover, our research further advances the understanding of the relationship between selenium and sulfur in transport.
Collapse
Affiliation(s)
- Ao Gong
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenyue Liu
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yelong Lin
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Laili Huang
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Xu Q, Zhang S, Ren J, Li K, Li J, Guo Y. Uptake of Selenite by Rahnella aquatilis HX2 Involves the Aquaporin AqpZ and Na +/H + Antiporter NhaA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2371-2379. [PMID: 36734488 DOI: 10.1021/acs.est.2c07028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.
Collapse
Affiliation(s)
- Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Alijan S, Hosseini M, Esmaeili S, Khosravi-Darani K. Impact of ultrasound and medium condition on production of selenium-enriched yeast. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Kretschmer M, Damoo D, Sun S, Lee CWJ, Croll D, Brumer H, Kronstad J. Organic acids and glucose prime late-stage fungal biotrophy in maize. Science 2022; 376:1187-1191. [PMID: 35679407 DOI: 10.1126/science.abo2401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many plant-associated fungi are obligate biotrophs that depend on living hosts to proliferate. However, little is known about the molecular basis of the biotrophic lifestyle, despite the impact of fungi on the environment and food security. In this work, we show that combinations of organic acids and glucose trigger phenotypes that are associated with the late stage of biotrophy for the maize pathogen Ustilago maydis. These phenotypes include the expression of a set of effectors normally observed only during biotrophic development, as well as the formation of melanin associated with sporulation in plant tumors. U. maydis and other hemibiotrophic fungi also respond to a combination of carbon sources with enhanced proliferation. Thus, the response to combinations of nutrients from the host may be a conserved feature of fungal biotrophy.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Djihane Damoo
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sherry Sun
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christopher W J Lee
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Wang D, Rensing C, Zheng S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126684. [PMID: 34339989 DOI: 10.1016/j.jhazmat.2021.126684] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium is an essential trace element for humans, animals and microorganisms. Microbial transformations, in particular, selenium dissimilatory reduction and bioremediation applications have received increasing attention in recent years. This review focuses on multiple Se-reducing pathways under anaerobic and aerobic conditions, and the phylogenetic clustering of selenium reducing enzymes that are involved in these processes. It is emphasized that a selenium reductase may have more than one metabolic function, meanwhile, there are several Se(VI) and/or Se(IV) reduction pathways in a bacterial strain. It is noted that Se(IV)-reducing efficiency is inconsistent with Se(IV) resistance in bacteria. Moreover, we discussed the links of selenium transformations to biogeochemical cycling of other elements, roles of Se-reducing bacteria in soil, plant and digestion system, and the possibility of using functional genes involved in Se transformation as biomarker in different environments. In addition, we point out the gaps and perspectives both on Se transformation mechanisms and applications in terms of bioremediation, Se fortification or dietary supplementation.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine. Molecules 2021; 26:molecules26237120. [PMID: 34885702 PMCID: PMC8659212 DOI: 10.3390/molecules26237120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Collapse
|
16
|
Zhou C, Huang JC, Gan X, He S, Zhou W. Selenium uptake, volatilization, and transformation by the cyanobacterium Microcystis aeruginosa and post-treatment of Se-laden biomass. CHEMOSPHERE 2021; 280:130593. [PMID: 33932907 DOI: 10.1016/j.chemosphere.2021.130593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3-100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2-33.0%, with 19.1-33.2% as elemental Se, while organo-Se remained dominant (93.6-95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0-70.5%) predominant in the residue.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
18
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
19
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
20
|
Fletcher E, Mercurio K, Walden EA, Baetz K. A yeast chemogenomic screen identifies pathways that modulate adipic acid toxicity. iScience 2021; 24:102327. [PMID: 33889823 PMCID: PMC8050732 DOI: 10.1016/j.isci.2021.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adipic acid production by yeast fermentation is gaining attention as a renewable source of platform chemicals for making nylon products. However, adipic acid toxicity inhibits yeast growth and fermentation. Here, we performed a chemogenomic screen in Saccharomyces cerevisiae to understand the cellular basis of adipic acid toxicity. Our screen revealed that KGD1 (a key gene in the tricarboxylic acid cycle) deletion improved tolerance to adipic acid and its toxic precursor, catechol. Conversely, disrupting ergosterol biosynthesis as well as protein trafficking and vacuolar transport resulted in adipic acid hypersensitivity. Notably, we show that adipic acid disrupts the Membrane Compartment of Can1 (MCC) on the plasma membrane and impacts endocytosis. This was evidenced by the rapid internalization of Can1 for vacuolar degradation. As ergosterol is an essential component of the MCC and protein trafficking mechanisms are required for endocytosis, we highlight the importance of these cellular processes in modulating adipic acid toxicity. Deletion of the TCA cycle gene KGD1 improves tolerance to adipic acid and catechol Ergosterol and Pdr12 play non-overlapping roles protecting cell from adipic acid Adipic acid-induced plasma membrane localization of Pdr12 is independent of ergosterol Adipic acid disrupts the Membrane Compartment of Can1 (MCC) and induces endocytosis
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Elizabeth A. Walden
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Corresponding author
| |
Collapse
|
21
|
Su Y, Shao W, Zhang A, Zhang W. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6147039. [PMID: 33620449 DOI: 10.1093/femsyr/foab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2021] [Indexed: 11/14/2022] Open
Abstract
Improving yeast tolerance toward isobutanol is a critical issue enabling high-titer industrial production. Here, we used EMS mutagenesis to screen Saccharomyces cerevisiae with greater tolerance toward isobutanol. By this method, we obtained EMS39 with high-viability in medium containing 16 g/L isobutanol. Then, we metabolically engineered isobutanol synthesis in EMS39. About 2μ plasmids carrying PGK1p-ILV2, PGK1p-ILV3 and TDH3p-cox4-ARO10 were used to over-express ILV2, ILV3 and ARO10 genes, respectively, in EMS39 and wild type W303-1A. And the resulting strains were designated as EMS39-20 and W303-1A-20. Our results showed that EMS39-20 increased isobutanol titers by 49.9% compared to W303-1A-20. Whole genome resequencing analysis of EMS39 showed that more than 59 genes had mutations in their open reading frames or regulatory regions. These 59 genes are enriched mainly into cell growth, basal transcription factors, cell integrity signaling, translation initiation and elongation, ribosome assembly and function, oxidative stress response, etc. Additionally, transcriptomic analysis of EMS39-20 was carried out. Finally, reverse engineering tests showed that overexpression of CWP2 and SRP4039 could improve tolerance of S.cerevisiae toward isobutanol. In conclusion, EMS mutagenesis could be used to increase yeast tolerance toward isobutanol. Our study supplied new insights into mechanisms of tolerance toward isobutanol and enhancing isobutanol production in S. cerevisiae.
Collapse
Affiliation(s)
- Yide Su
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Wenju Shao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Aili Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| |
Collapse
|
22
|
Kieliszek M, Bierla K, Jiménez-Lamana J, Kot AM, Alcántara-Durán J, Piwowarek K, Błażejak S, Szpunar J. Metabolic Response of the Yeast Candida utilis During Enrichment in Selenium. Int J Mol Sci 2020; 21:ijms21155287. [PMID: 32722488 PMCID: PMC7432028 DOI: 10.3390/ijms21155287] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20–30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
- Correspondence: (M.K.); (J.S.)
| | - Katarzyna Bierla
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Javier Jiménez-Lamana
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Jaime Alcántara-Durán
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen, Spain;
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Joanna Szpunar
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
- Correspondence: (M.K.); (J.S.)
| |
Collapse
|
23
|
Dolgova NV, Nehzati S, MacDonald TC, Summers KL, Crawford AM, Krone PH, George GN, Pickering IJ. Disruption of selenium transport and function is a major contributor to mercury toxicity in zebrafish larvae. Metallomics 2020; 11:621-631. [PMID: 30688331 DOI: 10.1039/c8mt00315g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mercury is one of the most toxic elements threatening the biosphere, with levels steadily rising due to both natural and human activities. Selenium is an essential micronutrient, required for normal development and functioning of many organisms. While selenium is known to counteract mercury's toxicity under some conditions, to date information about the mercury-selenium relationship is fragmented and often controversial. As part of a systematic study of mercury and selenium interactions, zebrafish (Danio rerio) larvae (a model verterbrate) were exposed to methylmercury chloride or mercuric chloride. The influence of pre- and post-treatment of selenomethionine on the level and distribution of mercury and selenium in the brain and eye sections, as well as on toxicity, were examined. Selenomethionine treatment decreased the amount of maternally transfered mercury in the larval brain. Selenomethionine treatment prior to exposure to mercuric chloride increased both mercury and selenium levels in the brain but decreased their toxic effects. Conversely, methylmercury levels were not changed as a result of selenium pre-treatment, while toxicity was increased. Strikingly, both forms of mercury severely disrupted selenium metabolism, not only by depleting selenium levels due to formation of Hg-Se complexes, but also by blocking selenium transport into and out of tissues, suggesting that restoring normal selenium levels by treating the organism with selenium after mercury exposure may not be possible. Disruption of selenium metabolism by mercury may lead to disruption in function of selenoproteins. Indeed, the production of thyroid hormones by selenoprotein deiodinases was found to be severely impaired as a result of mercury exposure, with selenomethionine not always being a suitable source of selenium to restore thyroid hormone levels.
Collapse
Affiliation(s)
- Natalia V Dolgova
- Molecular and Environment Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. This review also presents an evolutionary analysis of orthologues of the Saccharomyces cerevisiae Jen1 lactate and Ady2 acetate transporters, including a phylogenetic analysis of 101 putative carboxylate transporters in twelve medically relevant Candida species. These proteins are assigned to distinct clades according to their amino acid sequence homology and represent the major carboxylic acid uptake systems in yeast. While Jen transporters belong to the sialate:H+ symporter (SHS) family, the Ady2 homologue members are assigned to the acetate uptake transporter (AceTr) family. Here, we reclassify the later members as ATO (acetate transporter ortholog). The new nomenclature will facilitate the study of these transporters, as well as the analysis of their relevance for Candida pathogenesis.
Collapse
|
25
|
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J Fungi (Basel) 2020; 6:jof6020059. [PMID: 32375266 PMCID: PMC7344654 DOI: 10.3390/jof6020059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu Wu
- Correspondence: ; Tel.: +86-716-806-6262
| |
Collapse
|
26
|
Defenouillère Q, Verraes A, Laussel C, Friedrich A, Schacherer J, Léon S. The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose. Sci Signal 2019; 12:12/597/eaaw8000. [PMID: 31481524 DOI: 10.1126/scisignal.aaw8000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-cancer strategies that target the glycolytic metabolism of tumors have been proposed. The glucose analog 2-deoxyglucose (2DG) is imported into cells and, after phosphorylation, becomes 2DG-6-phosphate, a toxic by-product that inhibits glycolysis. Using yeast as a model, we performed an unbiased mass spectrometry-based approach to probe the cellular effects of 2DG on the proteome and study resistance mechanisms to 2DG. We found that two phosphatases that target 2DG-6-phosphate were induced upon exposure to 2DG and participated in 2DG detoxification. Dog1 and Dog2 are HAD (haloacid dehalogenase)-like phosphatases, which are evolutionarily conserved. 2DG induced Dog2 by activating several signaling pathways, such as the stress response pathway mediated by the p38 MAPK ortholog Hog1, the unfolded protein response (UPR) triggered by 2DG-induced ER stress, and the cell wall integrity (CWI) pathway mediated by the MAPK Slt2. Loss of the UPR or CWI pathways led to 2DG hypersensitivity. In contrast, mutants impaired in the glucose-mediated repression of genes were 2DG resistant because glucose availability transcriptionally repressed DOG2 by inhibiting signaling mediated by the AMPK ortholog Snf1. The characterization and genome resequencing of spontaneous 2DG-resistant mutants revealed that DOG2 overexpression was a common strategy underlying 2DG resistance. The human Dog2 homolog HDHD1 displayed phosphatase activity toward 2DG-6-phosphate in vitro and its overexpression conferred 2DG resistance in HeLa cells, suggesting that this 2DG phosphatase could interfere with 2DG-based chemotherapies. These results show that HAD-like phosphatases are evolutionarily conserved regulators of 2DG resistance.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Agathe Verraes
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Clotilde Laussel
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, 67000 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, 67000 Strasbourg, France
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France.
| |
Collapse
|
27
|
Zhang G, Yao X, Wang C, Wang D, Wei G. Transcriptome analysis reveals the mechanism underlying improved glutathione biosynthesis and secretion in Candida utilis during selenium enrichment. J Biotechnol 2019; 304:89-96. [PMID: 31449823 DOI: 10.1016/j.jbiotec.2019.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/02/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
The effect of sodium selenite on batch culture of Candida utilis CCTCC M 209298 was investigated. Cell growth was inhibited while glutathione biosynthesis and secretion were improved during selenium enrichment. To reveal the mechanism underlying the decrease in biomass and the increase in glutathione, both metabolic flux analysis of key intermediates involved in glutathione metabolic pathway and transcriptome analysis of C. utilis by RNA-seq were carried out for selenized cells and the control without selenium enrichment. Results indicated that sodium selenite decreased carbon fluxes towards biomass but increased fluxes towards amino acids for the biosynthesis of glutathione and related amino acids. Selenium enrichment down-regulated a large number of genes involved in cell components and the cell cycle, resulting in decreased biomass as well as increased cell permeability. Moreover, several genes associated with transportation, binding, and mitochondrial and ribosomal functions for energy metabolism and protein synthesis were up-regulated in the presence of sodium selenite. All of these results disclosed the physiological response of C. utilis to sodium selenite.
Collapse
Affiliation(s)
- Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xingyun Yao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
28
|
Hoffman KS, Vargas-Rodriguez O, Bak DW, Mukai T, Woodward LK, Weerapana E, Söll D, Reynolds NM. A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation. J Biol Chem 2019; 294:12855-12865. [PMID: 31296657 DOI: 10.1074/jbc.ra119.008219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) is the 21st genetically encoded amino acid in organisms across all domains of life. Although structurally similar to cysteine (Cys), the Sec selenol group has unique properties that are attractive for protein engineering and biotechnology applications. Production of designer proteins with Sec (selenoproteins) at desired positions is now possible with engineered translation systems in Escherichia coli However, obtaining pure selenoproteins at high yields is limited by the accumulation of free Sec in cells, causing undesired incorporation of Sec at Cys codons due to the inability of cysteinyl-tRNA synthetase (CysRS) to discriminate against Sec. Sec misincorporation is toxic to cells and causes protein aggregation in yeast. To overcome this limitation, here we investigated a CysRS from the selenium accumulator plant Astragalus bisulcatus that is reported to reject Sec in vitro Sequence analysis revealed a rare His → Asn variation adjacent to the CysRS catalytic pocket. Introducing this variation into E. coli and Saccharomyces cerevisiae CysRS increased resistance to the toxic effects of selenite and selenomethionine (SeMet), respectively. Although the CysRS variant could still use Sec as a substrate in vitro, we observed a reduction in the frequency of Sec misincorporation at Cys codons in vivo We surmise that the His → Asn variation can be introduced into any CysRS to provide a fitness advantage for strains burdened by Sec misincorporation and selenium toxicity. Our results also support the notion that the CysRS variant provides higher specificity for Cys as a mechanism for plants to grow in selenium-rich soils.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Laura K Woodward
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
29
|
Directed Evolution of Saccharomyces cerevisiae for Increased Selenium Accumulation. Microorganisms 2018; 6:microorganisms6030081. [PMID: 30082639 PMCID: PMC6165298 DOI: 10.3390/microorganisms6030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Selenium-enriched yeast (selenium yeast) are one of the most popular sources of selenium supplementation used in the agriculture and human nutritional supplements industries. To enhance the production efficiency of selenium yeast, we sought to develop a method to identify, and ultimately select for, strains of yeast with enhanced selenium accumulation capabilities. Selenite resistance of four genetically diverse strains of Saccharomyces cerevisiae was assayed in various conditions, including varying carbon sources, nitrogen sources, and phosphate amounts, and they were correlated with selenium accumulation in a commercially relevant selenium-containing growth medium. Glycerol- and selenite-containing media was used to select for six yeast isolates with enhanced selenite resistance. One isolate was found to accumulate 10-fold greater selenium (0.13 to 1.4 mg Se g−1 yeast) than its parental strain. Glycerol- and selenium-containing medium can be used to select for strains of yeast with enhanced selenium accumulation capability. The methods identified can lead to isolation of industrial yeast strains with enhanced selenium accumulation capabilities that can result in greater cost efficiency of selenium yeast production. Additionally, the selection method does not involve the construction of transgenic yeast, and thus produces yeasts suitable for use in human food and nutrient supplements.
Collapse
|
30
|
Guo H, Huang T, Zhao J, Chen H, Chen G. Fungi short-chain carboxylate transporter: shift from microbe hereditary functional component to metabolic engineering target. Appl Microbiol Biotechnol 2018; 102:4653-4662. [PMID: 29679102 DOI: 10.1007/s00253-018-9010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Short-chain carboxylic acids and their derivatives are widely utilized in all aspects of our daily life. Given their specific functional groups, these molecules are also utilized in fine chemical synthesis. The traditional petroleum-based carboxylate production methods are restricted by petrol shortage and environmental pollution. Renowned for their more sustainable processes than traditional methods, biotechnological methods are preferred alternatives and have attracted increasing attention. However, the industrial application of biotechnological methods is currently limited by low factors: low productivity and low yield. Therefore, understanding the regulation of carboxylate accumulation will greatly enhance the industrial biotechnological production of short-chain carboxylate acids. The carboxylate transporter plays a crucial role in transmembrane uptake and secretion of carboxylate; therefore, regulating these transporters is of high academic and application relevance. This review concentrates on the physiological roles, regulation mechanisms, and harnessing strategies of Jen and AcpA orthologs in fungi, which provide potential clues for the biotechnological production of short-chain carboxylic acids with high efficiency.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China.
| | - Tianqiu Huang
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Jun Zhao
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Guo Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| |
Collapse
|
31
|
Jahan MI, Tobe R, Mihara H. Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite. Int J Mol Sci 2018. [PMID: 29534491 PMCID: PMC5877670 DOI: 10.3390/ijms19030809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to β-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.
Collapse
Affiliation(s)
- Mst Ishrat Jahan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
32
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
33
|
Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Selenium Concentrations for Maximisation of Thioredoxin Reductase 2 Activity and Upregulation of Its Gene Transcripts in Senescent Human Fibroblasts. Antioxidants (Basel) 2017; 6:antiox6040083. [PMID: 29084149 PMCID: PMC5745493 DOI: 10.3390/antiox6040083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Thioredoxin reductase 2 (TR2) activity, its gene transcripts, and hydrogen peroxide (H2O2) generation were examined in biochemically identified early-senescent P20 and senescent P30 fibroblasts subcultured in media (MEM2–MEM8) containing Se concentrations at 1.25, 2.5, 3.5, 5.0, 6.0, 7.0, and 8.0 µM, respectively. Although TR2 activity was moderately increased in P20 and P30 cells subcultured in routine growth medium (MEM1), there were progressive significant activity increases in the same cells subcultured in MEM2–MEM8. Such increases were proportional to Se concentration and peaked in P30 cells incubated with MEM7 and MEM8. H2O2 generation underwent progressive increases in MEM1-incubated P20 and P30 cells, peaking in the latter, but was gradually lowered in those incubated with MEM2–MEM8, reaching its lowest values when cells were incubated with MEM7 and MEM8. In parallel, TR2 gene transcripts underwent significant upregulation in P20 cells and higher magnitude upregulation in P30 cells subcultured in MEM2, MEM4, and MEM8 compared to those recorded for P5 pre-senescent cells subcultured in the same media. The computed Km Se values with respect to TR2 activity equaled 3.34 and 4.98 µM for P20 and P30 cells, respectively, with corresponding Vmax activities of 55.9 and 96.2 nmol/min/mg protein. It is concluded that senescent P30 cells utilize more Se and achieve maximal TR2 activity to combat oxidative injury.
Collapse
|
35
|
Geng X, McDermott J, Lundgren J, Liu L, Tsai KJ, Shen J, Liu Z. Role of AQP9 in transport of monomethyselenic acid and selenite. Biometals 2017; 30:747-755. [PMID: 28798983 DOI: 10.1007/s10534-017-0042-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
AQP9 is an aquaglyceroporin with a very broad substrate spectrum. In addition to its orthodox nutrient substrates, AQP9 also transports multiple neutral and ionic arsenic species including arsenic trioxide, monomethylarsenous acid (MAsIII) and dimethylarsenic acid (DMAV). Here we discovered a new group of AQP9 substrates which includes two clinical relevant selenium species. We showed that AQP9 efficiently transports monomethylselenic acid (MSeA) with a preference for acidic pH, which has been demonstrated in Xenopus laevis oocyte following the overexpression of human AQP9. Specific inhibitors that dissipate transmembrane proton potential or change the transmembrane pH gradient, such as FCCP, valinomycin and nigericin did not significantly inhibit MSeA uptake, suggesting MSeA transport is not proton coupled. AQP9 was also found to transport ionic selenite and lactate, with much less efficiency compared with MSeA uptake. Selenite and lactate uptake via AQP9 is pH dependent and inhibited by FCCP and nigericin, but not valinomycin. The selenite and lactate uptake via AQP9 can be inhibited by different lactate analogs, indicating that their translocation share similar mechanisms. AQP9 transport of MSeA, selenite and lactate is all inhibited by a previously identified AQP9 inhibitor, phloretin, and the AQP9 substrate arsenite (AsIII). These newly identified AQP9 selenium substrates imply that AQP9 play a significant role in MSeA uptake and possibly selenite uptake involved in cancer therapy under specific microenvironments.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Joseph McDermott
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Joseph Lundgren
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Liu Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Kan-Jen Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jian Shen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
36
|
Zhang R, Shao M, Han X, Wang C, Li Y, Hu B, Pang D, Xie Z. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae. Int J Nanomedicine 2017; 12:3865-3879. [PMID: 28579774 PMCID: PMC5446969 DOI: 10.2147/ijn.s132719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.
Collapse
Affiliation(s)
- Rong Zhang
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Ming Shao
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Xu Han
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Yong Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Daiwen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| |
Collapse
|
37
|
Generoso WC, Brinek M, Dietz H, Oreb M, Boles E. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3821180. [DOI: 10.1093/femsyr/fox029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
|
38
|
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARDL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVDC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, et alde Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARDL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVDC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 2017; 18:28. [PMID: 28196534 PMCID: PMC5307856 DOI: 10.1186/s13059-017-1151-0] [Show More Authors] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
Collapse
Affiliation(s)
- Ronald P. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ad Wiebenga
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Guillermo Aguilar-Osorio
- Department of Food Science and Biotechnology, Faculty of Chemistry, National University of Mexico, Ciudad Universitaria, D.F. C.P. 04510 Mexico
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Cristiane Akemi Uchima
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Present address: VTT Brasil, Alameda Inajá, 123, CEP 06460-055 Barueri, São Paulo Brazil
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojtaba Asadollahi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Marion Askin
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: CSIRO Publishing, Unipark, Building 1 Level 1, 195 Wellington Road, Clayton, VIC 3168 Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Evy Battaglia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Biology, Maynooth University, Maynooth, Co. Kildare Ireland
| | - Tiziano Benocci
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, Sao Paulo Brazil
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | | | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cindy Choi
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Renato Augusto Corrêa dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - André Ricardo de Lima Damásio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, CEP 13083-862 Campinas, SP Brazil
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Susanne Freyberg
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Christos Gournas
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
- Present address: Université Libre de Bruxelles Institute of Molecular Biology and Medicine (IBMM), Brussels, Belgium
| | - Rob Habgood
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | | | - María Laura Harispe
- Institut Pasteur de Montevideo, Unidad Mixta INIA-IPMont, Mataojo 2020, CP11400 Montevideo, Uruguay
- Present address: Instituto de Profesores Artigas, Consejo de Formación en Educación, ANEP, CP 11800, Av. del Libertador 2025, Montevideo, Uruguay
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kristiina S. Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ryan Hope
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Abeer Hossain
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Karabika
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
- Present Address: Department of Chemistry, University of Ioannina, Ioannina, 45110 Greece
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Nada Kraševec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Medical Informatics, University Medical Centre, Robert-Koch-Str.40, 37075 Göttingen, Germany
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen, 37073 Germany
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ellen L. Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Alla Lapidus
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Present address: Center for Algorithmic Biotechnology, St.Petersburg State University, St. Petersburg, Russia
| | - Anthony Levasseur
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Andrew MacCabe
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Miia R. Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Petter Melin
- Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, 750 07 Uppsala, Sweden
- Present address: Swedish Chemicals Agency, Box 2, 172 13 Sundbyberg, Sweden
| | - Vera Meyer
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Natalia Mielnichuk
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Present address: Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Márton Miskei
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Momentum, Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt.98., 4032 Debrecen, Hungary
| | - Ákos P. Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Giuseppina Mulé
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Margarita Orejas
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Erzsébet Orosz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Jean Paul Ouedraogo
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Karin M. Overkamp
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 702-701 Republic of Korea
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francois Piumi
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: INRA UMR1198 Biologie du Développement et de la Reproduction - Domaine de Vilvert, Jouy en Josas, 78352 Cedex France
| | - Peter J. Punt
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Stefan Rauscher
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Eric Record
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Julian Röhrig
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Nadhira S. Salih
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Department of Biology, School of Science, University of Sulaimani, Al Sulaymaneyah, Iraq
| | - Rob A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Tabea Schütze
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ekaterina Shelest
- Systems Biology/Bioinformatics group, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305-5120 USA
| | - Vicky Sophianopoulou
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Hui Sun
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Shiela E. Unkles
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
| | - Nathalie van de Wiele
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Diana van Rossen-Uffink
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: BaseClear B.V., Einsteinweg 5, 2333 CC Leiden, The Netherlands
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Tammi C. Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Jaap Visser
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706 USA
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Scott E. Baker
- Fungal Biotechnology Team, Pacific Northwest National Laboratory, Richland, Washington, 99352 USA
| | - Isabelle Benoit
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present address: Centre of Functional and Structure Genomics Biology Department Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6 Canada
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060 Vienna, Austria
| | - Patricia A. vanKuyk
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jennifer Wortman
- Broad Institute, 415 Main St, Cambridge, MA 02142 USA
- Present address: Seres Therapeutics, 200 Sidney St, Cambridge, MA 02139 USA
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| |
Collapse
|
39
|
Tobe T, Ueda K, Aoki A, Okamoto Y, Kojima N, Jinno H. Selenium uptake through cystine transporter mediated by glutathione conjugation. J Toxicol Sci 2017; 42:85-91. [PMID: 28070112 DOI: 10.2131/jts.42.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Selenium (Se) is an essential trace element and is regarded as a protective agent against cancer. In particular, antioxidant effects of selenoenzymes contribute to cancer prevention. Se can also produce reactive oxygen species and, thereby, exert cancer-selective cytotoxicity. Selenodiglutathione (SDG) is a primary Se metabolite conjugated to two glutathione (GSH) moieties. SDG increases intracellular Se accumulation and is more toxic than selenous acid (H2SeO3), but the mechanisms for importing Se compounds into cells are not fully understood. Here, we propose a novel mechanism for importing Se, in the form of SDG. Cellular intake of Se compounds was assessed based on Se accumulation, as detected by ICP-MS. SDG incorporation was decreased in the presence of thiols (GSH, cysteine or their oxidized forms, GSSG and cystine), whereas H2SeO3 uptake was increased by addition of GSH or cysteine. Cellular SDG uptake was decreased by pretreatment with specific inhibitors against gamma-glutamyl transpeptidase (GGT) or the cystine/glutamate antiporter (system xc-). Furthermore, siRNA against xCT, which is the light chain component of system xc-, significantly decreased SDG incorporation. These data suggest an involvement of SDG in Se incorporation, with SDG processed at the cell surface by GGT, leading to formation of selenodicysteine which, in turn, is likely to be imported via xCT. Because GGT and xCT are highly expressed in cancer cells, these mechanisms mediated by the cystine transporter might underlie the cancer-selective toxicity of Se. In addition, the system described in our study appears to represent a physiological transport mechanism for the essential element Se.
Collapse
|
40
|
The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci Rep 2016; 6:32836. [PMID: 27618952 PMCID: PMC5020356 DOI: 10.1038/srep32836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity.
Collapse
|
41
|
Wang J, Wang B, Zhang D, Wu Y. Selenium uptake, tolerance and reduction in Flammulina velutipes supplied with selenite. PeerJ 2016; 4:e1993. [PMID: 27547513 PMCID: PMC4986802 DOI: 10.7717/peerj.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/10/2016] [Indexed: 01/29/2023] Open
Abstract
Recently, selenium (Se) enriched mushrooms have been exploited as dietary Se supplements, but our knowledge of the metabolic process during the Se enrichment process is far from complete. In this study, the uptake, tolerance and reduction of selenite in a widely cultivated mushroom, Flammulina velutipes, was investigated. The results showed that pH variation (from 5.5-7.5), metabolic inhibitor (0.1 mM 2,4-DNP) and P or S starvation led to 11-26% decreases in the selenite uptake rate of F. velutipes. This indicates that a minor portion of the selenite uptake was metabolism dependent, whereas a carrier-facilitated passive transport may be crucial. Growth inhibition of F. velutipes initiated at 0.1 mM selenite (11% decrease in the growth rate) and complete growth inhibition occurred at 3 mM selenite. A selenite concentration of 0.03-0.1 mM was recommended to maintain the balance between mycelium production and Se enrichment. F. velutipes was capable of reducing selenite to elemental Se [Se(0)] including Se(0) nanoparticles, possibly as a detoxification mechanism. This process depended on both selenite concentration and metabolism activity. Overall, the data obtained provided some basic information for the cultivation of the selenized F. velutipes, and highlighted the opportunity of using mushrooms for the production of Se(0) nanoparticles.
Collapse
Affiliation(s)
- Jipeng Wang
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells. Biol Trace Elem Res 2016; 169:387-393. [PMID: 26166197 PMCID: PMC4717171 DOI: 10.1007/s12011-015-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Agnieszka Kurcz
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
43
|
Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LHE. Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:711-720. [PMID: 26690834 DOI: 10.1021/acs.est.5b04169] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biogenic selenium (Se) emissions play a major role in the biogeochemical cycle of this essential micronutrient. Microalgae may be responsible for a large portion of these emissions via production of methylated Se compounds that volatilize into the atmosphere. However, the biochemical mechanisms underlying Se methylation in microalgae are poorly understood. Here, we study Se methylation by Chlamydomonas reinhardtii, a model freshwater alga, as a function of uptake and intracellular Se concentrations and present a biochemical model that quantitatively describes Se uptake and methylation. Both selenite and selenate, two major inorganic forms of Se, are readily internalized by C. reinhardtii, but selenite is accumulated around ten times more efficiently than selenate due to different membrane transporters. With either selenite or selenate as substrates, Se methylation was highly efficient (up to 89% of intracellular Se) and directly coupled to intracellular Se levels (R(2) > 0.92) over an intracellular concentration range exceeding an order of magnitude. At intracellular concentrations exceeding 10 mM, intracellular zerovalent Se was formed. The relationship between uptake, intracellular accumulation, and methylation was used by the biochemical model to successfully predict measured concentrations of methylated Se in natural waters. Therefore, biological Se methylation by microalgae could significantly contribute to environmental Se cycling.
Collapse
Affiliation(s)
- Bas Vriens
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| | - Andreas Voegelin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Anze Zupanic
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Lenny H E Winkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zurich, Switzerland
| |
Collapse
|
44
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
45
|
Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol 2015; 99:5373-5382. [PMID: 26003453 PMCID: PMC4464373 DOI: 10.1007/s00253-015-6650-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022]
Abstract
This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland,
| | | | | | | |
Collapse
|
46
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:659750. [PMID: 26185592 PMCID: PMC4491405 DOI: 10.1155/2015/659750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 11/17/2022]
Abstract
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
47
|
Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 2015; 7:4199-239. [PMID: 26035246 PMCID: PMC4488781 DOI: 10.3390/nu7064199] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.
Collapse
Affiliation(s)
- Lenny H E Winkel
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Bas Vriens
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Gerrad D Jones
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Leila S Schneider
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA.
| |
Collapse
|
48
|
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. MICROBIAL CELL 2015; 2:139-149. [PMID: 28357286 PMCID: PMC5349236 DOI: 10.15698/mic2015.05.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
49
|
Dulermo R, Gamboa-Meléndez H, Michely S, Thevenieau F, Neuvéglise C, Nicaud JM. The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia. Microbiologyopen 2014; 4:100-20. [PMID: 25515252 PMCID: PMC4335979 DOI: 10.1002/mbo3.225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022] Open
Abstract
Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate.
Collapse
Affiliation(s)
- Rémi Dulermo
- UMR1319 Micalis, INRA, Jouy-en-Josas, F-78352, France
| | | | | | | | | | | |
Collapse
|
50
|
Becuwe M, Léon S. Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. eLife 2014; 3. [PMID: 25380227 PMCID: PMC4244573 DOI: 10.7554/elife.03307] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/04/2014] [Indexed: 01/04/2023] Open
Abstract
After endocytosis, membrane proteins can recycle to the cell membrane or be degraded in lysosomes. Cargo ubiquitylation favors their lysosomal targeting and can be regulated by external signals, but the mechanism is ill-defined. Here, we studied the post-endocytic trafficking of Jen1, a yeast monocarboxylate transporter, using microfluidics-assisted live-cell imaging. We show that the ubiquitin ligase Rsp5 and the glucose-regulated arrestin-related trafficking adaptors (ART) protein Rod1, involved in the glucose-induced internalization of Jen1, are also required for the post-endocytic sorting of Jen1 to the yeast lysosome. This new step takes place at the trans-Golgi network (TGN), where Rod1 localizes dynamically upon triggering endocytosis. Indeed, transporter trafficking to the TGN after internalization is required for their degradation. Glucose removal promotes Rod1 relocalization to the cytosol and Jen1 deubiquitylation, allowing transporter recycling when the signal is only transient. Therefore, nutrient availability regulates transporter fate through the localization of the ART/Rsp5 ubiquitylation complex at the TGN. DOI:http://dx.doi.org/10.7554/eLife.03307.001 The plasma membrane that surrounds cells contains many different proteins that perform tasks such as detecting signals sent to the cell, and transporting molecules into or out of the cell. To adapt to changing conditions, cells remodel their membrane to change how much of each type of protein is present. A process called endocytosis—where part of the plasma membrane and the proteins it contains buds off into the cell—plays an important role in this remodeling. The fate of a membrane protein after endocytosis can depend on whether a protein ‘tag’ called ubiquitin has been added to it. Ubiquitin-marked proteins bud off into the cell and are then sent to cell structures called lysosomes to be degraded, whereas unmarked proteins are recycled back to the plasma membrane. Yeast cell membranes contain a protein called Jen1 that transports certain molecules, including one called lactate that can be used as fuel for growth. However, glucose is a preferred nutrient for yeast, so when glucose is available, another protein called Rod1 becomes activated and promotes the addition of ubiquitin to Jen1, and hence its degradation. This means that the cells can no longer use lactate as a source of energy. However, it was not known where in the cell the Rod1 protein does this. Becuwe and Léon labeled proteins involved in endocytosis with fluorescent tags and used microscopy to observe their fate in live yeast cells exposed to glucose. This revealed two roles for Rod1. At the plasma membrane, Rod1 helps Jen1 to be taken into the cell in the early stages of endocytosis. But unexpectedly, Rod1 is also found at a cellular structure called the trans-Golgi network, small membrane sacs that are typically responsible for packaging proteins so they can be transported to a new destination, in particular the plasma membrane. This suggests that Rod1 can also act at this location in the cell. When the proteins responsible for maintaining transport to the trans-Golgi network are inhibited, Jen1 is no longer degraded, even when glucose is present; instead, Jen1 is recycled back to the plasma membrane. Becuwe and Léon therefore propose that a second level of control of the degradation of plasma membrane proteins occurs in the trans-Golgi network, and so this compartment has an essential role in sorting proteins for degradation or recycling. The group of proteins that Rod1 belongs to, named arrestins, has been suggested to play important roles in several diseases, including diabetes and cancer. As many of the features of the endocytic pathway are conserved in a broad range of species, arrestins may also be important for controlling the fate of membrane proteins at multiple places in mammalian cells. However, further work is required to confirm this. DOI:http://dx.doi.org/10.7554/eLife.03307.002
Collapse
Affiliation(s)
- Michel Becuwe
- Department of Cell Biology, Institut Jacques Monod, Université Paris-Diderot, CNRS, Paris, France
| | - Sébastien Léon
- Department of Cell Biology, Institut Jacques Monod, Université Paris-Diderot, CNRS, Paris, France
| |
Collapse
|