1
|
Menezes APJ, Silber AM, Elias MC, da Cunha JPC. Trypanosoma cruzi cell cycle progression exhibits minimal variation in histone PTMs with unique histone H4 acetylation pattern. J Proteomics 2025; 315:105413. [PMID: 40010635 DOI: 10.1016/j.jprot.2025.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Histones are crucial proteins in eukaryotic cells that undergo extensive posttranslational modifications (PTMs) such as methylation, acetylation, and phosphorylation, which are associated to chromatin structure, gene expression, DNA damage/repair and cell cycle. In Trypanosoma cruzi, the primary sequence of histones differs from that of other eukaryotes. Despite this, they display a vast range of PTMs, though their modulation throughout the cell cycle remains largely unexplored. In this study, we investigated the dynamic modulation of histone PTMs across G1/S, S, and G2/M phases of T. cruzi cell cycle using hydroxyurea- synchronized parasites. We applied a workflow that included histone derivatization, trypsin digestion followed by a high-resolution mass spectrometry and data independent analysis. Quantitative analysis of 141 histone peptide isoforms revealed that there are only minor variations in histone PTM levels throughout the cell cycle. The H3K76 trimethylation remained predominant throughout all phases, with an increase in monomethylation during G2/M. Additionally, hyperacetylation of the N-terminal region of histone H4 was observed, particularly at lysine residues 2, 5, and 10, suggesting their importance in cell cycle progression. Striking, acetylation of histone H4 at K2 and K5 increases during the S-phase, mirroring the H4K5acK12ac pattern observed in mammals, which are related to histone nuclear import and chromatin deposition. Overall, the results suggest that the T. cruzi cell cycle maintains stable global levels of histone PTMs, relying on variations in only a few specific PTMs. Further investigations are warranted to elucidate the functional significance of these PTMs and their impact on cell cycle regulation and chromatin dynamics in T. cruzi. SIGNIFICANCE: Histone posttranslational modifications (PTMs) are key regulators of chromatin architecture and cellular processes such as gene expression and cell cycle control. In Trypanosoma cruzi, the etiological agent of Chagas disease, histones have a distinct primary structure compared to other eukaryotes, yet they display a wide variety of PTMs. This study provides a comprehensive analysis of histone PTM dynamics across the G1/S, S, and G2/M phases of the T. cruzi cell cycle, revealing that global histone PTM levels remain largely stable, with variations in a few specific marks. Notably, the study highlights the increased acetylation of histone H4 at lysines 2 and 5 during the S-phase, contrasting with the well-conserved acetylation at lysines 5 and 12 observed in mammals involved in nuclear import and chromatin assembly. These findings underscore the evolutionary divergence and functional specificity of histone modifications and provide a foundation for further investigations into their roles in parasite biology, with potential implications for understanding chromatin dynamics and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- A P J Menezes
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - A M Silber
- Instituto de Ciências Biomédicas - Universidade de São Paulo, Brazil
| | - M C Elias
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - J P C da Cunha
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Wu CJ, Xu X, Yuan DY, Liu ZZ, Tan LM, Su YN, Li L, Chen S, He XJ. Arabidopsis histone acetyltransferase complex coordinates cytoplasmic histone acetylation and nuclear chromatin accessibility. SCIENCE ADVANCES 2024; 10:eadp1840. [PMID: 39630902 PMCID: PMC11616720 DOI: 10.1126/sciadv.adp1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Conserved type B histone acetyltransferases are recognized for their role in acetylating newly synthesized histones in the cytoplasm of eukaryotes. However, their involvement in regulating chromatin within the nucleus remains unclear. Our study shows that the Arabidopsis thaliana type B histone acetyltransferase HAG2 interacts with the histone chaperones MSI2, MSI3, and NASP, as well as the histones H3 and H4, forming a complex in both the cytoplasm and the nucleus. Within this complex, HAG2 and MSI2/3 constitute a histone acetylation module essential for acetylating histone H4 in the cytoplasm. Furthermore, this module works together with NASP to regulate histone acetylation, chromatin accessibility, and gene transcription in the nucleus. This complex enhances chromatin accessibility near transcription start sites while reducing accessibility near transcription termination sites. Our findings reveal a distinct role for the Arabidopsis type B histone acetyltransferase in the nucleus, shedding light on the coordination between cytoplasmic histone acetylation and nuclear chromatin regulation in plants.
Collapse
Affiliation(s)
- Chan-Juan Wu
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Xu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lian-Mei Tan
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
4
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
5
|
Thiriet C. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2536-2548. [PMID: 35137186 PMCID: PMC8934661 DOI: 10.1093/nar/gkac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
DNA replication occurring in S-phase is critical for the maintenance of the cell fate from one generation to the next, and requires the duplication of epigenetic information. The integrity of the epigenome is, in part, insured by the recycling of parental histones and de novo deposition of newly synthesized histones. While the histone variants have revealed important functions in epigenetic regulations, the deposition in chromatin during S-phase of newly synthesized histone variants remains unclear. The identification of histone variants of H3 and unique features of Physarum polycephalum provides a powerful system for investigating de novo deposition of newly synthesized histones by tracking the incorporation of exogenous histones within cells. The analyses revealed that the rate of deposition of H3.1 and H3.3 is anticorrelated as S-phase progresses, H3.3 is predominately produced and utilized in early S and dropped throughout S-phase, while H3.1 behaved in the opposite way. Disturbing the expression of H3 variants by siRNAs revealed mutual compensation of histone transcripts. Interestingly, the incorporation of pre-formed constrained histone complexes showed that tetramers of H3/H4 are more efficiently utilized by the cell than dimers. These results support the model whereby the histone variant distribution is established upon replication and new histone deposition.
Collapse
|
6
|
Nuclear import of histones. Biochem Soc Trans 2021; 48:2753-2767. [PMID: 33300986 PMCID: PMC7752055 DOI: 10.1042/bst20200572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos. Karyopherins interact with nucleoporins, proteins that form the nuclear pore complex, to promote the translocation of their cargos into the nucleus. When binding to histones, karyopherins not only function as nuclear import receptors but also as chaperones, protecting histones from non-specific interactions in the cytoplasm, in the nuclear pore and possibly in the nucleus. Studies have also suggested that karyopherins might participate in histones deposition into nucleosomes. In this review we describe structural and biochemical studies from the last two decades on how karyopherins recognize and transport the core histone proteins H3, H4, H2A and H2B and the linker histone H1 from the cytoplasm to the nucleus, which karyopherin is the major nuclear import receptor for each of these histones, the oligomeric state of histones during nuclear import and the roles of post-translational modifications, histone-chaperones and RanGTP in regulating these nuclear import pathways.
Collapse
|
7
|
Lin Z, Yuen KWY. RbAp46/48LIN-53 and HAT-1 are required for initial CENP-AHCP-3 deposition and de novo holocentromere formation on artificial chromosomes in Caenorhabditis elegans embryos. Nucleic Acids Res 2021; 49:9154-9173. [PMID: 33872374 PMCID: PMC8450102 DOI: 10.1093/nar/gkab217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Foreign DNA microinjected into the Caenorhabditis elegans syncytial gonad forms episomal extra-chromosomal arrays, or artificial chromosomes (ACs), in embryos. Short, linear DNA fragments injected concatemerize into high molecular weight (HMW) DNA arrays that are visible as punctate DAPI-stained foci in oocytes, and they undergo chromatinization and centromerization in embryos. The inner centromere, inner kinetochore and spindle checkpoint components, including AIR-2, CENP-AHCP-3, Mis18BP1KNL-2 and BUB-1, respectively, assemble onto the nascent ACs during the first mitosis. The DNA replication efficiency of ACs improves over several cell cycles, which correlates with the improvement of kinetochore bi-orientation and proper segregation of ACs. Depletion of condensin II subunits, like CAPG-2 and SMC-4, but not the replicative helicase component, MCM-2, reduces de novo CENP-AHCP-3 level on nascent ACs. Furthermore, H3K9ac, H4K5ac and H4K12ac are highly enriched on newly chromatinized ACs. RbAp46/48LIN-53 and HAT-1, which affect the acetylation of histone H3 and H4, are essential for chromatinization, de novo centromere formation and segregation competency of nascent ACs. RbAp46/48LIN-53 or HAT-1 depletion causes the loss of both CENP-AHCP-3 and Mis18BP1KNL-2 initial deposition at de novo centromeres on ACs. This phenomenon is different from centromere maintenance on endogenous chromosomes, where Mis18BP1KNL-2 functions upstream of RbAp46/48LIN-53.
Collapse
Affiliation(s)
- Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong. Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong. Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| |
Collapse
|
8
|
Duc C, Thiriet C. Replication-Coupled Chromatin Remodeling: An Overview of Disassembly and Assembly of Chromatin during Replication. Int J Mol Sci 2021; 22:1113. [PMID: 33498649 PMCID: PMC7865951 DOI: 10.3390/ijms22031113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The doubling of genomic DNA during the S-phase of the cell cycle involves the global remodeling of chromatin at replication forks. The present review focuses on the eviction of nucleosomes in front of the replication forks to facilitate the passage of replication machinery and the mechanism of replication-coupled chromatin assembly behind the replication forks. The recycling of parental histones as well as the nuclear import and the assembly of newly synthesized histones are also discussed with regard to the epigenetic inheritance.
Collapse
Affiliation(s)
| | - Christophe Thiriet
- UFIP UMR-CNRS 6286, Épigénétique et Dynamique de la Chromatine, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France;
| |
Collapse
|
9
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
10
|
Poziello A, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. Recent insights into Histone Acetyltransferase-1: biological function and involvement in pathogenesis. Epigenetics 2020; 16:838-850. [PMID: 33016232 DOI: 10.1080/15592294.2020.1827723] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acetylation of histone and non-histone proteins is a post-translational modification mostly associated with activation of gene transcription. The first histone acetyltransferase (HAT) identified as modifying newly synthesized histone H4 in yeast was a type B HAT named HAT1. Although it was the first HAT to be discovered, HAT1 remains one of the most poorly studied enzymes in its class. In addition to its well-established role in the cytoplasm, recent findings have revealed new and intriguing aspects of the function of HAT1 in the nucleus. Several studies have described its involvement in regulating different pathways associated with a wide range of diseases, including cancer. This review focuses on our current understanding of HAT1, highlighting its importance in regulating chromatin replication and gene expression. This previously unknown role for HAT1 opens up novel scenarios in which further studies will be required to better understand its function.
Collapse
Affiliation(s)
- Angelita Poziello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, CS, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Demirdizen E, Spiller-Becker M, Förtsch A, Wilhelm A, Corless S, Bade D, Bergner A, Hessling B, Erhardt S. Localization of Drosophila CENP-A to non-centromeric sites depends on the NuRD complex. Nucleic Acids Res 2020; 47:11589-11608. [PMID: 31713634 PMCID: PMC7145711 DOI: 10.1093/nar/gkz962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.
Collapse
Affiliation(s)
- Engin Demirdizen
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Spiller-Becker
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Arion Förtsch
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Alexander Wilhelm
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Samuel Corless
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Debora Bade
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Andrea Bergner
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Hessling
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- To whom correspondence should be addressed. Tel: +49 6221 54 6898; Fax: +49 6221 54 5892;
| |
Collapse
|
12
|
Agudelo Garcia PA, Lovejoy CM, Nagarajan P, Park D, Popova LV, Freitas MA, Parthun MR. Histone acetyltransferase 1 is required for DNA replication fork function and stability. J Biol Chem 2020; 295:8363-8373. [PMID: 32366460 DOI: 10.1074/jbc.ra120.013496] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
The replisome is a protein complex on the DNA replication fork and functions in a dynamic environment at the intersection of parental and nascent chromatin. Parental nucleosomes are disrupted in front of the replication fork. The daughter DNA duplexes are packaged with an equal amount of parental and newly synthesized histones in the wake of the replication fork through the activity of the replication-coupled chromatin assembly pathway. Histone acetyltransferase 1 (HAT1) is responsible for the cytosolic diacetylation of newly synthesized histone H4 on lysines 5 and 12, which accompanies replication-coupled chromatin assembly. Here, using proximity ligation assay-based chromatin assembly assays and DNA fiber analysis, we analyzed the role of murine HAT1 in replication-coupled chromatin assembly. We demonstrate that HAT1 physically associates with chromatin near DNA replication sites. We found that the association of HAT1 with newly replicated DNA is transient, but can be stabilized by replication fork stalling. The association of HAT1 with nascent chromatin may be functionally relevant, as HAT1 loss decreased replication fork progression and increased replication fork stalling. Moreover, in the absence of HAT1, stalled replication forks were unstable, and newly synthesized DNA became susceptible to MRE11-dependent degradation. These results suggest that HAT1 links replication fork function to the proper processing and assembly of newly synthesized histones.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, the Ohio State University, Columbus, Ohio, USA
| | - Callie M Lovejoy
- Department of Biological Chemistry and Pharmacology, the Ohio State University, Columbus, Ohio, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, the Ohio State University, Columbus, Ohio, USA
| | - Dongju Park
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, Ohio, USA
| | - Liudmila V Popova
- Department of Biological Chemistry and Pharmacology, the Ohio State University, Columbus, Ohio, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, Ohio, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Padavannil A, Sarkar P, Kim SJ, Cagatay T, Jiou J, Brautigam CA, Tomchick DR, Sali A, D'Arcy S, Chook YM. Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. eLife 2019; 8:e43630. [PMID: 30855230 PMCID: PMC6453568 DOI: 10.7554/elife.43630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/09/2019] [Indexed: 01/29/2023] Open
Abstract
We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Prithwijit Sarkar
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Seung Joong Kim
- Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Tolga Cagatay
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Jenny Jiou
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Chad A Brautigam
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Diana R Tomchick
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited states
| | - Sheena D'Arcy
- Department of Chemistry and BiochemistryUniversity of Texas at DallasRichardsonUnited States
| | - Yuh Min Chook
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
14
|
Apta-Smith MJ, Hernandez-Fernaud JR, Bowman AJ. Evidence for the nuclear import of histones H3.1 and H4 as monomers. EMBO J 2018; 37:embj.201798714. [PMID: 30177573 PMCID: PMC6166134 DOI: 10.15252/embj.201798714] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022] Open
Abstract
Newly synthesised histones are thought to dimerise in the cytosol and undergo nuclear import in complex with histone chaperones. Here, we provide evidence that human H3.1 and H4 are imported into the nucleus as monomers. Using a tether-and-release system to study the import dynamics of newly synthesised histones, we find that cytosolic H3.1 and H4 can be maintained as stable monomeric units. Cytosolically tethered histones are bound to importin-alpha proteins (predominantly IPO4), but not to histone-specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, IPO4 dissociation and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones reveals an excess of H3 specifically associated with sNASP, suggesting that NASP maintains a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol.
Collapse
Affiliation(s)
| | | | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Chen D, Fang L, Li H, Jin C. The effects of acetaldehyde exposure on histone modifications and chromatin structure in human lung bronchial epithelial cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:375-385. [PMID: 29569274 PMCID: PMC6031465 DOI: 10.1002/em.22187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
As the primary metabolite of alcohol and the most abundant carcinogen in tobacco smoke, acetaldehyde is linked to a number of human diseases associated with chronic alcohol consumption and smoking including cancers. In addition to direct DNA damage as a result of the formation of acetaldehyde-DNA adducts, acetaldehyde may also indirectly impact proper genome function through the formation of protein adducts. Histone proteins are the major component of the chromatin. Post-translational histone modifications (PTMs) are critically important for the maintenance of genetic and epigenetic stability. However, little is known about how acetaldehyde-histone adducts affect histone modifications and chromatin structure. The results of protein carbonyl assays suggest that acetaldehyde forms adducts with histone proteins in human bronchial epithelial BEAS-2B cells. The level of acetylation for N-terminal tails of cytosolic histones H3 and H4, an important modification for histone nuclear import and chromatin assembly, is significantly downregulated following acetaldehyde exposure in BEAS-2B cells, possibly due to the formation of histone adducts and/or the decrease in the expression of histone acetyltransferases. Notably, the level of nucleosomal histones in the chromatin fraction and at most of the genomic loci we tested are low in acetaldehyde-treated cells as compared with the control cells, which is suggestive of inhibition of chromatin assembly. Moreover, acetaldehyde exposure perturbs chromatin structure as evidenced by the increase in general chromatin accessibility and the decrease in nucleosome occupancy at genomic loci following acetaldehyde treatment. Our results indicate that regulation of histone modifications and chromatin accessibility may play important roles in acetaldehyde-induced pathogenesis. Environ. Mol. Mutagen. 59:375-385, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, NY, USA
| | - Lei Fang
- Medical School of Nanjing University, Nanjing, China
| | - Hongjie Li
- Department of Pathology, SUNY Downstate Medical Center, New York, NY, USA
| | - Chunyuan Jin
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
16
|
Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, Forné I, Vassias I, Gurard-Levin ZA, Alfaro IE, Imhof A, Almouzni G, Loyola A. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res 2017; 45:11700-11710. [PMID: 28977641 PMCID: PMC5714232 DOI: 10.1093/nar/gkx775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/24/2017] [Indexed: 11/12/2022] Open
Abstract
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Collapse
Affiliation(s)
| | | | | | - Paola Merino
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | | | | | - Ignasi Forné
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Isabelle Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Iván E Alfaro
- Fundación Ciencia & Vida, Santiago 7780272, Chile.,Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha, Valparaíso, Chile
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | | |
Collapse
|
17
|
Chen D, Jin C. Histone variants in environmental-stress-induced DNA damage repair. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:55-60. [PMID: 31395349 DOI: 10.1016/j.mrrev.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/27/2023]
Abstract
Environmental stress such as genotoxic agents can cause DNA damage either indirectly through the generation of reactive oxygen species or directly by interactions with the DNA molecule. Damage to the genetic material may cause mutations and ultimately cancer. Genotoxic mutation can be prevented either by apoptosis or DNA repair. In response to DNA damage, cells have evolved DNA damage responses (DDR) to detect, signal, and repair DNA lesions. Epigenetic mechanisms play critically important roles in DDR, which requires changes in chromatin structure and dynamics to modulate DNA accessibility. Incorporation of histone variants into chromatin is considered as an epigenetic mechanism. Canonical histones can be replaced with variant histones that change chromatin structure, stability, and dynamics. Recent studies have demonstrated involvement of nearly all histone variants in environmental-stress-induced DNA damage repair through various mechanisms, including affecting nucleosome dynamics, carrying variant-specific modification, promoting transcriptional competence or silencing, mediating rearrangement of chromosomes, attracting specific repair proteins, among others. In this review, we will focus on the role of histone variants in DNA damage repair after exposure to environmental genotoxic agents. Understanding the mechanisms regulating environmental exposure-induced epigenetic changes, including replacement of canonical histones with histone variants, will promote the development of strategies to prevent or reverse these changes.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10987, USA
| | - Chunyuan Jin
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10987, USA.
| |
Collapse
|
18
|
Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res 2017; 45:9319-9335. [PMID: 28666361 PMCID: PMC5766187 DOI: 10.1093/nar/gkx545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1−/− cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1−/− nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1−/− cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
An S, Yoon J, Kim H, Song JJ, Cho US. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123. eLife 2017; 6:30244. [PMID: 29035199 PMCID: PMC5677370 DOI: 10.7554/elife.30244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| | - Jungmin Yoon
- Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| | - Ji-Joon Song
- Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| |
Collapse
|
20
|
Chen D, Fang L, Mei S, Li H, Xu X, Des Marais TL, Lu K, Liu XS, Jin C. Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097019. [PMID: 28937961 PMCID: PMC5915180 DOI: 10.1289/ehp1275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Formaldehyde (FA) is an environmental and occupational chemical carcinogen. Recent studies have shown that exogenous FA causes only a modest increase in DNA adduct formation compared with the amount of adducts formed by endogenous FA, raising the possibility that epigenetic mechanisms may contribute to FA-mediated carcinogenicity. OBJECTIVES We investigated the effects of FA exposure on histone modifications and chromatin assembly. We also examined the role of defective chromatin assembly in FA-mediated transcription and cell transformation. METHODS Cellular fractionation and Western blot analysis were used to measure the levels of histone modifications in human bronchial epithelial BEAS-2B cells and human nasal RPMI2650 cells in the presence of FA. Chromatin immunoprecipitation (ChIP) and micrococcal nuclease (MNase) digest assays were performed to examine the changes in chromatin assembly and accessibility after FA exposure. RNA sequencing (RNA-seq) and real-time polymerase chain reaction (PCR) were used to examine transcriptional dysregulation. Finally, anchorage-independent cell growth ability was tested by soft agar assay following FA exposure. RESULTS Exposure to FA dramatically decreased the acetylation of the N-terminal tails of cytosolic histones. These modifications are important for histone nuclear import and subsequent chromatin assembly. Histone proteins were depleted in both the chromatin fraction and at most of the genomic loci tested following FA exposure, suggesting that FA compromises chromatin assembly. Moreover, FA increased chromatin accessibility and altered the expression of hundreds of cancer-related genes. Knockdown of the histone H3.3 gene (an H3 variant), which mimics inhibition of chromatin assembly, facilitated FA-mediated anchorage-independent cell growth. CONCLUSIONS We propose that the inhibition of chromatin assembly represents a novel mechanism of cell transformation induced by the environmental and occupational chemical carcinogen FA. https://doi.org/10.1289/EHP1275.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Lei Fang
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Shenglin Mei
- Department of Bioinformatics, School of Life Sciences, Tongji University, Shanghai, China
| | - Hongjie Li
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Xia Xu
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Thomas L Des Marais
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chunyuan Jin
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Histones H3 and H4 require their relevant amino-tails for efficient nuclear import and replication-coupled chromatin assembly in vivo. Sci Rep 2017; 7:3050. [PMID: 28596587 PMCID: PMC5465201 DOI: 10.1038/s41598-017-03218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
Concomitant chromatin assembly and DNA duplication is essential for cell survival and genome integrity, and requires newly synthesized histones. Although the N-terminal domains of newly synthesized H3 and H4 present critical functions, their requirement for replication-coupled chromatin assembly is controversial. Using the unique capability of the spontaneous internalization of exogenous proteins in Physarum, we showed that H3 and H4 N-tails present critical functions in nuclear import during the S-phase, but are dispensable for assembly into nucleosomes. However, our data revealed that chromatin assembly in the S-phase of complexes presenting ectopic N-terminal domains occurs by a replication-independent mechanism. We found that replication-dependent chromatin assembly requires an H3/H4 complex with the relevant N-tail domains, suggesting a concomitant recognition of the two histone domains by histone chaperones.
Collapse
|
22
|
Menil-Philippot V, Thiriet C. Physarum polycephalum for Studying the Function of Histone Modifications In Vivo. Methods Mol Biol 2017; 1528:245-256. [PMID: 27854026 DOI: 10.1007/978-1-4939-6630-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Histone modifications have been widely correlated with genetic activities. However, how these posttranslational modifications affect the dynamics and the structure of chromatin is poorly understood. Here, we describe the incorporation of the exogenous histone proteins into the slime mold Physarum polycephalum, which has been revealed to be a valuable tool for examining different facets of the function histones in chromatin dynamics like replication-coupled chromatin assembly, histone exchange, and nucleosome turnover.
Collapse
Affiliation(s)
- Vanessa Menil-Philippot
- UMR CNRS 6286 UFIP, Université de Nantes, Epigénétique: Prolifération et Différenciation, 2 rue de Houssinière, 44322, Nantes Cedex 03, France
| | - Christophe Thiriet
- UMR CNRS 6286 UFIP, Université de Nantes, Epigénétique: Prolifération et Différenciation, 2 rue de Houssinière, 44322, Nantes Cedex 03, France.
| |
Collapse
|
23
|
García Del Arco A, Erhardt S. Post-translational Modifications of Centromeric Chromatin. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:213-231. [PMID: 28840239 DOI: 10.1007/978-3-319-58592-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulation of chromatin structures is important for the control of DNA processes such as gene expression, and misregulation of chromatin is implicated in diverse diseases. Covalent post-translational modifications of histones are a prominent way to regulate chromatin structure and different chromatin regions bear their specific signature of histone modifications. The composition of centromeric chromatin is significantly different from other chromatin structures and mainly defined by the presence of the histone H3-variant CENP-A. Here we summarize the composition of centromeric chromatin and what we know about its differential regulation by post-translational modifications.
Collapse
Affiliation(s)
- Ana García Del Arco
- Center for Molecular Biology of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- Cell Networks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Alabert C, Jasencakova Z, Groth A. Chromatin Replication and Histone Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:311-333. [PMID: 29357065 DOI: 10.1007/978-981-10-6955-0_15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure to reassemble nucleosomes at replication forks blocks DNA replication progression in higher eukaryotes and leads to genomic instability, we further underline the importance of the mechanistic link between DNA replication and chromatin duplication.
Collapse
Affiliation(s)
- Constance Alabert
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuzana Jasencakova
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Mechanisms Underlying Acrolein-Mediated Inhibition of Chromatin Assembly. Mol Cell Biol 2016; 36:2995-3008. [PMID: 27669733 DOI: 10.1128/mcb.00448-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/14/2016] [Indexed: 01/29/2023] Open
Abstract
Acrolein is a major component of cigarette smoke and cooking fumes. Previously, we reported that acrolein compromises chromatin assembly; however, underlying mechanisms have not been defined. Here, we report that acrolein reacts with lysine residues, including lysines 5 and 12, sites important for chromatin assembly, on histone H4 in vitro and in vivo Acrolein-modified histones are resistant to acetylation, suggesting that the reduced H4K12 acetylation that occurs following acrolein exposure is probably due to the formation of acrolein-histone lysine adducts. Accordingly, the association of H3/H4 with the histone chaperone ASF1 and importin 4 is disrupted and the translocation of green fluorescent protein-tagged H3 is inhibited in cells exposed to acrolein. Interestingly, in vitro plasmid supercoiling assays revealed that treatment of either histones or ASF1 with acrolein has no effect on the formation of plasmid supercoiling, indicating that acrolein-protein adduct formation itself does not directly interfere with nucleosome assembly. Notably, exposure of histones to acrolein prior to histone acetylation leads to the inhibition of remodeling and spacing factor chromatin assembly, which requires acetylated histones for efficient assembly. These results suggest that acrolein compromises chromatin assembly by reacting with histone lysine residues at the sites critical for chromatin assembly and prevents these sites from physiological modifications.
Collapse
|
26
|
Soniat M, Chook YM. Karyopherin-β2 Recognition of a PY-NLS Variant that Lacks the Proline-Tyrosine Motif. Structure 2016; 24:1802-1809. [PMID: 27618664 DOI: 10.1016/j.str.2016.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Karyopherin-β2 or Transportin-1 binds proline-tyrosine nuclear localization signals (PY-NLSs) in its cargos. PY-NLSs are described by structural disorder, overall positive charge, and binding epitopes composed of an N-terminal hydrophobic or basic motif and a C-terminal R-X2-5P-Y motif. The N-terminal tail of histone H3 binds Kapβ2 with high affinity but does not contain a recognizable PY-NLS. The crystal structure of the Kapβ2-H3 tail shows residues 11-27 of H3 binding to the PY-NLS site of Kapβ2. H3 residues 11TGGKAPRK18 bind the site for PY-NLS Epitope 1 (N-terminal hydrophobic/basic motif), which is most important for Kapβ2-binding. H3 residue Arg26 occupies the PY-NLS Epitope 2 position (usually arginine of R-X2-5P-Y) but PY-NLS Epitope 3 (proline-tyrosine motif) is missing in the H3 tail. Histone H3 thus provides an example of a PY-NLS variant with no proline-tyrosine or homologous proline-hydrophobic motif. The H3 tail uses a very strong Epitope 1 to compensate for loss of the often-conserved proline-tyrosine epitope.
Collapse
Affiliation(s)
- Michael Soniat
- Department of Pharmacology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Soniat M, Cağatay T, Chook YM. Recognition Elements in the Histone H3 and H4 Tails for Seven Different Importins. J Biol Chem 2016; 291:21171-21183. [PMID: 27528606 DOI: 10.1074/jbc.m116.730218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impβ, Kapβ2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.
Collapse
Affiliation(s)
- Michael Soniat
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Tolga Cağatay
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yuh Min Chook
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
28
|
Liu D, Zhang M, Xie W, Lan G, Cheng HP, Gong D, Huang C, Lv YC, Yao F, Tan YL, Li L, Zheng XL, Tang CK. MiR-486 regulates cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun 2015; 472:418-24. [PMID: 26654953 DOI: 10.1016/j.bbrc.2015.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE Excessive cholesterol accumulation in macrophages is a major factor of foam cell formation and development of atherosclerosis. Previous studies suggested that miR-486 plays an important role in cardiovascular diseases, but the underlying mechanism is still unknown. OBJECTIVE The purpose of this study is to determine whether miR-486 regulates ATP-binding cassette transporter A1 (ABCA1) mediated cholesterol efflux, and also explore the underlying mechanism. METHODS AND RESULTS Based on bioinformatics analysis and luciferase reporter assay, we transfected miR-486 mimic and miR-486 inhibitor into THP-1 macrophage-derived foam cells, and found that miR-486 directly bound to histone acetyltransferase-1 (HAT1) 3'UTR, and downregulated its mRNA and protein expression. In addition, our studies through transfection with wildtype HAT1 or shHAT1 (short hairpin HAT1) revealed that HAT1 could promote the expression of ABCA1 at both mRNA and protein levels. At the same time, the acetylation levels of the lysines 5 and 12 of histone H4 were upregulated after overexpression with HAT1. Meanwhile, the results of liquid scintillation counter and high performance liquid chromatography (HPLC) showed that miR-486 promoted cholesterol accumulation in THP-1 macrophages. CONCLUSION These data indicated that miR-486 aggravate the cholesterol accumulation in THP-1 cells by targeting HAT1.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
29
|
Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucleic Acids Res 2015; 44:2145-59. [PMID: 26586808 PMCID: PMC4797270 DOI: 10.1093/nar/gkv1235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones.
Collapse
Affiliation(s)
- Mark Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anming Huang
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anastasiya Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Trixl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Ramos TCP, Nunes VS, Nardelli SC, dos Santos Pascoalino B, Moretti NS, Rocha AA, da Silva Augusto L, Schenkman S. Expression of non-acetylatable lysines 10 and 14 of histone H4 impairs transcription and replication in Trypanosoma cruzi. Mol Biochem Parasitol 2015; 204:1-10. [DOI: 10.1016/j.molbiopara.2015.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
|
31
|
Tscherner M, Zwolanek F, Jenull S, Sedlazeck FJ, Petryshyn A, Frohner IE, Mavrianos J, Chauhan N, von Haeseler A, Kuchler K. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog 2015; 11:e1005218. [PMID: 26473952 PMCID: PMC4608838 DOI: 10.1371/journal.ppat.1005218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host. Candida albicans is the most prevalent fungal pathogen infecting humans, causing life-threatening infections in immunocompromised individuals. Host immune surveillance imposes stress conditions upon C. albicans, to which it has to adapt quickly to escape host killing. This can involve regulation of specific genes requiring disassembly and reassembly of histone proteins, around which DNA is wrapped to form the basic repeat unit of eukaryotic chromatin—the nucleosome. Here, we discover a novel function for the chromatin assembly-associated histone acetyltransferase complex NuB4 in oxidative stress response, antifungal drug tolerance as well as in fungal virulence. The NuB4 complex modulates the induction kinetics of hydrogen peroxide-induced genes. Furthermore, NuB4 negatively regulates susceptibility to killing by immune cells and thereby slowing the clearing from infected mice in vivo. Remarkably, the oxidative stress resistance seems restricted to C. albicans and closely related species, which might have acquired this function during coevolution with the host.
Collapse
Affiliation(s)
- Michael Tscherner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Florian Zwolanek
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Sabrina Jenull
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Fritz J. Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Ingrid E. Frohner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - John Mavrianos
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
32
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
33
|
Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Chromosome Res 2015; 23:753-66. [PMID: 26343042 PMCID: PMC4666908 DOI: 10.1007/s10577-015-9486-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
Post-translational histone modifications play a critical role in genome functions such as epigenetic gene regulation and genome maintenance. The tail of the histone H4 N-terminus contains several amino acids that can be acetylated and methylated. Some of these modifications are known to undergo drastic changes during the cell cycle. In this study, we generated a panel of mouse monoclonal antibodies against histone H4 modifications, including acetylation at K5, K8, K12, and K16, and different levels of methylation at K20. Their specificity was evaluated by ELISA and immunoblotting using synthetic peptide and recombinant proteins that harbor specific modifications or amino acid substitutions. Immunofluorescence confirmed the characteristic distributions of target modifications. An H4K5 acetylation (H4K5ac)-specific antibody CMA405 reacted with K5ac only when the neighboring K8 was unacetylated. This unique feature allowed us to detect newly assembled H4, which is diacetylated at K5 and K12, and distinguish it from hyperacetylated H4, where K5 and K8 are both acetylated. Chromatin immunoprecipiation combined with deep sequencing (ChIP-seq) revealed that acetylation of both H4K8 and H4K16 were enriched around transcription start sites. These extensively characterized and highly specific antibodies will be useful for future epigenetics and epigenome studies.
Collapse
|
34
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
35
|
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 2014; 356:467-75. [PMID: 24816984 DOI: 10.1007/s00441-014-1873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
This review focuses on the major protein moiety of chromosomes, i.e., the histone proteins, on the contribution of their posttranslational modification to structural and functional chromatin dynamics, on the acetylation and methylation of lysine residues, and on the phosphorylation of serine or threonine with respect to various steps during the cell cycle.
Collapse
Affiliation(s)
- Detlef Doenecke
- Department for Molecular Biology, Georg August University, Göttingen, Germany,
| |
Collapse
|
36
|
Annunziato AT. Assembling chromatin: the long and winding road. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:196-210. [PMID: 24459722 DOI: 10.1016/j.bbagrm.2011.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been over 35 years since the acceptance of the "chromatin subunit" hypothesis, and the recognition that nucleosomes are the fundamental repeating units of chromatin fibers. Major subjects of inquiry in the intervening years have included the steps involved in chromatin assembly, and the chaperones that escort histones to DNA. The following commentary offers an historical perspective on inquiries into the processes by which nucleosomes are assembled on replicating and nonreplicating chromatin. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
37
|
Fang L, Wuptra K, Chen D, Li H, Huang SK, Jin C, Yokoyama KK. Environmental-stress-induced Chromatin Regulation and its Heritability. ACTA ACUST UNITED AC 2014; 5. [PMID: 25045581 PMCID: PMC4101908 DOI: 10.4172/2157-2518.1000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives.
Collapse
Affiliation(s)
- Lei Fang
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Kenly Wuptra
- Center of Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung 807, Taiwan ; Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County 350, Taiwan
| | - Danqi Chen
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Hongjie Li
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Shau-Ku Huang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County 350, Taiwan ; Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Kazunari K Yokoyama
- Center of Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung 807, Taiwan
| |
Collapse
|
38
|
Recombination-induced tag exchange (RITE) cassette series to monitor protein dynamics in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:1261-72. [PMID: 23708297 PMCID: PMC3737166 DOI: 10.1534/g3.113.006213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are not static entities. They are highly mobile, and their steady-state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, posttranslational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for the duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics, we recently developed a genetic pulse-chase assay called recombination-induced tag exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in posttranslational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.
Collapse
|
39
|
Chen D, Fang L, Li H, Tang MS, Jin C. Cigarette smoke component acrolein modulates chromatin assembly by inhibiting histone acetylation. J Biol Chem 2013; 288:21678-87. [PMID: 23770671 PMCID: PMC3724627 DOI: 10.1074/jbc.m113.476630] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/12/2013] [Indexed: 01/06/2023] Open
Abstract
Chromatin structure and gene expression are both regulated by nucleosome assembly. How environmental factors influence histone nuclear import and the nucleosome assembly pathway, leading to changes in chromatin organization and transcription, remains unknown. Acrolein (Acr) is an α,β-unsaturated aldehyde, which is abundant in the environment, especially in cigarette smoke. It has recently been implicated as a potential major carcinogen of smoking-related lung cancer. Here we show that Acr forms adducts with histone proteins in vitro and in vivo and preferentially reacts with free histones rather than with nucleosomal histones. Cellular fractionation analyses reveal that Acr exposure specifically inhibits acetylations of N-terminal tails of cytosolic histones H3 and H4, modifications that are important for nuclear import and chromatin assembly. Notably, Acr exposure compromises the delivery of histone H3 into chromatin and increases chromatin accessibility. Moreover, changes in nucleosome occupancy at several genomic loci are correlated with transcriptional responses to Acr exposure. Our data provide new insights into mechanisms whereby environmental factors interact with the genome and influence genome function.
Collapse
Affiliation(s)
- Danqi Chen
- From the Departments of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10987
| | - Lei Fang
- From the Departments of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10987
| | - Hongjie Li
- From the Departments of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10987
| | - Moon-shong Tang
- From the Departments of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10987
| | - Chunyuan Jin
- From the Departments of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10987
| |
Collapse
|
40
|
Sites of acetylation on newly synthesized histone H4 are required for chromatin assembly and DNA damage response signaling. Mol Cell Biol 2013; 33:3286-98. [PMID: 23775118 DOI: 10.1128/mcb.00460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.
Collapse
|
41
|
Abstract
The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.
Collapse
|
42
|
Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 2013; 9:e1003518. [PMID: 23754951 PMCID: PMC3675013 DOI: 10.1371/journal.pgen.1003518] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/04/2013] [Indexed: 11/24/2022] Open
Abstract
Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. The packaging of genomic DNA during replication is a highly orchestrated process. An important aspect of chromatin assembly is the processing of newly synthesized histones prior to their incorporation into chromatin. The transient acetylation of histone H3 and H4 NH2-terminal tails is a hallmark of this processing with newly synthesized molecules of histone H4 being predominantly diacetylated. This diacetylation occurs specifically on lysine residues 5 and 12 and this precise pattern is widely conserved throughout eukaryotic evolution. The acetylation of newly synthesized histones is catalyzed by type B histone acetyltransferases. Hat1 is the founding member of this class of enzymes and has been proposed to be responsible for the diacetylation of newly synthesized histone H4. Here we describe the development of a mouse knockout model of Hat1. The absence of Hat1 results in neonatal lethality due to developmental defects in the lung. Mouse embryonic fibroblasts derived from Hat1−/− mice are sensitive to DNA damaging agents and display a high level of genome instability. Biochemical analyses provide definitive evidence that Hat1 is the sole enzyme responsible for the acetylation of newly synthesized histone H4. Surprisingly, Hat1 is also necessary for the normal processing of newly synthesized histone H3.
Collapse
|
43
|
Mocquard-Bucher E, Galvani A, Thiriet C. Histone H4 acetylation links nucleosome turnover and nucleosome assembly: lessons from the slime moldPhysarum polycephalum. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.848241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Terweij M, van Leeuwen F. Histone exchange: sculpting the epigenome. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.838193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Elliott GO, Murphy KJ, Hayes JJ, Thiriet C. Replication-independent nucleosome exchange is enhanced by local and specific acetylation of histone H4. Nucleic Acids Res 2013; 41:2228-38. [PMID: 23303778 PMCID: PMC3575802 DOI: 10.1093/nar/gks1451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used a novel single-cell strategy to examine the fate of histones during G2-phase. Consistent with previous results, we find that in G2-phase, the majority of nuclear histones are assembled into chromatin, whereas a small fraction comprises an unassembled pool. Small increases in the amount of histones within the free pool affect the extent of exchange, suggesting that the free pool is in dynamic equilibrium with chromatin proteins. Unexpectedly, acetylated H4 is preferentially partitioned to the unassembled pool. Although an increase in global histone acetylation did not affect overall nucleosome dynamics, an H4 containing lysine to glutamine substitutions as mimics of acetylation significantly increased the rate of exchange, but did not affect the acetylation state of neighbouring nucleosomes. Interestingly, transcribed regions are particularly predisposed to exchange on incorporation of H4 acetylation mimics compared with surrounding regions. Our results support a model whereby histone acetylation on K8 and K16 specifically marks nucleosomes for eviction, with histones being rapidly deacetylated on reassembly.
Collapse
Affiliation(s)
- Giles O Elliott
- UFIP (FRE-CNRS 3478), Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | | | | | | |
Collapse
|
46
|
Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013; 20:14-22. [PMID: 23288364 PMCID: PMC4004355 DOI: 10.1038/nsmb.2461] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Nucleosome assembly following DNA replication, DNA repair and gene transcription is critical for the maintenance of genome stability and epigenetic information. Nucleosomes are assembled by replication-coupled or replication-independent pathways with the aid of histone chaperone proteins. How these different nucleosome assembly pathways are regulated remains relatively unclear. Recent studies have provided insight into the mechanisms and the roles of histone chaperones in regulating nucleosome assembly. Alterations or mutations in factors involved in nucleosome assembly have also been implicated in cancer and other human diseases. This review highlights the recent progress and outlines future challenges in the field.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
47
|
Tscherner M, Stappler E, Hnisz D, Kuchler K. The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis inCandida albicans. Mol Microbiol 2012; 86:1197-214. [DOI: 10.1111/mmi.12051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Michael Tscherner
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Eva Stappler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Denes Hnisz
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| | - Karl Kuchler
- Medical University of Vienna; Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories; Campus Vienna Biocenter; A-1030; Vienna; Austria
| |
Collapse
|
48
|
Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, Lee LJ, Buratowski S, van Leeuwen F, Rando OJ, Hartzog GA. A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 2012; 8:e1002811. [PMID: 22807688 PMCID: PMC3395613 DOI: 10.1371/journal.pgen.1002811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022] Open
Abstract
Chd proteins are ATP–dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5′ and 3′ ends of genes, accelerating H3 replacement at the 5′ ends of genes while protecting the 3′ ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1's effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3′ ends of genes. Nucleosomes prevent transcription by interfering with transcription factor binding at the beginning of genes and blocking elongating RNA polymerase II across the bodies of genes. To overcome this repression, regulatory proteins move, remove, or structurally alter nucleosomes, allowing the transcription machinery access to gene sequences. Over the body of a gene, it is important that nucleosome structure be restored after a polymerase has passed by; failure to do so may lead to activation of transcription from internal gene sequences. Interestingly, although nucleosomes constantly move on and off of promoters, they are relatively stable over the bodies of genes. Thus, the same nucleosomes that are removed to allow a polymerase to pass by must be reassembled in its wake. Here, we examine the role of an ATP–dependent chromatin remodeling protein, Chd1, in regulating nucleosome dynamics. We find that Chd1 is important for exchange of the histone H3 in both yeast and Drosophila and that, surprisingly, while it promotes exchange of histones at the beginning of genes, it prevents exchange at the ends of genes. Finally, we show that Chd1 helps determine the characteristic pattern of chemical modifications of histone H3 found over actively transcribed gene sequences.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tiffani K. Quan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lourdes Valenzuela
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer A. Armstrong
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - TaeSoo Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Laura J. Lee
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (GAH); (OJR)
| | - Grant A. Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (GAH); (OJR)
| |
Collapse
|
49
|
Schizosaccharomyces pombe Hat1 (Kat1) is associated with Mis16 and is required for telomeric silencing. EUKARYOTIC CELL 2012; 11:1095-103. [PMID: 22771823 DOI: 10.1128/ec.00123-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.
Collapse
|
50
|
Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:277-89. [PMID: 22015777 PMCID: PMC3272145 DOI: 10.1016/j.bbagrm.2011.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
Affiliation(s)
- Kristin M. Keck
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| | - Lucy F. Pemberton
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|