1
|
Xue N, Zhao J, Yin J, Liu L, Yang Z, Zhai S, Bian X, Gao X. The Role of SUMO1 Modification of SOX9 in Cartilage Development Stimulated by Zinc Ions in Mice. Organogenesis 2025; 21:2460269. [PMID: 39905673 PMCID: PMC11801356 DOI: 10.1080/15476278.2025.2460269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
Zinc ions play a pivotal role in facilitating the development of cartilage in mice. Nevertheless, the precise underlying mechanism remains elusive. Our investigation was centered on elucidating the impact of zinc deficiency on cartilage maturation by modulating SUMO1 and UBC9 at both the protein and mRNA levels. We administered a regimen inducing zinc deficiency to gravid mice from E0.5 until euthanasia. Subsequently, we subjected the embryos to scrutiny employing HE, Safranin O staining and IHC. Primary chondrocytes were isolated from fetal mouse femoral condyles and utilized for Western blot analysis to discern the expression profiles of SUMO1, SUMO2/3, UBC9, SOX9, MMP13, Collagen II, RUNX2, and aggrecan. Furthermore, ATDC5 murine chondrocytes were subjected to treatment with ZnCl2, followed by RT-PCR assessment to scrutinize the expression levels of MMP13, Collagen II, RUNX2, and aggrecan. Additionally, we conducted Co-IP assays on ZnCl2-treated ATDC5 cells to explore the interaction between SOX9 and SUMO1. Our investigation unveiled that zinc deficiency led to a reduction in cartilage development, as evidenced by the HE results in fetal murine femur. Moreover, diminished expression levels of SUMO1 and UBC9 were observed in the IHC and Western blot results. Furthermore, Western blot and Co-IP assays revealed an augmented interaction between SOX9 and SUMO1, which was potentiated by ZnCl2 treatment. Significantly, mutations at the SUMOylation site of SOX9 resulted in alterations in the expression patterns of crucial chondrogenesis factors. This research underscores how zinc ions promote cartilage development through the modification of SOX9 by SUMO1.
Collapse
Affiliation(s)
- Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
- Emergency Medicine Department, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jing Zhao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jing Yin
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Liang Liu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Zhong Yang
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shuchao Zhai
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiang Gao
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Li Y, Xing Y, Liu N, Liu B, Wang Z. SOX9: a key transcriptional regulator in organ fibrosis. Front Pharmacol 2025; 16:1507282. [PMID: 39974732 PMCID: PMC11835943 DOI: 10.3389/fphar.2025.1507282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The SOX9 gene locus is not only extensive but also intricate, and it could promote fibrosis in different organs or tissues, including cardiac fibrosis, liver fibrosis, kidney fibrosis, pulmonary fibrosis, as well as other organ fibrosis. Many disorders are associated with the process of fibrosis; moreover, fibrosis is a common symptom of chronic inflammatory diseases, characterized by the accumulation of excessive components in the extracellular matrix through different signaling pathways. The advanced stage of the fibrotic process leads to organ dysfunction and, ultimately, death. In this review, we first give an overview of the original structure and functions of SOX9. Second, we will discuss the role of SOX9 in fibrosis in various organs or tissues. Third, we describe and reveal the possibility of SOX9 as an antifibrotic treatment target. Finally, we will focus on the application of novel technologies for SOX9 and the subsequent investigation of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
von Ehr J, Oberstrass L, Yazgan E, Schnaubelt LI, Blümel N, McNicoll F, Weigand JE, Zarnack K, Müller-McNicoll M, Korn SM, Schlundt A. Arid5a uses disordered extensions of its core ARID domain for distinct DNA- and RNA-recognition and gene regulation. J Biol Chem 2024; 300:107457. [PMID: 38866324 PMCID: PMC11262183 DOI: 10.1016/j.jbc.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024] Open
Abstract
AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.
Collapse
Affiliation(s)
- Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Lasse Oberstrass
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Ege Yazgan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lara Ina Schnaubelt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Nicole Blümel
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia E Weigand
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Kathi Zarnack
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Sophie Marianne Korn
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; University of Greifswald, Institute of Biochemistry, Greifswald, Germany.
| |
Collapse
|
4
|
Walewska A, Janucik A, Tynecka M, Moniuszko M, Eljaszewicz A. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis 2023; 14:720. [PMID: 37932257 PMCID: PMC10628230 DOI: 10.1038/s41419-023-06239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties. Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs). Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and immunomodulatory properties.
Collapse
Affiliation(s)
- Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Adrian Janucik
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland.
- Tissue and Cell Bank, Medical University of Bialystok Clinical Hospital, ul. Waszyngtona 13, 15-069, Bialystok, Poland.
| |
Collapse
|
5
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
6
|
Zhang Y, Xu L, Li X, Chen Z, Chen J, Zhang T, Gu X, Yang J. Deciphering the dynamic niches and regeneration-associated transcriptional program of motoneurons following peripheral nerve injury. iScience 2022; 25:104917. [PMID: 36051182 PMCID: PMC9424597 DOI: 10.1016/j.isci.2022.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Robust axon regeneration of motoneurons (MNs) occurs in rodent models upon peripheral nerve injury (PNI). However, genome-wide dynamic molecules and permissive microenvironment following insult in MNs remain largely unknown. Here, we firstly tackled by high-coverage and massive sequencing of laser-dissected individual ChAT+ cells to uncover molecules and pro-regenerative programs of MNs from injury to the regenerating phase after PNI. "Injured" populations at 1d∼7d were well distinguished and three response phases were well defined by elucidating with several clues (Gap43, etc). We found remarkable changes of genes expressed by injured motoneurons to activate and enhance intrinsic axon regrowth or crosstalk with other cellular or non-cellular counterpart in the activated regenerative microenvironment, specifically microglia/macrophage. We also identified an injury and regeneration-associated module and critical regulators including core transcription factors (Atf3, Arid5a, Klf6, Klf7, Jun, Stat3, and Myc). This study provides a vital resource and critical molecules for studying neural repair of axotomized motoneurons.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xiaodi Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Tao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaosong Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Yagi H, Takahata Y, Murakami T, Nakaminami Y, Hagino H, Yamamoto S, Murakami S, Hata K, Nishimura R. Transcriptional regulation of FRZB in chondrocytes by Osterix and Msx2. J Bone Miner Metab 2022; 40:723-734. [PMID: 35763224 DOI: 10.1007/s00774-022-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Osteoarthritis is a common joint disease that causes destruction of articular cartilage and severe inflammation surrounding knee and hip joints. However, to date, effective therapeutic reagents for osteoarthritis have not been developed because the underlying molecular mechanisms are complex. Recent genetic findings suggest that a Wnt antagonist, frizzled-related protein B (FRZB), is a potential therapeutic target for osteoarthritis. Therefore, this study aimed to examine the transcriptional regulation of FRZB in chondrocytes. MATERIALS AND METHODS Frzb/FRZB expression was assessed by RT-qPCR analyses in murine articular chondrocytes and SW1353 chondrocyte cell line. Overexpression and knockdown experiments were performed using adenovirus and lentivirus, respectively. Luciferase-reporter and chromatin immunoprecipitation assays were performed for determining transcriptional regulation. Protein-protein interaction was determined by co-immunoprecipitation analysis. RESULTS Frzb was highly expressed in cartilages, especially within articular chondrocytes. Interleukin-1α markedly reduced Frzb expression in articular chondrocytes in association with cartilage destruction and increases in ADAM metallopeptidase with thrombospondin type 1 motif (Adamts) 4 and Adamts5 expression. Bone morphogenetic protein 2 (BMP2) increased FRZB expression in SW1353 cells through Smad signaling. Osterix and msh homeobox 2 (Msx2), both of which function as downstream transcription factors of BMP2, induced FRZB expression and upregulated its promoter activity. Co-immunoprecipitation results showed a physical interaction between Osterix and Msx2. Knockdown of either Osterix or Msx2 inhibited BMP2-dependent FRZB expression. Chromatin immunoprecipitation indicated a direct association of Osterix and Msx2 with the FRZB gene promoter. CONCLUSION These results suggest that BMP2 regulates FRZB expression through Osterix and Msx2.
Collapse
Affiliation(s)
- Hiroko Yagi
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuri Nakaminami
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromasa Hagino
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shiori Yamamoto
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Jin Z, Chen T, Zhu Z, Xu B, Yan D. The role of TRIM59 in immunity and immune-related diseases. Int Rev Immunol 2022; 43:33-40. [PMID: 35975813 DOI: 10.1080/08830185.2022.2102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
TRIM59 is a member of the tripartite motif containing (TRIM) protein family. It functions as an E3 ubiquitin ligase through its RING domain and is expressed by multiple types of cells. Physiogically, TRIM59 is involved in development, immune response, and the invasion and metastasis of tumors. In this review, we first describe the structure, expression, and subcellular location of TRIM59. Then, we summarize emerging evidence for TRIM59 in immunological diseases including infection, vascular diseases, autoimmunity, and tumor immunity. Additionally, we discuss important molecular signaling pathways that mediate TRIM59 activity. Altogether, the accumulating evidence suggests that manipulating TRIM59 levels and activity may open an avenue for innovative therapies for immune diseases and tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiffany Chen
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baohui Xu
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
9
|
Nyati KK, Kishimoto T. Recent Advances in the Role of Arid5a in Immune Diseases and Cancer. Front Immunol 2022; 12:827611. [PMID: 35126382 PMCID: PMC8809363 DOI: 10.3389/fimmu.2021.827611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 12/09/2022] Open
Abstract
AT-rich interactive domain 5a (Arid5a) is a nucleic acid binding protein. In this review, we highlight recent advances in the association of Arid5a with inflammation and human diseases. Arid5a is known as a protein that performs dual functions. In in vitro and in vivo studies, it was found that an inflammation-dependent increase in Arid5a expression mediates both transcriptional and post-transcriptional regulatory effects that are implicated in immune regulation and cellular homeostasis. A series of publications demonstrated that inhibiting Arid5a augmented several processes, such as preventing septic shock, experimental autoimmune encephalomyelitis, acute lung injury, invasion and metastasis, immune evasion, epithelial-to-mesenchymal transition, and the M1-like tumor-associated macrophage (TAM) to M2-like TAM transition. In addition, Arid5a controls adipogenesis and obesity in mice to maintain metabolic homeostasis. Taken together, recent progress indicates that Arid5a exhibits multifaceted, both beneficial and detrimental, roles in health and disease and suggest the relevance of Arid5a as a potential therapeutic target.
Collapse
|
10
|
Nyati KK, Kishimoto T. The emerging role of Arid5a in cancer: A new target for tumors. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Zfhx4 regulates endochondral ossification as the transcriptional platform of Osterix in mice. Commun Biol 2021; 4:1258. [PMID: 34732852 PMCID: PMC8566502 DOI: 10.1038/s42003-021-02793-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Endochondral ossification is regulated by transcription factors that include SRY-box transcription factor 9, runt-related protein 2 (Runx2), and Osterix. However, the sequential and harmonious regulation of the multiple steps of endochondral ossification is unclear. This study identified zinc finger homeodomain 4 (Zfhx4) as a crucial transcriptional partner of Osterix. We found that Zfhx4 was highly expressed in cartilage and that Zfhx4 deficient mice had reduced expression of matrix metallopeptidase 13 and inhibited calcification of cartilage matrices. These phenotypes were very similar to impaired chondrogenesis in Osterix deficient mice. Coimmunoprecipitation and immunofluorescence indicated a physical interaction between Zfhx4 and Osterix. Notably, Zfhx4 and Osterix double mutant mice showed more severe phenotype than Zfhx4 deficient mice. Additionally, Zfhx4 interacted with Runx2 that functions upstream of Osterix. Our findings suggest that Zfhx4 coordinates the transcriptional network of Osterix and, consequently, endochondral ossification.
Collapse
|
12
|
Nyati KK, Hashimoto S, Singh SK, Tekguc M, Metwally H, Liu YC, Okuzaki D, Gemechu Y, Kang S, Kishimoto T. The novel long noncoding RNA AU021063, induced by IL-6/Arid5a signaling, exacerbates breast cancer invasion and metastasis by stabilizing Trib3 and activating the Mek/Erk pathway. Cancer Lett 2021; 520:295-306. [PMID: 34389433 DOI: 10.1016/j.canlet.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023]
Abstract
Interleukin (IL-6) is a pleotropic cytokine with both tumor-promoting and -inhibitory effects on breast cancer growth. However, the mechanisms governing the outcome of IL-6 on cancer progression remain to be clarified. Our study unraveled a novel long noncoding RNA (lncRNA) AU021063 downstream of IL-6 signaling. We found that IL-6 induced the expression of AU021063 predominantly in breast cancer compared to other cancer types. Mechanistically, IL-6 induced AT-rich interactive domain 5a (Arid5a) expression, which promotes the transcription of AU021063. In turn, AU021063 promotes breast cancer metastasis through stabilizing tribbles homolog 3 (Trib3) and activating Mek/Erk signaling pathway. Genetic ablation of either Arid5a, AU021063 or Trib3 abolished breast cancer metastasis in vitro and in vivo. Overall, our study highlights the importance of IL-6-Arid5a-AU021063 axis in regulating breast cancer invasiveness and metastasis, which may provide potential novel therapeutics for breast cancer.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Shigeru Hashimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Murat Tekguc
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yohannes Gemechu
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Sujin Kang
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
13
|
Gene expression of type II collagen is regulated by direct interaction with Kruppel-like factor 4 and AT-rich interactive domain 5B. Gene 2020; 773:145381. [PMID: 33383116 DOI: 10.1016/j.gene.2020.145381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
We have previously found and characterized two pairs of enhancer elements, E1 and E2, in the type II collagen alpha 1 chain (COL2A1) gene. Subsequent studies have suggested that these enhancers function differently in the regulation of gene expression. For example, histone deacetylase 10 modifies only the E2 enhancer region to affect gene expression. Therefore, in this study, we aimed to clarify the transcriptional complex formed at each enhancer region by identifying transcription factors that specifically bind to each enhancer element. To this end, we used chondrocytic cell lines established using our unique silent reporter system and overexpressed candidate transcription factors in these cells. We found two transcription factors, other than the SOX trio, that directly bound to COL2A1 and regulated its expression. The first was Kruppel-like factor-4 (KLF4), which bound to the promoter proximal region, and the second was AT-rich interactive domain 5B (ARID5B) which bound to the E1 enhancer element. Further studies are needed to identify factors that specifically bind to the E2 enhancer element. In any case, our findings provide an important insight into the molecular mechanisms underlying the regulation of COL2A1. In this paper, we reevaluated the previous analysis of transcription factors involved in the regulation of COL2A1 expression.
Collapse
|
14
|
Nakamichi R, Kurimoto R, Tabata Y, Asahara H. Transcriptional, epigenetic and microRNA regulation of growth plate. Bone 2020; 137:115434. [PMID: 32422296 PMCID: PMC7387102 DOI: 10.1016/j.bone.2020.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Endochondral ossification is a critical event in bone formation, particularly in long shaft bones. Many cellular differentiation processes work in concert to facilitate the generation of cartilage primordium to formation of trabecular structures, all of which occur within the growth plate. Previous studies have revealed that the growth plate is tightly regulated by various transcription factors, epigenetic systems, and microRNAs. Hence, understanding these mechanisms that regulate the growth plate is crucial to furthering the current understanding on skeletal diseases, and in formulating effective treatment strategies. In this review, we focus on describing the function and mechanisms of the transcription factors, epigenetic systems, and microRNAs known to regulate the growth plate.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Tabata
- Department of Orthopaedic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirosi Asahara
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
15
|
Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics 2020; 15:1259-1274. [PMID: 32441560 PMCID: PMC7595593 DOI: 10.1080/15592294.2020.1767372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apart from the conventional view of repressive promoter methylation, the DNA methyltransferase 1 (DNMT1) was recently described to modulate gene expression through a variety of interactions with diverse epigenetic key players. We here investigated the DNMT1-dependent transcriptional control of the homeobox transcription factor LHX1, which we previously identified as an important regulator in cortical interneuron development. We found that LHX1 expression in embryonic interneurons originating in the embryonic pre-optic area (POA) is regulated by non-canonic DNMT1 function. Analysis of histone methylation and acetylation revealed that both epigenetic modifications seem to be implicated in the control of Lhx1 gene activity and that DNMT1 contributes to their proper establishment. This study sheds further light on the regulatory network of cortical interneuron development including the complex interplay of epigenetic mechanisms.
Collapse
Affiliation(s)
- Judit Symmank
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Polyclinic for Orthodontics, Leutragraben 3, University Hospital Jena , Jena, Germany
| | - Cathrin Bayer
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| | - Julia Reichard
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany.,Research Training Group 2416 MultiSenses, MultiScales, RWTH Aachen University , Aachen, Germany
| | - Daniel Pensold
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Polyclinic for Orthodontics, Leutragraben 3, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
16
|
Song H, Park KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol 2020; 67:12-23. [PMID: 32380234 DOI: 10.1016/j.semcancer.2020.04.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/23/2019] [Accepted: 04/26/2020] [Indexed: 12/21/2022]
Abstract
Chondrogenesis is a highly coordinated event in embryo development, adult homeostasis, and repair of the vertebrate cartilage. Fate decisions and differentiation of chondrocytes accompany differential expression of genes critical for each step of chondrogenesis. SOX9 is a master transcription factor that participates in sequential events in chondrogenesis by regulating a series of downstream factors in a stage-specific manner. SOX9 either works alone or in combination with downstream SOX transcription factors, SOX5 and SOX6 as chondrogenic SOX Trio. SOX9 is reduced in the articular cartilage of patients with osteoarthritis while highly maintained during tumorigenesis of cartilage and bone. Gene therapy using viral and non-viral vectors accompanied by tissue engineering (scaffolds) is a promising tool to regenerate impaired cartilage. Delivery of SOX9 or chondrogenic SOX Trio into cells produces efficient therapeutic effects on chondrogenesis and this event is facilitated by scaffolds. Non-viral vector-guided delivery systems encapsulated or loaded in mechanically stable solid scaffolds are useful for the regeneration of articular cartilage. Here we review major milestones and most recent studies focusing on regulation and function of chondrogenic SOX Trio, during chondrogenesis and cartilage regeneration, and on the development of advanced technologies in gene delivery with tissue engineering to improve efficiency of cartilage repair process.
Collapse
Affiliation(s)
- Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
17
|
Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases. Int J Mol Sci 2020; 21:ijms21041340. [PMID: 32079226 PMCID: PMC7072930 DOI: 10.3390/ijms21041340] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis and rheumatoid arthritis are common cartilage and joint diseases that globally affect more than 200 million and 20 million people, respectively. Several transcription factors have been implicated in the onset and progression of osteoarthritis, including Runx2, C/EBPβ, HIF2α, Sox4, and Sox11. Interleukin-1 β (IL-1β) leads to osteoarthritis through NF-ĸB, IκBζ, and the Zn2+-ZIP8-MTF1 axis. IL-1, IL-6, and tumor necrosis factor α (TNFα) play a major pathological role in rheumatoid arthritis through NF-ĸB and JAK/STAT pathways. Indeed, inhibitory reagents for IL-1, IL-6, and TNFα provide clinical benefits for rheumatoid arthritis patients. Several growth factors, such as bone morphogenetic protein (BMP), fibroblast growth factor (FGF), parathyroid hormone-related protein (PTHrP), and Indian hedgehog, play roles in regulating chondrocyte proliferation and differentiation. Disruption and excess of these signaling pathways cause genetic disorders in cartilage and skeletal tissues. Fibrodysplasia ossificans progressive, an autosomal genetic disorder characterized by ectopic ossification, is induced by mutant ACVR1. Mechanistic target of rapamycin kinase (mTOR) inhibitors can prevent ectopic ossification induced by ACVR1 mutations. C-type natriuretic peptide is currently the most promising therapy for achondroplasia and related autosomal genetic diseases that manifest severe dwarfism. In these ways, investigation of cartilage and chondrocyte diseases at molecular and cellular levels has enlightened the development of effective therapies. Thus, identification of signaling pathways and transcription factors implicated in these diseases is important.
Collapse
|
18
|
Nyati KK, Zaman MMU, Sharma P, Kishimoto T. Arid5a, an RNA-Binding Protein in Immune Regulation: RNA Stability, Inflammation, and Autoimmunity. Trends Immunol 2020; 41:255-268. [PMID: 32035762 DOI: 10.1016/j.it.2020.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
AT-rich interactive domain 5A (ARID5A/Arid5a) is a known cofactor of transcription factors (TFs) that contributes to cell growth and differentiation. It has recently been recognized for its unique function in the stabilization of mRNA, which is associated with inflammatory autoimmune diseases. Studies have revolutionized our understanding of the post-transcriptional regulation of inflammatory genes by revealing the fundamental events underpinning novel functions and activities of Arid5a. We review current research on Arid5a, which has focused our attention towards the therapeutic potential of this factor in the putative treatment of inflammatory and autoimmune disorders, including experimental autoimmune encephalomyelitis and sepsis in mice.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan; Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India.
| | - Mohammad Mahabub-Uz Zaman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan.
| |
Collapse
|
19
|
Zhang X, Ehrlich KC, Yu F, Hu X, Meng XH, Deng HW, Shen H, Ehrlich M. Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene TBX15. Epigenetics 2020; 15:728-749. [PMID: 31975641 PMCID: PMC7574382 DOI: 10.1080/15592294.2020.1716491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major challenge in translating findings from genome-wide association studies (GWAS) to biological mechanisms is pinpointing functional variants because only a very small percentage of variants associated with a given trait actually impact the trait. We used an extensive epigenetics, transcriptomics, and genetics analysis of the TBX15/WARS2 neighbourhood to prioritize this region's best-candidate causal variants for the genetic risk of osteoporosis (estimated bone density, eBMD) and obesity (waist-hip ratio or waist circumference adjusted for body mass index). TBX15 encodes a transcription factor that is important in bone development and adipose biology. Manual curation of 692 GWAS-derived variants gave eight strong candidates for causal SNPs that modulate TBX15 transcription in subcutaneous adipose tissue (SAT) or osteoblasts, which highly and specifically express this gene. None of these SNPs were prioritized by Bayesian fine-mapping. The eight regulatory causal SNPs were in enhancer or promoter chromatin seen preferentially in SAT or osteoblasts at TBX15 intron-1 or upstream. They overlap strongly predicted, allele-specific transcription factor binding sites. Our analysis suggests that these SNPs act independently of two missense SNPs in TBX15. Remarkably, five of the regulatory SNPs were associated with eBMD and obesity and had the same trait-increasing allele for both. We found that WARS2 obesity-related SNPs can be ascribed to high linkage disequilibrium with TBX15 intron-1 SNPs. Our findings from GWAS index, proxy, and imputed SNPs suggest that a few SNPs, including three in a 0.7-kb cluster, act as causal regulatory variants to fine-tune TBX15 expression and, thereby, affect both obesity and osteoporosis risk.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Kenneth C Ehrlich
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Fangtang Yu
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Xiaojun Hu
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA.,Department of Orthopedics, People's Hospital of Rongchang District , Chongqing, China
| | - Xiang-He Meng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University , Changsha, Hunan, China
| | - Hong-Wen Deng
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA
| | - Melanie Ehrlich
- Tulane Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University , New Orleans, LA, USA.,Tulane Cancer Center, Hayward Human Genetics Program, Tulane University Health Sciences , New Orleans, LA, USA
| |
Collapse
|
20
|
Nyati KK, Agarwal RG, Sharma P, Kishimoto T. Arid5a Regulation and the Roles of Arid5a in the Inflammatory Response and Disease. Front Immunol 2019; 10:2790. [PMID: 31867000 PMCID: PMC6906145 DOI: 10.3389/fimmu.2019.02790] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Abnormal gene expression patterns underlie many diseases that represent major public health concerns and robust therapeutic challenges. Posttranscriptional gene regulation by RNA-binding proteins (RBPs) is well-recognized, and the biological functions of RBPs have been implicated in many diseases, such as autoimmune diseases, inflammatory diseases, and cancer. However, a complete understanding of the regulation mediated by several RBPs is lacking. During the past few years, a novel role of AT-rich interactive domain-containing protein 5a (Arid5a) as an RBP is being investigated in the field of immunology owing to binding of Arid5a protein to the 3' untranslated region (UTR) of Il-6 mRNA. Indeed, Arid5a is a dynamic molecule because upon inflammation, it translocates to the cytoplasm and stabilizes a variety of inflammatory mRNA transcripts, including Il-6, Stat3, Ox40, T-bet, and IL-17-induced targets, and contributes to the inflammatory response and a variety of diseases. TLR4-activated NF-κB and MAPK pathways are involved in regulating Arid5a expression from synthesis to degradation, and even a slight alteration in these pathways can lead to intense production of inflammatory molecules, such as IL-6, which may further contribute to the development of inflammatory diseases such as sepsis and experimental autoimmune encephalomyelitis. This review highlights the regulation of the Arid5a expression and function. Additionally, recent findings on Arid5a are discussed to further our understanding of this molecule, which may be a promising therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Uchida Y, Chiba T, Kurimoto R, Asahara H. Post-transcriptional regulation of inflammation by RNA-binding proteins via cis-elements of mRNAs. J Biochem 2019; 166:375-382. [PMID: 31511872 DOI: 10.1093/jb/mvz067] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
In human genome, there are approximately 1,500 RNA-binding proteins (RBPs). They can regulate mRNA stability or translational efficiency via ribosomes and these processes are known as 'post-transcriptional regulation'. Accumulating evidences indicate that post-transcriptional regulation is the determinant of the accurate levels of cytokines mRNAs. While transcriptional regulation of cytokines mRNAs has been well studied and found to be important for the rapid induction of mRNA and regulation of the acute phase of inflammation, post-transcriptional regulation by RBPs is essential for resolving inflammation in the later phase, and their dysfunction may lead to severe autoimmune diseases such as rheumatoid arthritis or systemic lupus erythematosus. For post-transcriptional regulation, RBPs recognize and directly bind to cis-regulatory elements in 3' untranslated region of mRNAs such as AU-rich or constitutive decay elements and play various roles. In this review, we summarize the recent findings regarding the role of RBPs in the regulation of inflammation.
Collapse
Affiliation(s)
- Yutaro Uchida
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Poplineau M, Vernerey J, Platet N, N'guyen L, Hérault L, Esposito M, Saurin AJ, Guilouf C, Iwama A, Duprez E. PLZF limits enhancer activity during hematopoietic progenitor aging. Nucleic Acids Res 2019; 47:4509-4520. [PMID: 30892634 PMCID: PMC6511862 DOI: 10.1093/nar/gkz174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
PLZF (promyelocytic leukemia zinc finger) is a transcription factor acting as a global regulator of hematopoietic commitment. PLZF displays an epigenetic specificity by recruiting chromatin-modifying factors but little is known about its role in remodeling chromatin of cells committed toward a given specific hematopoietic lineage. In murine myeloid progenitors, we decipher a new role for PLZF in restraining active genes and enhancers by targeting acetylated lysine 27 of Histone H3 (H3K27ac). Functional analyses reveal that active enhancers bound by PLZF are involved in biological processes related to metabolism and associated with hematopoietic aging. Comparing the epigenome of young and old myeloid progenitors, we reveal that H3K27ac variation at active enhancers is a hallmark of hematopoietic aging. Taken together, these data suggest that PLZF, associated with active enhancers, appears to restrain their activity as an epigenetic gatekeeper of hematopoietic aging.
Collapse
Affiliation(s)
- Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Julien Vernerey
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Lia N'guyen
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Léonard Hérault
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Michela Esposito
- Gustave Roussy, Université Paris-Saclay, Inserm U1170, CNRS Villejuif, France
| | | | - Christel Guilouf
- Gustave Roussy, Université Paris-Saclay, Inserm U1170, CNRS Villejuif, France
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
23
|
Abstract
Immune cells infiltrate adipose tissues and provide a framework to regulate energy homeostasis. However, the precise underlying mechanisms and signaling by which the immune system regulates energy homeostasis in metabolic tissues remain poorly understood. Here, we show that the AT-rich interactive domain 5A (Arid5a), a cytokine-induced nucleic acid binding protein, is important for the maintenance of adipose tissue homeostasis. Long-term deficiency of Arid5a in mice results in adult-onset severe obesity. In contrast, transgenic mice overexpressing Arid5a are highly resistant to high-fat diet-induced obesity. Inhibition of Arid5a facilitates the in vitro differentiation of 3T3-L1 cells and fibroblasts to adipocytes, whereas its induction substantially inhibits their differentiation. Molecular studies reveal that Arid5a represses the transcription of peroxisome proliferator activated receptor gamma 2 (Ppar-γ2) due to which, in the absence of Arid5a, Ppar-γ2 is persistently expressed in fibroblasts. This phenomenon is accompanied by enhanced fatty acid uptake in Arid5a-deficient cells, which shifts metabolic homeostasis toward prolipid metabolism. Furthermore, we show that Arid5a and Ppar-γ2 are dynamically counterregulated by each other, hence maintaining adipogenic homeostasis. Thus, we show that Arid5a is an important negative regulator of energy metabolism and can be a potential target for metabolic disorders.
Collapse
|
24
|
Nham GTH, Zhang X, Asou Y, Shinomura T. Expression of type II collagen and aggrecan genes is regulated through distinct epigenetic modifications of their multiple enhancer elements. Gene 2019; 704:134-141. [DOI: 10.1016/j.gene.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
|
25
|
Sono T, Akiyama H, Miura S, Deng JM, Shukunami C, Hiraki Y, Tsushima Y, Azuma Y, Behringer RR, Matsuda S. THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis. J Bone Miner Metab 2018; 36:410-419. [PMID: 28770354 DOI: 10.1007/s00774-017-0855-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/17/2017] [Indexed: 11/28/2022]
Abstract
Sex-determining region Y (Sry)-box (Sox)9 is required for chondrogenesis as a transcriptional activator of genes related to chondrocyte proliferation, differentiation, and cartilage-specific extracellular matrix. Although there have been studies investigating the Sox9-dependent transcriptional complexes, not all their components have been identified. In the present study, we demonstrated that thyroid hormone receptor-associated protein (THRAP)3 is a component of a SOX9 transcriptional complex by liquid chromatography mass spectrometric analysis of FLAG-tagged Sox9-binding proteins purified from FLAG-HA-tagged Sox9 knock-in mice. Thrap3 knockdown in ATDC5 chondrogenic cells increased the expression of Collagen type II alpha 1 chain (Col2a1) without affecting Sox9 expression. THRAP3 and SOX9 overexpression reduced Col2a1 levels to a greater degree than overexpression of SOX9 alone. The negative regulation of SOX9 transcriptional activity by THRAP3 was mediated by interaction between the proline-, glutamine-, and serine-rich domain of SOX9 and the innominate domain of THRAP3. These results indicate that THRAP3 negatively regulates SOX9 transcriptional activity as a cofactor of a SOX9 transcriptional complex during chondrogenesis.
Collapse
Affiliation(s)
- Takashi Sono
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Shigenori Miura
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian Min Deng
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chisa Shukunami
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Hiraki
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yu Tsushima
- Pharmacology Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Yoshiaki Azuma
- Medical Science Department, Teijin Pharma Limited, Tokyo, Japan
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Hanieh H, Masuda K, Metwally H, Chalise JP, Mohamed M, Nyati KK, Standley DM, Li S, Higa M, Zaman MM, Kishimoto T. Arid5a stabilizes OX40 mRNA in murine CD4 + T cells by recognizing a stem-loop structure in its 3'UTR. Eur J Immunol 2018; 48:593-604. [PMID: 29244194 DOI: 10.1002/eji.201747109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
AT-rich interactive domain-containing protein 5a (Arid5a) is an RNA-binding protein (RBP) required for autoimmunity via stabilization of interleukin-6 (Il6) and signal transducer and activator of transcription 3 (STAT3) mRNAs. However, the roles of Arid5a in Th17 cells and its association with autoimmunity remain unknown. Here, we show that the levels of Arid5a and OX40 are correlated in CD4+ T cells under Th17 conditions in an IL-6-dependent manner. Lack of Arid5a in T cells reduced OX40 expression levels and repressed IL-17 production in response to OX40 ligation. Arid5a stabilized OX40 mRNA by recognizing the alternative decay element (ADE)-like stem-loop (SL) in the 3' untranslated region (3'UTR). Interestingly, Arid5a impaired the RNA-destabilizing functions of Regnase-1 and Roquin-1 on OX40 ADE-like SL. In EAE, Arid5a-deficient mice exhibited resistance to EAE, with reduced OX40 expression in CD4+ T cells, and the number of CD4+ CD45+ T cells was decreased in CNS. Furthermore, ameliorated EAE was induced by adoptive transfer of Arid5a-/- encephalitogenic CD4+ T cells expressing less OX40 mRNA and producing less IL-17. In conclusion, our findings indicate that the Arid5a/OX40 axis in CD4+ T cells may have important implications in pathogenesis of autoimmune diseases such as EAE.
Collapse
Affiliation(s)
- Hamza Hanieh
- Physiology Laboratory, Biological Sciences Department, King Faisal University, 31982, Hofuf, Saudi Arabia.,Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Kazuya Masuda
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.,Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA, 19104, USA
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Jaya P Chalise
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Maged Mohamed
- Pharmaceutical Sciences Department, King Faisal University, 31982, Hofuf, Saudi Arabia.,Pharmacognosy Department, Zagazig University, Zagazig, 44519, Egypt
| | - Kishan K Nyati
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Daron M Standley
- Laboratory of System Immunology, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Songling Li
- Laboratory of System Immunology, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Mitsuru Higa
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Mohammad M Zaman
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Regulation of inflammatory responses by dynamic subcellular localization of RNA-binding protein Arid5a. Proc Natl Acad Sci U S A 2018; 115:E1214-E1220. [PMID: 29358370 PMCID: PMC5819453 DOI: 10.1073/pnas.1719921115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenine-thymine (AT)-rich interactive domain 5a (Arid5a) is an RNA-binding protein found in the cytoplasm and nucleus of normally growing cells. Although Arid5a is known to play an important role in immune regulation, whether and how Arid5a subcellular localization impacts immune regulation has remained unclear. In this study, we generated Arid5a transgenic (TG) mice to address this question. While ectopic Arid5a overexpression did not affect expression of inflammatory cytokines under unstimulated conditions, significantly higher levels of inflammatory cytokines, such as IL-6, were produced in response to lipopolysaccharide (LPS) stimulation. Consistent with this, TG mice were more sensitive to LPS treatment than wild-type mice. We also found that Arid5a is imported into the nucleus via a classical importin-α/β1-mediated pathway. On stimulation, nuclear Arid5a levels were decreased, while there was a concomitant increase in cytoplasmic Arid5a. Arid5a is associated with up-frameshift protein 1, and its nuclear export is regulated by a nuclear export receptor, chromosomal region maintenance 1. Taken together, these data indicate that Arid5a is a dynamic protein that translocates to the cytoplasm from the nucleus so as to properly exert its dual function in mRNA stabilization and transcriptional regulation during inflammatory conditions.
Collapse
|
28
|
Nishimura R, Hata K, Nakamura E, Murakami T, Takahata Y. Transcriptional network systems in cartilage development and disease. Histochem Cell Biol 2018; 149:353-363. [PMID: 29308531 DOI: 10.1007/s00418-017-1628-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Yagi H. Regulation of Cartilage Development and Diseases by Transcription Factors. J Bone Metab 2017; 24:147-153. [PMID: 28955690 PMCID: PMC5613019 DOI: 10.11005/jbm.2017.24.3.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Genetic studies and molecular cloning approaches have been successfully used to identify several transcription factors that regulate the numerous stages of cartilage development. Sex-determining region Y (SRY)-box 9 (Sox9) is an essential transcription factor for the initial stage of cartilage development. Sox5 and Sox6 play an important role in the chondrogenic action of Sox9, presumably by defining its cartilage specificity. Several transcription factors have been identified as transcriptional partners for Sox9 during cartilage development. Runt-related transcription factor 2 (Runx2) and Runx3 are necessary for hypertrophy of chondrocytes. CCAAT/enhancer-binding protein β (C/EBPβ) and activating transcription factor 4 (ATF4) function as co-activators for Runx2 during hypertrophy of chondrocytes. In addition, myocyte-enhancer factor 2C (Mef2C) is required for initiation of chondrocyte hypertrophy, presumably by functioning upstream of Runx2. Importantly, the pathogenic roles of several transcription factors in osteoarthritis have been demonstrated based on the similarity of pathological phenomena seen in osteoarthritis with chondrocyte hypertrophy. We discuss the importance of investigating cellular and molecular properties of articular chondrocytes and degradation mechanisms in osteoarthritis, one of the most common cartilage diseases.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroko Yagi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
30
|
Nyati KK, Masuda K, Zaman MMU, Dubey PK, Millrine D, Chalise JP, Higa M, Li S, Standley DM, Saito K, Hanieh H, Kishimoto T. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res 2017; 45:2687-2703. [PMID: 28168301 PMCID: PMC5389518 DOI: 10.1093/nar/gkx064] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/06/2017] [Indexed: 01/03/2023] Open
Abstract
The AT-rich interactive domain-containing protein 5a (Arid5a) plays a critical role in autoimmunity by regulating the half-life of Interleukin-6 (IL-6) mRNA. However, the signaling pathways underlying Arid5a-mediated regulation of IL-6 mRNA stability are largely uncharacterized. Here, we found that during the early phase of lipopolysaccharide (LPS) stimulation, NF-κB and an NF-κB-triggered IL-6-positive feedback loop activate Arid5a gene expression, increasing IL-6 expression via stabilization of the IL-6 mRNA. Subsequently, mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) promotes translocation of AU-rich element RNA-binding protein 1 (AUF-1) from the nucleus to the cytoplasm, where it destabilizes Arid5a mRNA by binding to AU-rich elements in the 3΄ UTR. This results in downregulation of IL-6 mRNA expression. During the late phase of LPS stimulation, p38 MAPK phosphorylates Arid5a and recruits the WW domain containing E3 ubiquitin protein ligase 1 (WWP1) to its complex, which in turn ubiquitinates Arid5a in a K48-linked manner, leading to its degradation. Inhibition of Arid5a phosphorylation and degradation increases production of IL-6 mRNA. Thus, our data demonstrate that LPS-induced NF-κB and MAPK signaling are required to control the regulation of the IL-6 mRNA stabilizing molecule Arid5a. This study therefore substantially increases our understanding of the mechanisms by which IL-6 is regulated.
Collapse
Affiliation(s)
- Kishan K Nyati
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Kazuya Masuda
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mohammad Mahabub-Uz Zaman
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Praveen K Dubey
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - David Millrine
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Jaya P Chalise
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mitsuru Higa
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Songling Li
- Laboratory of System Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Laboratory of System Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Kazunobu Saito
- Central Instrumentation Laboratory, Research Institute of Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hamza Hanieh
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Abstract
Endochondral ossification is the fundamental process of skeletal development in vertebrates. Chondrocytes undergo sequential steps of differentiation, including mesenchymal condensation, proliferation, hypertrophy, and mineralization. These steps, which are required for the morphological and functional changes in differentiating chondrocytes, are strictly regulated by a complex transcriptional network. Biochemical and mice genetic studies identified chondrogenic transcription factors critical for endochondral ossification. The transcription factor sex-determining region Y (SRY)-box 9 (Sox9) is essential for early chondrogenesis, and impaired Sox9 function causes severe chondrodysplasia in humans and mice. In addition, recent genome-wide chromatin immunoprecipitation-sequencing studies revealed the precise regulatory mechanism of Sox9 during early chondrogenesis. Runt-related transcription factor 2 promotes chondrocyte hypertrophy and terminal differentiation. Interestingly, endoplasmic reticulum (ER) stress-related transcription factors have recently emerged as novel regulators of chondrocyte differentiation. Here we review the transcriptional mechanisms that regulate endochondral ossification, with a focus on Sox9.
Collapse
Affiliation(s)
- Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
32
|
Holm I, Spildrejorde M, Stadheim B, Eiklid KL, Samarakoon PS. Whole exome sequencing of sporadic patients with Currarino Syndrome: A report of three trios. Gene 2017; 624:50-55. [PMID: 28456592 DOI: 10.1016/j.gene.2017.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/06/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Currarino Syndrome is a rare congenital malformation syndrome described as a triad of anorectal, sacral and presacral anomalies. Currarino Syndrome is reported to be both familial and sporadic. Familial CS is today known as an autosomal dominant disorder caused by mutations in the transcription factor MNX1. The aim of this study was to look for genetic causes of Currarino Syndrome in sporadic patients after ruling out other causes, like chromosome aberrations, disease-causing variants in possible MNX1 cooperating transcription factors and aberrant methylation in the promoter of the MNX1 gene. The hypothesis was that MNX1 was affected through interactions with other transcription factors or through other regulatory elements and thereby possibly leading to abnormal function of the gene. We performed whole exome sequencing with an additional 6Mb custom made region on chromosome 7 (GRCh37/hg19, chr7:153.138.664-159.138.663) to detect regulatory elements in non-coding regions around the MNX1 gene. We did not find any variants in genes of interest shared between the patients. However, after analyzing the whole exome sequencing data with Filtus, the in-house SNV filtration program, we did find some interesting variants in possibly relevant genes that could be explaining these patients` phenotypes. The most promising genes were ETV3L, ARID5A and NCAPD3. To our knowledge this is the first report of whole exome sequencing in sporadic CS patients.
Collapse
Affiliation(s)
- Ingunn Holm
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| | - Mari Spildrejorde
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Barbro Stadheim
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Kristin L Eiklid
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
33
|
Tanthaisong P, Imsoonthornruksa S, Ngernsoungnern A, Ngernsoungnern P, Ketudat-Cairns M, Parnpai R. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors. PLoS One 2017; 12:e0168059. [PMID: 28060847 PMCID: PMC5217863 DOI: 10.1371/journal.pone.0168059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023] Open
Abstract
Articular cartilage is an avascular, alymphatic, and aneural system with very low regeneration potential because of its limited capacity for self-repair. Mesenchymal stem cells (MSCs) are the preferred choice for cell-based therapies. Glycogen synthase kinase 3 (GSK-3) inhibitors are compounds that can induce the Wnt signaling pathway, which is involved in chondrogenesis and cartilage development. Here, we investigated the influence of lithium chloride (LiCl) and SB216763 synergistically with TGF-β3 on chondrogenic differentiation in human mesenchymal stem cells derived from Wharton’s jelly tissue (hWJ-MSCs). hWJ-MSCs were cultured and chondrogenic differentiation was induced in monolayer and pellet experiments using chondrogenic medium, chondrogenic medium supplemented with LiCl, or SB216763 for 4 weeks. After in vitro differentiation, cultured cells were examined for the expression of Sox9, ACAN, Col2a1, and β-catenin markers. Glycosaminoglycan (GAG) accumulation was also examined by Alcian blue staining. The results indicated that SB216763 was more effective than LiCl as evidenced by a higher up-regulation of the expression of cartilage-specific markers, including Sox9, ACAN, Col2a1 as well as GAG accumulation. Moreover, collagen type II expression was strongly observed in cells cultured in the chondrogenic medium + SB216763 as evidenced by western blot analysis. Both treatments appeared to mediate the Wnt signaling pathway by up-regulating β-catenin gene expression. Further analyses showed that all treatments suppressed the progression of chondrocyte hypertrophy, determined by decreased expression of Col10a1 and Runx2. These results indicate that LiCl and SB216763 are potential candidates for further in vivo therapeutic trials and would be of great importance for cartilage regeneration.
Collapse
Affiliation(s)
- Prapot Tanthaisong
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Apichart Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Piyada Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- * E-mail:
| |
Collapse
|
34
|
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res 2016; 22:95-106. [PMID: 27667570 PMCID: PMC5040224 DOI: 10.12659/msmbr.901142] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction of artificial bone matrices.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvar Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Regulation of transcriptional network system during bone and cartilage development. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
|
37
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
39
|
Yoshida M, Hata K, Takashima R, Ono K, Nakamura E, Takahata Y, Murakami T, Iseki S, Takano-Yamamoto T, Nishimura R, Yoneda T. The transcription factor Foxc1 is necessary for Ihh–Gli2-regulated endochondral ossification. Nat Commun 2015; 6:6653. [DOI: 10.1038/ncomms7653] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
|
40
|
SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One 2014; 9:e107577. [PMID: 25229425 PMCID: PMC4168005 DOI: 10.1371/journal.pone.0107577] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/03/2014] [Indexed: 12/28/2022] Open
Abstract
The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected by SOX9 and used SOX9 ChIP-Seq to identify those genes that harbor SOX9-interaction sites. For RNA-Seq, the RNA expression profile of primary Sox9flox/flox mouse chondrocytes infected with Ad-CMV-Cre was compared with that of the same cells infected with a control adenovirus. Analysis of RNA-Seq data indicated that, when the levels of Sox9 mRNA were decreased more than 8-fold by infection with Ad-CMV-Cre, 196 genes showed a decrease in expression of at least 4-fold. These included many cartilage extracellular matrix (ECM) genes and a number of genes for ECM modification enzymes (transferases), membrane receptors, transporters, and others. In ChIP-Seq, 75% of the SOX9-interaction sites had a canonical inverted repeat motif within 100 bp of the top of the peak. SOX9-interaction sites were found in 55% of the genes whose expression was decreased more than 8-fold in SOX9-depleted cells and in somewhat fewer of the genes whose expression was reduced more than 4-fold, suggesting that these are direct targets of SOX9. The combination of RNA-Seq and ChIP-Seq has provided a fuller understanding of the SOX9-controlled genetic program of chondrocytes.
Collapse
|
41
|
Abstract
The ATDC5 cell line is derived from mouse teratocarcinoma cells and characterized as a chondrogenic cell line which goes through a sequential process analogy to chondrocyte differentiation. Thus, it is regarded as a promising in vitro model to study the factors that influence cell behaviors during chondrogenesis. It also provides insights in exploring signaling pathways related to skeletal development as well as interactions with innovative materials. To date, over 200 studies have utilized ATDC5 to obtain lots of significant findings. In this review, we summarized the literature of ATDC5 related studies and emphasized the application of ATDC5 in chondrogenesis. In addition, the general introduction of ATDC5 including its derivation and characterization is covered in this article.
Collapse
Affiliation(s)
- Yongchang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | | |
Collapse
|
42
|
Saito Y, Kagami SI, Sanayama Y, Ikeda K, Suto A, Kashiwakuma D, Furuta S, Iwamoto I, Nonaka K, Ohara O, Nakajima H. AT-Rich-Interactive Domain-Containing Protein 5A Functions as a Negative Regulator of Retinoic Acid Receptor-Related Orphan Nuclear Receptor γt-Induced Th17 Cell Differentiation. Arthritis Rheumatol 2014; 66:1185-94. [DOI: 10.1002/art.38324] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken Nonaka
- Kazusa DNA Research Institute; Chiba Japan
| | | | | |
Collapse
|
43
|
Hata K, Takashima R, Amano K, Ono K, Nakanishi M, Yoshida M, Wakabayashi M, Matsuda A, Maeda Y, Suzuki Y, Sugano S, Whitson RH, Nishimura R, Yoneda T. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun 2013; 4:2850. [DOI: 10.1038/ncomms3850] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/31/2013] [Indexed: 01/03/2023] Open
|
44
|
Si Y, Inoue K, Igarashi K, Kanno J, Imai Y. Autoimmune regulator, Aire, is a novel regulator of chondrocyte differentiation. Biochem Biophys Res Commun 2013; 437:579-84. [PMID: 23850677 DOI: 10.1016/j.bbrc.2013.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 01/23/2023]
Abstract
Chondrocyte differentiation is controlled by various regulators, such as Sox9 and Runx2, but the process is complex. To further understand the precise underlying molecular mechanisms of chondrocyte differentiation, we aimed to identify a novel regulatory factor of chondrocyte differentiation using gene expression profiles of micromass-cultured chondrocytes at different differentiation stages. From the results of microarray analysis, the autoimmune regulator, Aire, was identified as a novel regulator. Aire stable knockdown cells, and primary cultured chondrocytes obtained from Aire(-/-) mice, showed reduced mRNA expression levels of chondrocyte-related genes. Over-expression of Aire induced the early stages of chondrocyte differentiation by facilitating expression of Bmp2. A ChIP assay revealed that Aire was recruited on an Airebinding site (T box) in the Bmp2 promoter region in the early stages of chondrocyte differentiation and histone methylation was modified. These results suggest that Aire can facilitate early chondrocyte differentiation by expression of Bmp2 through altering the histone modification status of the promoter region of Bmp2. Taken together, Aire might play a role as an active regulator of chondrocyte differentiation, which leads to new insights into the regulatory mechanisms of chondrocyte differentiation.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc Natl Acad Sci U S A 2013; 110:9409-14. [PMID: 23676272 DOI: 10.1073/pnas.1307419110] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional regulation of IL-6 has been largely uncharacterized, with the exception of the ribonuclease Regnase-1, which prevents autoimmunity by destabilizing IL-6 mRNA. Here, we identified AT-rich interactive domain-containing protein 5A (Arid5a) as a unique RNA binding protein, which stabilizes IL-6 but not TNF-α mRNA through binding to the 3' untranslated region of IL-6 mRNA. Arid5a was enhanced in macrophages in response to LPS, IL-1β, and IL-6. Arid5a deficiency inhibited elevation of IL-6 serum level in LPS-treated mice and suppressed IL-6 levels and the development of T(H)17 cells in experimental autoimmune encephalomyelitis. Importantly, Arid5a inhibited the destabilizing effect of Regnase-1 on IL-6 mRNA. These results indicate that Arid5a plays an important role in promotion of inflammatory processes and autoimmune diseases.
Collapse
|
46
|
Marszalek JE, Simon CG, Thodeti C, Adapala RK, Murthy A, Karim A. 2.5D constructs for characterizing phase separated polymer blend surface morphology in tissue engineering scaffolds. J Biomed Mater Res A 2013. [PMID: 23184520 DOI: 10.1002/jbm.a.34439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, we used 2D films to identify an annealed PCL-PDLLA phase-separated blend morphology which provided nanoscale surface texture and patterning that stimulated osteoblast differentiation. In order to translate these 2D surface nanopatterning effects to the walls of 3D salt-leached scaffolds, the blend phase morphology of scaffold walls must be characterized. For salt-leached scaffolds, NaCl is used as a porogen, which may affect phase separation in PCL-PDLLA blends. However, it is not possible to characterize the surface blend morphology of 3D scaffold walls using standard approaches such as AFM or optical microscopy, since scaffolds are too rough for AFM and do not transmit light for optical microscopy. We introduce a 2.5D approach that mimics the processing conditions of 3D salt-leached scaffolds, but has a geometry amenable to surface characterization by AFM and optical microscopy. For the 2.5D approach, PCL-PDLLA blend films were covered with NaCl crystals prior to annealing. The presence of NaCl significantly influenced blend morphology in PCL-PDLLA 2.5D constructs causing increased surface roughness, higher percent PCL area on the surface and a smaller PCL domain size. During cell culture on 2.5D constructs, osteoblast (MC3T3-E1) and dermal endothelial cell (MDEC) adhesion were enhanced on PCL-PDLLA blends that were annealed with NaCl while chondrogenic cell (ATDC5) adhesion was diminished. This work introduces a 2.5D approach that mimicked 3D salt-leached scaffold processing, but enabled characterization of scaffold surface properties by AFM and light microscopy, to demonstrate that the presence of NaCl during annealing strongly influenced polymer blend surface morphology and cell adhesion.
Collapse
Affiliation(s)
- Jolanta E Marszalek
- Department of Polymer Engineering, Akron Functional Materials Center, University of Akron, Ohio 44325, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nishimura R, Hata K, Ono K, Takashima R, Yoshida M, Yoneda T. Regulation of endochondral ossification by transcription factors. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Masuda K, Ripley B, Kishimoto T. P079 ARID5a is an IL-6 mRNA stability protein. Chlorpromazine mediates its inhibitory effect on IL-6 production in macrophages through inhibition of ARID5A expression. Cytokine 2012. [DOI: 10.1016/j.cyto.2012.06.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012; 151:247-54. [PMID: 22253449 DOI: 10.1093/jb/mvs004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein(s) (BMP) are very powerful cytokines that induce bone and cartilage formation. BMP also stimulate osteoblast and chondrocyte differentiation. During bone and cartilage development, BMP regulates the expression and/or the function of several transcription factors through activation of Smad signalling. Genetic studies revealed that Runx2, Osterix and Sox9, all of which function downstream of BMP, play essential roles in bone and/or cartilage development. In addition, two other transcription factors, Msx2 and Dlx5, which interact with BMP signalling, are involved in bone and cartilage development. The importance of these transcription factors in bone and cartilage development has been supported by biochemical and cell biological studies. Interestingly, BMP is regulated by several negative feedback systems that appear necessary for fine-tuning of bone and cartilage development induced by BMP. Thus, BMP harmoniously regulates bone and cartilage development by forming network with several transcription factors.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry.
| | | | | | | | | |
Collapse
|
50
|
Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 2011; 29:390-5. [PMID: 21594584 PMCID: PMC3354916 DOI: 10.1007/s00774-011-0273-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 04/06/2011] [Indexed: 12/19/2022]
Abstract
Since the discovery of SOX9 mutations in the severe human skeletal malformation syndrome campomelic dysplasia in 1994, Sox9 was shown to be both required and sufficient for chondrocyte specification and differentiation. At the same time, its distant relatives Sox5 and Sox6 were shown to act in redundancy with each other to robustly enhance its functions. The Sox trio is currently best known for its ability to activate the genes for cartilage-specific extracellular matrix components. Sox9 and Sox5/6 homodimerize through domains adjacent to their Sry-related high-mobility-group DNA-binding domain to increase the efficiency of their cooperative binding to chondrocyte-specific enhancers. Sox9 possesses a potent transactivation domain and thereby recruits diverse transcriptional co-activators, histone-modifying enzymes, subunits of the mediator complex, and components of the general transcriptional machinery, such as CBP/p300, Med12, Med25, and Wwp2. This information helps us begin to unravel the mechanisms responsible for Sox9-mediated transcription. We review here the discovery of this master chondrogenic trio and its roles in chondrogenesis in vivo and at the molecular level, and we discuss how these pioneering studies open the way for many additional studies that are needed to further increase our understanding of the transcriptional regulatory machinery operating in chondrogenesis.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Orthopaedics, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan.
| | | |
Collapse
|