1
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
2
|
Verdikt R, Thienpont B. Epigenetic remodelling under hypoxia. Semin Cancer Biol 2024; 98:1-10. [PMID: 38029868 DOI: 10.1016/j.semcancer.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is intrinsic to tumours and contributes to malignancy and metastasis while hindering the efficiency of existing treatments. Epigenetic mechanisms play a crucial role in the regulation of hypoxic cancer cell programs, both in the initial phases of sensing the decrease in oxygen levels and during adaptation to chronic lack of oxygen. During the latter, the epigenetic regulation of tumour biology intersects with hypoxia-sensitive transcription factors in a complex network of gene regulation that also involves metabolic reprogramming. Here, we review the current literature on the epigenetic control of gene programs in hypoxic cancer cells. We highlight common themes and features of such epigenetic remodelling and discuss their relevance for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium; KU Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Collier H, Albanese A, Kwok CS, Kou J, Rocha S. Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 2023; 106:110660. [PMID: 36990334 DOI: 10.1016/j.cellsig.2023.110660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.
Collapse
Affiliation(s)
- Harry Collier
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Adam Albanese
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Chun-Sui Kwok
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jiahua Kou
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom.
| |
Collapse
|
4
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Batie M, Frost J, Shakir D, Rocha S. Regulation of chromatin accessibility by hypoxia and HIF. Biochem J 2022; 479:767-786. [PMID: 35258521 PMCID: PMC9022986 DOI: 10.1042/bcj20220008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) co-ordinate a transcriptional programme required for survival and adaptation to hypoxia. However, the effects of HIF on chromatin accessibility are currently unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility are enriched at a subset hypoxia transcriptionally responsive genes, agreeing with previous data using other models. We show for the first time that hypoxia inducible changes in chromatin accessibility across the genome are predominantly HIF dependent, rapidly reversible upon reoxygenation and partially mimicked by HIF-α stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that HIF is central to chromatin accessibility alterations in hypoxia, and has implications for our understanding of gene expression regulation by hypoxia and HIF.
Collapse
Affiliation(s)
- Michael Batie
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Julianty Frost
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Dilem Shakir
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
6
|
Abstract
Hypoxia is defined as a cellular stress condition caused by a decrease in oxygen below physiologically normal levels. Cells in the core of a rapidly growing solid tumor are faced with the challenge of inadequate supply of oxygen through the blood, owing to improper vasculature inside the tumor. This hypoxic microenvironment inside the tumor initiates a gene expression program that alters numerous signaling pathways, allowing the cancer cell to eventually evade adverse conditions and attain a more aggressive phenotype. A multitude of studies covering diverse aspects of gene regulation has tried to uncover the mechanisms involved in hypoxia-induced tumorigenesis. The role of epigenetics in executing widespread and dynamic changes in gene expression under hypoxia has been gaining an increasing amount of support in recent years. This chapter discusses, in detail, various epigenetic mechanisms driving the cellular response to hypoxia in cancer.
Collapse
Affiliation(s)
- Deepak Pant
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Srinivas Abhishek Mutnuru
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
7
|
Chen Y, Liu M, Niu Y, Wang Y. Romance of the three kingdoms in hypoxia: HIFs, epigenetic regulators, and chromatin reprogramming. Cancer Lett 2020; 495:211-223. [PMID: 32931886 DOI: 10.1016/j.canlet.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia is a hallmark of cancer. To cope with hypoxic conditions, tumor cells alter their transcriptional profiles mainly through hypoxia-inducible factors (HIFs) and epigenetic reprogramming. Hypoxia, in part through HIF-dependent mechanisms, influences the expression or activity of epigenetic regulators to control epigenetic reprogramming, including DNA methylation and histone modifications, which regulate hypoxia-responsive gene expression in cells. Conversely, epigenetic regulators and chromatin architecture can modulate the expression, stability, or transcriptional activity of HIF. Understanding the complex networks between HIFs, epigenetic regulators, and chromatin reprogramming in response to hypoxia will provide insight into the fundamental mechanism of transcriptional adaptation to hypoxia, and may help identify novel targets for future therapies. In this review, we will discuss the comprehensive relationship between HIFs, epigenetic regulators, and chromatin reprogramming under hypoxic conditions.
Collapse
Affiliation(s)
- Yan Chen
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China; School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yanling Niu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Kamei H. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. Gen Comp Endocrinol 2020; 294:113473. [PMID: 32247621 DOI: 10.1016/j.ygcen.2020.113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Oxygen is indispensable for the efficient release of chemical energy from nutrient molecules in cells. Therefore, the local oxygen tension is one of the most critical factors affecting physiological processes. In most viviparous species, many pathological conditions result in abnormal oxygen tension in the uterus, which modifies the growth and development of the fetus. Insulin-like growth factor (IGF/Igf) is one of the most important hormones for the regulation of somatic growth in animals. Changes in oxygen levels modulate the activity of the IGF/Igf signaling system, which in turn regulates the embryonic growth rate. In general, there are serious difficulties associated with monitoring and studying rodent embryos in utero. The zebrafish is a convenient experimental model to study the relationship between embryonic growth and environmental conditions. Most importantly, the fish model makes it possible to rapidly evaluate embryonic growth and development under entirely controlled environments without interfering with the mother organism. In this review, firstly an overview is given of the fluctuation of environmental oxygen, the IGF-system, and the advantages of the zebrafish model for studying embryonic growth. Then, the relationships of dynamic environmental oxygen and embryonic growth rate are outlined with a specific focus on the changes in the IGF/Igf-system in the zebrafish model. This review will shed light on the fine-tuning mechanisms of the embryonic IGF/Igf-system under different oxygen levels, including constant normoxia, hypoxia, and re-oxygenation.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| |
Collapse
|
9
|
Ivanova IG, Park CV, Yemm AI, Kenneth NS. PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation. Nucleic Acids Res 2019. [PMID: 29529249 PMCID: PMC5934640 DOI: 10.1093/nar/gky127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIF1α (hypoxia inducible factor 1α) is the central regulator of the cellular response to low oxygen and its activity is deregulated in multiple human pathologies. Consequently, given the importance of HIF signaling in disease, there is considerable interest in developing strategies to modulate HIF1α activity and down-stream signaling events. In the present study we find that under hypoxic conditions, activation of the PERK branch of the unfolded protein response (UPR) can suppress the levels and activity of HIF1α by preventing efficient HIF1α translation. Activation of PERK inhibits de novo HIF1α protein synthesis by preventing the RNA-binding protein, YB-1, from interacting with the HIF1α mRNA 5′UTR. Our data indicate that activation of the UPR can sensitise tumor cells to hypoxic stress, indicating that chemical activation of the UPR could be a strategy to target hypoxic malignant cancer cells.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Catherine V Park
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Adrian I Yemm
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niall S Kenneth
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Batie M, Del Peso L, Rocha S. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines 2018; 6:biomedicines6020047. [PMID: 29690561 PMCID: PMC6027312 DOI: 10.3390/biomedicines6020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia or reduced oxygen availability has been studied extensively for its ability to activate specific genes. Hypoxia-induced gene expression is mediated by the HIF transcription factors, but not exclusively so. Despite the extensive knowledge about how hypoxia activates genes, much less is known about how hypoxia promotes gene repression. In this review, we discuss the potential mechanisms underlying hypoxia-induced transcriptional repression responses. We highlight HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level. Lastly, we discuss recent evidence regarding the involvement of transcriptional repressor complexes in hypoxia.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| | - Luis Del Peso
- Department of Biochemistry, Institute of Biomedical Research, Autonomous Madrid University, Arturo Duperier, 4. 28029 Madrid, Spain.
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| |
Collapse
|
11
|
Luo W, Wang Y. Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-α protein stability and activity. Cell Mol Life Sci 2018; 75:1043-1056. [PMID: 29032501 PMCID: PMC5984203 DOI: 10.1007/s00018-017-2684-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
The hypoxia-inducible factor (HIF) is a heterodimeric transcription factor governing a transcriptional program in response to reduced O2 availability in metazoans. It contributes to physiology and pathogenesis of many human diseases through its downstream target genes. Emerging studies have shown that the transcriptional activity of HIF is highly regulated at multiple levels and the epigenetic regulators are essential for HIF-mediated transactivation. In this review, we will discuss the comprehensive regulation of HIF transcriptional activity by different types of epigenetic regulators.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Pharmacology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
13
|
Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, Epemolu O, Shimamura S, Bantscheff M, Grandi P, Read KD, Cantrell DA, Rocha S, Ciulli A. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat Commun 2016; 7:13312. [PMID: 27811928 PMCID: PMC5097156 DOI: 10.1038/ncomms13312] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein-protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling.
Collapse
Affiliation(s)
- Julianty Frost
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Carles Galdeano
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Pedro Soares
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Morgan S. Gadd
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Katarzyna M. Grzes
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Lucy Ellis
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Ola Epemolu
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | - Paola Grandi
- Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kevin D. Read
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Doreen A. Cantrell
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Sonia Rocha
- Center for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
14
|
Bultman SJ, Holley DW, G de Ridder G, Pizzo SV, Sidorova TN, Murray KT, Jensen BC, Wang Z, Bevilacqua A, Chen X, Quintana MT, Tannu M, Rosson GB, Pandya K, Willis MS. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol 2016; 25:258-269. [PMID: 27039070 DOI: 10.1016/j.carpath.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022] Open
Abstract
There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic mechanisms like SWI/SNF chromatin remodeling seem more intimately linked to cardiac function and mitochondrial quality control mechanisms than previously realized.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy Wood Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Tatiana N Sidorova
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine T Murray
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Zhongjing Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong University, 250021, Jinan, PR China
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Manasi Tannu
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gary B Rosson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Ortmann B, Bensaddek D, Carvalhal S, Moser SC, Mudie S, Griffis ER, Swedlow JR, Lamond AI, Rocha S. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci 2015; 129:191-205. [PMID: 26644182 PMCID: PMC4732302 DOI: 10.1242/jcs.179911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/18/2015] [Indexed: 12/28/2022] Open
Abstract
PHD1 (also known as EGLN2) belongs to a family of prolyl hydroxylases (PHDs) that are involved in the control of the cellular response to hypoxia. PHD1 is also able to regulate mitotic progression through the regulation of the crucial centrosomal protein Cep192, establishing a link between the oxygen-sensing and the cell cycle machinery. Here, we demonstrate that PHD1 is phosphorylated by CDK2, CDK4 and CDK6 at S130. This phosphorylation fluctuates with the cell cycle and can be induced through oncogenic activation. Functionally, PHD1 phosphorylation leads to increased induction of hypoxia-inducible factor (HIF) protein levels and activity during hypoxia. PHD1 phosphorylation does not alter its intrinsic enzymatic activity, but instead decreases the interaction between PHD1 and HIF1α. Interestingly, although phosphorylation of PHD1 at S130 lowers its activity towards HIF1α, this modification increases the activity of PHD1 towards Cep192. These results establish a mechanism by which cell cycle mediators, such as CDKs, temporally control the activity of PHD1, directly altering the regulation of HIF1α and Cep192. Summary: CDK-mediated phosphorylation of PHD1 at serine 130 controls target specificity and confers cell cycle regulation of PHD1.
Collapse
Affiliation(s)
- Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Carvalhal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra C Moser
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
16
|
Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, Shmakova A, Rocha S. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle 2015; 13:3878-91. [PMID: 25558831 PMCID: PMC4614811 DOI: 10.4161/15384101.2014.972889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers.
Collapse
Affiliation(s)
- Sharon Mudie
- a Centre for Gene Regulation and Expression; College of Life Sciences ; University of Dundee ; Dundee , UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS One 2015; 10:e0123649. [PMID: 25830774 PMCID: PMC4382188 DOI: 10.1371/journal.pone.0123649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
Allopurinol, an inhibitor of xanthine oxidase, has been used in clinical trials of patients with cardiovascular and chronic kidney disease. These are two pathologies with extensive links to hypoxia and activation of the transcription factor hypoxia inducible factor (HIF) family. Here we analysed the effects of allopurinol treatment in two different cellular models, and their response to hypoxia. We explored the dose-dependent effect of allopurinol on Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) under hypoxia and normoxia. Under normoxia and hypoxia, high dose allopurinol reduced the accumulation of HIF-1α protein in HFF and HUVEC cells. Allopurinol had only marginal effects on HIF-1α mRNA level in both cellular systems. Interestingly, allopurinol effects over the HIF system were independent of prolyl-hydroxylase activity. Finally, allopurinol treatment reduced angiogenesis traits in HUVEC cells in an in vitro model. Taken together these results indicate that high doses of allopurinol inhibits the HIF system and pro-angiogenic traits in cells.
Collapse
Affiliation(s)
- Yu Sun
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jacob George
- Division of Medical Sciences, Ninewells Hospital and Medical School, Dundee, United Kingdom
- * E-mail: (JG); (SR)
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (JG); (SR)
| |
Collapse
|
18
|
Oberbauer AM. Developmental programming: the role of growth hormone. J Anim Sci Biotechnol 2015; 6:8. [PMID: 25774292 PMCID: PMC4358872 DOI: 10.1186/s40104-015-0001-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.
Collapse
Affiliation(s)
- Anita M Oberbauer
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
19
|
Bremm A, Moniz S, Mader J, Rocha S, Komander D. Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep 2014; 15:1268-77. [PMID: 25355043 PMCID: PMC4264929 DOI: 10.15252/embr.201438850] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022] Open
Abstract
The transcription factor HIF-1α is essential for cells to rapidly adapt to low oxygen levels (hypoxia). HIF-1α is frequently deregulated in cancer and correlates with poor patient prognosis. Here, we demonstrate that the deubiquitinase Cezanne regulates HIF-1α homeostasis. Loss of Cezanne decreases HIF-1α target gene expression due to a reduction in HIF-1α protein levels. Surprisingly, although the Cezanne-regulated degradation of HIF-1α depends on the tumour suppressor pVHL, hydroxylase and proteasome activity are dispensable. Our data suggest that Cezanne is essential for HIF-1α protein stability and that loss of Cezanne stimulates HIF-1α degradation via proteasome-independent routes, possibly through chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Anja Bremm
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Frankfurt (Main), Germany Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sonia Moniz
- College of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Julia Mader
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Frankfurt (Main), Germany
| | - Sonia Rocha
- College of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
20
|
Shmakova A, Batie M, Druker J, Rocha S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 2014; 462:385-95. [PMID: 25145438 PMCID: PMC4147966 DOI: 10.1042/bj20140754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.
Collapse
Key Words
- chromatin
- chromatin remodeller
- histone methylation
- hypoxia
- hypoxia-inducible factor (hif)
- jumonji c (jmjc)
- transcription
- cd, chromodomain
- chd, chromodomain helicase dna binding
- crc, chromatin-remodelling complex
- fih, factor inhibiting hif
- hif, hypoxia-inducible factor
- iswi, imitation-swi protein
- jmjc, jumonji c
- kdm, lysine-specific demethylase
- lsd, lysine-specific demethylase
- nurd, nucleosome-remodelling deacetylase
- phd, plant homeodomain
- phf, phd finger protein
- rest, repressor element 1-silencing transcription factor
- vhl, von hippel–lindau protein
Collapse
Affiliation(s)
- Alena Shmakova
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Michael Batie
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Jimena Druker
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
21
|
Cell cycle progression in response to oxygen levels. Cell Mol Life Sci 2014; 71:3569-82. [PMID: 24858415 PMCID: PMC4143607 DOI: 10.1007/s00018-014-1645-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia' or decreases in oxygen availability' results in the activation of a number of different responses at both the whole organism and the cellular level. These responses include drastic changes in gene expression, which allow the organism (or cell) to cope efficiently with the stresses associated with the hypoxic insult. A major breakthrough in the understanding of the cellular response to hypoxia was the discovery of a hypoxia sensitive family of transcription factors known as the hypoxia inducible factors (HIFs). The hypoxia response mounted by the HIFs promotes cell survival and energy conservation. As such, this response has to deal with important cellular process such as cell division. In this review, the integration of oxygen sensing with the cell cycle will be discussed. HIFs, as well as other components of the hypoxia pathway, can influence cell cycle progression. The role of HIF and the cell molecular oxygen sensors in the control of the cell cycle will be reviewed.
Collapse
|
22
|
Bett JS, Ibrahim AFM, Garg AK, Rocha S, Hay RT. SiRNA screening to identify ubiquitin and ubiquitin-like system regulators of biological pathways in cultured mammalian cells. J Vis Exp 2014. [PMID: 24893647 DOI: 10.3791/51572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription. To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA "ubiquitome" library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question. Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter. An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening. The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested. Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Collapse
Affiliation(s)
- John S Bett
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee;
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee
| | - Amit K Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Ronald T Hay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee; Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| |
Collapse
|
23
|
Aesoy R, Gradin K, Aasrud KS, Hoivik EA, Ruas JL, Poellinger L, Bakke M. Regulation of CDKN2B expression by interaction of Arnt with Miz-1--a basis for functional integration between the HIF and Myc gene regulatory pathways. Mol Cancer 2014; 13:54. [PMID: 24618291 PMCID: PMC3984710 DOI: 10.1186/1476-4598-13-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Background Hypoxia- and Myc-dependent transcriptional regulatory pathways are frequently deregulated in cancer cells. These pathways converge in many cellular responses, but the underlying molecular mechanisms are unclear. Methods The ability of Miz-1 and Arnt to interact was identified in a yeast two-hybrid screen. The mode of interaction and the functional consequences of complex formation were analyzed by diverse molecular biology methods, in vitro. Statistical analyses were performed by Student’s t-test and ANOVA. Results In the present study we demonstrate that the aryl hydrocarbon receptor nuclear translocator (Arnt), which is central in hypoxia-induced signaling, forms a complex with Miz-1, an important transcriptional regulator in Myc-mediated transcriptional repression. Overexpression of Arnt induced reporter gene activity driven by the proximal promoter of the cyclin-dependent kinase inhibitor 2B gene (CDKN2B), which is an established target for the Myc/Miz-1 complex. In contrast, mutated forms of Arnt, that were unable to interact with Miz-1, had reduced capability to activate transcription. Moreover, repression of Arnt reduced endogenous CDKN2B expression, and chromatin immunoprecipitation demonstrated that Arnt interacts with the CDKN2B promoter. The transcriptional activity of Arnt was counteracted by Myc, but not by a mutated variant of Myc that is unable to interact with Miz-1, suggesting mutually exclusive interaction of Arnt and Myc with Miz-1. Our results also establish CDKN2B as a hypoxia regulated gene, as endogenous CDKN2B mRNA and protein levels were reduced by hypoxic treatment of U2OS cells. Conclusions Our data reveal a novel mode of regulation by protein-protein interaction that directly ties together, at the transcriptional level, the Myc- and hypoxia-dependent signaling pathways and expands our understanding of the roles of hypoxia and cell cycle alterations during tumorigenesis.
Collapse
Affiliation(s)
- Reidun Aesoy
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
24
|
Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics 2014; 6:89-120. [PMID: 24579949 PMCID: PMC4233403 DOI: 10.2217/epi.13.79] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - KaHing Che
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Peter Cain
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Radoslaw Nowak
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| |
Collapse
|
25
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
26
|
Borghese B, Santulli P, Vaiman D, Alexandre J, Goldwasser F, Chapron C. Les cancers de l’ovaire associés à l’endométriose : physiopathologie et conséquences sur la pratique clinique. ACTA ACUST UNITED AC 2013; 42:325-33. [DOI: 10.1016/j.jgyn.2013.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 02/28/2013] [Indexed: 01/07/2023]
|
27
|
Abstract
HIF1A (hypoxia-inducible factor 1α) is the master regulator of the cellular response to
hypoxia and is implicated in cancer progression. Whereas the regulation of HIF1A protein in response
to oxygen is well characterized, less is known about the fate of HIF1A mRNA. In the
present study, we have identified the pseudo-DUB (deubiquitinating enzyme)/deadenylase USP52
(ubiquitin-specific protease 52)/PAN2 [poly(A) nuclease 2] as an important regulator of the
HIF1A-mediated hypoxic response. Depletion of USP52 reduced HIF1A mRNA and protein levels and
resulted in reduced expression of HIF1A-regulated hypoxic targets due to a 3′-UTR
(untranslated region)-dependent poly(A)-tail-length-independent destabilization in
HIF1A mRNA. MS analysis revealed an association of USP52 with several P-body
(processing body) components and we confirmed further that USP52 protein and HIF1A
mRNA co-localized with cytoplasmic P-bodies. Importantly, P-body dispersal by knockdown of
GW182 or LSM1 resulted in a reduction of HIF1A
mRNA levels. These data uncover a novel role for P-bodies in regulating HIF1A mRNA
stability, and demonstrate that USP52 is a key component of P-bodies required to prevent
HIF1A mRNA degradation.
Collapse
|
28
|
Pattison MJ, MacKenzie KF, Elcombe SE, Arthur JSC. IFNβ autocrine feedback is required to sustain TLR induced production of MCP-1 in macrophages. FEBS Lett 2013; 587:1496-503. [PMID: 23542035 PMCID: PMC3655261 DOI: 10.1016/j.febslet.2013.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/22/2013] [Accepted: 03/13/2013] [Indexed: 12/23/2022]
Abstract
Chemokines, including MCP-1, are crucial to mounting an effective immune response due to their ability to recruit other immune cells. We show that sustained LPS or poly(I:C)-stimulated MCP-1 production requires an IFNβ-mediated feedback loop. Consistent with this, exogenous IFNβ was able to induce MCP-1 transcription in the absence of other stimuli. Blocking IFNβ signaling with Ruxolitinib, a JAK inhibitor, inhibited MCP-1 transcription. The MCP-1 promoter contains potential STAT binding sites and we demonstrate that STAT1 is recruited upon IFNβ stimulation. Furthermore we find that IL-10 knockout increases MCP-1 production in response to LPS, which may reflect an ability of IL-10 to repress IFNβ production. Overall, these results show the importance of the balance between IFNβ and IL-10 in the regulation of MCP-1.
Collapse
Affiliation(s)
- Michael J. Pattison
- MRC Protein Phosphorylation Unit, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Kirsty F. MacKenzie
- MRC Protein Phosphorylation Unit, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Suzanne E. Elcombe
- MRC Protein Phosphorylation Unit, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - J. Simon C. Arthur
- MRC Protein Phosphorylation Unit, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Division of Cell Signaling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
29
|
Abstract
The IKK [inhibitor of NF-κB (nuclear factor κB) kinase] complex has an essential role in the activation of the family of NF-κB transcription factors in response to a variety of stimuli. To identify novel IKK-interacting proteins, we performed an unbiased proteomics screen where we identified TfR1 (transferrin receptor 1). TfR1 is required for transferrin binding and internalization and ultimately for iron homoeostasis. TfR1 depletion does not lead to changes in IKK subunit protein levels; however, it does reduce the formation of the IKK complex, and inhibits TNFα (tumour necrosis factor α)-induced NF-κB-dependent transcription. We find that, in the absence of TfR1, NF-κB does not translocate to the nucleus efficiently, and there is a reduction in the binding to target gene promoters and consequentially less target gene activation. Significantly, depletion of TfR1 results in an increase in apoptosis in response to TNFα treatment, which is rescued by elevating the levels of RelA/NF-κB. Taken together, these results indicate a new function for TfR1 in the control of IKK and NF-κB. Our data indicate that IKK–NF-κB responds to changes in iron within the cell.
Collapse
|