1
|
Nozaki Y, Kobayashi M, Fukuoh T, Ishimatsu M, Narita T, Taki K, Hirao Y, Ayabe S, Yokoyama M, Otani Y, Mizunoe Y, Matsumoto M, Ohno N, Kaifu T, Okazaki S, Goitsuka R, Nakagawa Y, Shimano H, Iwakura Y, Higami Y. Mipep deficiency in adipocytes impairs mitochondrial protein maturation and leads to systemic inflammation and metabolic dysfunctions. Sci Rep 2025; 15:12839. [PMID: 40229443 PMCID: PMC11997187 DOI: 10.1038/s41598-025-97307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Most mitochondrial proteins encoded in the nuclear genome are synthesized in the cytoplasm. These proteins subsequently undergo maturation through the cleavage of a signal sequence at the N-terminus by one or two mitochondrial signal peptidases, which is essential for their function within mitochondria. The present study demonstrates that adipocyte-specific knockout of one mitochondrial signal peptidase, mitochondrial intermediate peptidase (MIPEP), resulted in disordered mitochondrial proteostasis of MIPEP substrate proteins and their defective maturation. MIPEP deficiency in white and brown adipocytes suppressed the expression of adipocyte differentiation, lipid metabolism, and mitochondrial biogenesis genes. These alterations led to lipoatrophy in white adipose tissue and the whitening of brown adipose tissue. Additionally, it induced an atypical mitochondrial unfolded protein response and local inflammation in white and brown adipose tissue. Furthermore, it induced fatty liver and splenomegaly and caused systemic impairments in glucose metabolism and inflammation. These findings indicate that maturation defects of certain mitochondrial proteins and subsequent proteostasis disorders in white and brown adipocytes cause chronic and systemic inflammatory and metabolic dysfunctions.
Collapse
Affiliation(s)
- Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomoyoshi Fukuoh
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mamiko Ishimatsu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kanari Taki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuto Hirao
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shota Ayabe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miku Yokoyama
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shogo Okazaki
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|
2
|
Gomes F, Turano H, Haddad LA, Netto LES. Human mitochondrial peroxiredoxin Prdx3 is dually localized in the intermembrane space and matrix subcompartments. Redox Biol 2024; 78:103436. [PMID: 39591905 PMCID: PMC11626719 DOI: 10.1016/j.redox.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxiredoxin 3 (Prdx3) is the major sink for H2O2 and other hydroperoxides within mitochondria, yet the mechanisms guiding the import of its cytosolic precursor into mitochondrial sub-compartments remain elusive. Prdx3 is synthesized in the cytosol as a precursor with an N-terminal cleavable presequence, which is frequently proposed to target the protein exclusively to the mitochondrial matrix. Here, we present a comprehensive analysis of the human Prdx3 biogenesis, using highly purified mitochondria from HEK293T cells. Subfractionation and probing for specific mitochondrial markers confirmed Prdx3 localization in the matrix, while unexpectedly revealed its presence in the mitochondrial intermembrane space (IMS). Both matrix and IMS isoforms were found to be soluble proteins, as demonstrated by alkaline carbonate extraction. By combining in silico analysis, in organello import assays and heterologous expression in yeast, we found that Prdx3 undergoes sequential proteolytic processing steps by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP) during its import into the matrix. Additionally, heterologous expression of Prdx3 in yeast revealed that its sorting to the IMS is dependent on the inner membrane peptidase (IMP) complex. Collectively, these findings uncover a complex submitochondrial distribution of Prdx3, supporting its multifaceted role in mitochondrial H2O2 metabolism.
Collapse
Affiliation(s)
- Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| | - Helena Turano
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luciana A Haddad
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
3
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
4
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
5
|
Kücükköse C, Vögtle FN, Flotho A. Monitoring mitochondrial precursor processing and presequence peptide degradation. Methods Enzymol 2024; 706:193-213. [PMID: 39455216 DOI: 10.1016/bs.mie.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The maturation of mitochondrial presequence precursor proteins after their import into the organelle is a complex process that requires the interaction of several mitochondrial proteases. Precursor processing by the mitochondrial presequence proteases is directly coupled to the proteolytic turnover of the cleaved targeting signal by mitochondrial presequence peptidases. Dysfunction of these enzymes is associated with a variety of human diseases, including neurological disorders, cardiomyopathies and renal diseases. In this chapter, we describe experimental approaches to study the activity of the major mitochondrial presequence protease (MPP) and of the presequence peptidases. In vitro assays and soluble mitochondrial extracts allow the assessment and experimental manipulation of peptidase and protease activity using immunoblotting, fluorescence measurements and autoradiography as readouts. In particular, the assays allow manipulation at multiple levels including in vivo, in organello or in soluble extracts/in vitro. Purification of the yeast heterodimeric MPP allows in vitro reconstitution of the initial presequence processing step using radiolabeled precursors as substrates. Application of soluble mitochondrial extracts enables direct assessment of MPP processing and presequence peptide turnover which can be easily manipulated and is uncoupled from protein translocation across the mitochondrial membranes. The techniques presented in this chapter allow in-depth analysis of precursor processing and presequence turnover as well as direct assessment of the impact of patient mutations on the activity of the presequence processing machinery.
Collapse
Affiliation(s)
- Cansu Kücükköse
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Annette Flotho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
6
|
Xian J, Ni L, Liu C, Li J, Cao Y, Qin J, Liu D, Wang X. Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. J Fungi (Basel) 2024; 10:492. [PMID: 39057376 PMCID: PMC11277898 DOI: 10.3390/jof10070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Mercury (Hg) is a global pollutant and a bioaccumulative toxin that seriously affects the environment. Though increasing information has been obtained on the mechanisms involved in mercury toxicity, there is still a knowledge gap between the adverse effects and action mechanisms, especially at the molecular level. In the current study, we screened a diploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify the nonessential genes associated with increased sensitivity to mercury ions. By genome-scale screening, we identified 64 yeast single-gene deletion mutants. These genes are involved in metabolism, transcription, antioxidant activity, cellular transport, transport facilitation, transport routes, and the cell cycle, as well as in protein synthesis, folding, modification, and protein destination. The concentration of mercury ions was different in the cells of yeast deletion mutants. Moreover, the disruption of antioxidant systems may play a key role in the mercurial toxic effects. The related functions of sensitive genes and signal pathways were further analyzed using bioinformatics-related technologies. Among 64 sensitive genes, 37 genes have human homologous analogs. Our results may provide a meaningful reference for understanding the action mode, cellular detoxification, and molecular regulation mechanisms of mercury toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (J.X.); (L.N.); (C.L.); (J.L.); (Y.C.); (J.Q.); (D.L.)
| |
Collapse
|
7
|
Zhu X, Jin F, Yang G, Zhuang T, Zhang C, Zhou H, Niu X, Wang H, Wu D. Mitochondrial Protease Oct1p Regulates Mitochondrial Homeostasis and Influences Pathogenicity through Affecting Hyphal Growth and Biofilm Formation Activities in Candida albicans. J Fungi (Basel) 2024; 10:391. [PMID: 38921377 PMCID: PMC11204688 DOI: 10.3390/jof10060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Mitochondria, as the core metabolic organelles, play a crucial role in aerobic respiration/biosynthesis in fungi. Numerous studies have demonstrated a close relationship between mitochondria and Candida albicans virulence and drug resistance. Here, we report an octapeptide-aminopeptidase located in the mitochondrial matrix named Oct1p. Its homolog in the model fungus Saccharomyces cerevisiae is one of the key proteins in maintaining mitochondrial respiration and protein stability. In this study, we utilized evolutionary tree analysis, gene knockout experiments, mitochondrial function detection, and other methods to demonstrate the impact of Oct1p on the mitochondrial function of C. albicans. Furthermore, through transcriptome analysis, real-time quantitative PCR, and morphological observation, we discovered that the absence of Oct1p results in functional abnormalities in C. albicans, affecting hyphal growth, cell adhesion, and biofilm formation. Finally, the in vivo results of the infection of Galleria mellonella larvae and vulvovaginal candidiasis in mice indicate that the loss of Oct1p led to the decreased virulence of C. albicans. In conclusion, this study provides a solid theoretical foundation for treating Candida diseases, developing new targeted drugs, and serves as a valuable reference for investigating the connection between mitochondria and virulence in other pathogenic fungi.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Guangyuan Yang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Cangcang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Hanjing Zhou
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Hongchen Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, College of Nursing, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230038, China
| |
Collapse
|
8
|
Chen D, Miao S, Chen X, Wang Z, Lin P, Zhang N, Yang N. Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis. Mol Neurobiol 2024; 61:2542-2555. [PMID: 37910286 DOI: 10.1007/s12035-023-03732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Glaucoma is one of the most common causes of irreversible blindness worldwide. This neurodegenerative disease is characterized by progressive and irreversible damage to retinal ganglion cells (RGCs) and optic nerves, which can lead to permanent loss of peripheral and central vision. To date, maintaining long-term survival of RGCs using traditional treatments, such as medication and surgery, remains challenging, as these do not promote optic nerve regeneration. Therefore, it is of great clinical and social significance to investigate the mechanisms of optic nerve degeneration in depth and find reliable targets to provide pioneering methods for the prevention and treatment of glaucoma. Regulated necrosis is a form of genetically programmed cell death associated with the maintenance of homeostasis and disease progression in vivo. An increasing body of innovative evidence has recognized that aberrant activation of regulated necrosis pathways is a common feature in neurodegenerative diseases, such as Alzheimer's, Parkinson's, and glaucoma, resulting in unwanted loss of neuronal cells and function. Among them, ferroptosis and pyroptosis are newly discovered forms of regulated cell death actively involved in the pathophysiological processes of RGCs loss and optic nerve injury. This was shown by a series of in vivo and in vitro studies, and these mechanisms have been emerging as a key new area of scientific research in ophthalmic diseases. In this review, we focus on the molecular mechanisms of ferroptosis and pyroptosis and their regulatory roles in the pathogenesis of glaucoma, with the aim of exploring their implications as potential therapeutic targets and providing new perspectives for better clinical decision-making in glaucoma treatment.
Collapse
Affiliation(s)
- Duan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Sen Miao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
Yamano K, Kinefuchi H, Kojima W. Mitochondrial quality control via organelle and protein degradation. J Biochem 2024; 175:487-494. [PMID: 38102729 DOI: 10.1093/jb/mvad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are essential eukaryotic organelles that produce ATP as well as synthesize various macromolecules. They also participate in signalling pathways such as the innate immune response and apoptosis. These diverse functions are performed by >1,000 different mitochondrial proteins. Although mitochondria are continuously exposed to potentially damaging conditions such as reactive oxygen species, proteases/peptidases localized in different mitochondrial subcompartments, termed mitoproteases, maintain mitochondrial quality and integrity. In addition to processing incoming precursors and degrading damaged proteins, mitoproteases also regulate metabolic reactions, mitochondrial protein half-lives and gene transcription. Impaired mitoprotease function is associated with various pathologies. In this review, we highlight recent advances in our understanding of mitochondrial quality control regulated by autophagy, ubiquitin-proteasomes and mitoproteases.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
10
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Otani Y, Nozaki Y, Mizunoe Y, Kobayashi M, Higami Y. Effect of mitochondrial quantity and quality controls in white adipose tissue on healthy lifespan: Essential roles of GH/IGF-1-independent pathways in caloric restriction-mediated metabolic remodeling. Pathol Int 2023; 73:479-489. [PMID: 37606202 PMCID: PMC11551837 DOI: 10.1111/pin.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
Long-term caloric restriction is a conventional and reproducible dietary intervention to improve whole body metabolism, suppress age-related pathophysiology, and extend lifespan. The beneficial actions of caloric restriction are widely accepted to be regulated in both growth hormone/insulin-like growth factor 1-dependent and -independent manners. Although growth hormone/insulin-like growth factor 1-dependent regulatory mechanisms are well described, those occurring independent of growth hormone/insulin-like growth factor 1 are poorly understood. In this review, we focus on molecular mechanisms of caloric restriction regulated in a growth hormone/insulin-like growth factor 1-independent manner. Caloric restriction increases mitochondrial quantity and improves mitochondrial quality by activating an axis involving sterol regulatory element binding protein-c/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial intermediate peptidase in a growth hormone/insulin-like growth factor 1-independent manner, particularly in white adipose tissue. Fibroblast growth factor 21 is also involved in this axis. Moreover, the axis may be regulated by lower leptin signaling. Thus, caloric restriction appears to induce beneficial actions partially by regulating mitochondrial quantity and quality in white adipose tissue in a growth hormone/insulin-like growth factor 1-independent manner.
Collapse
Grants
- Fostering Joint International Research (B) / 20KK0 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research (B) / 17H0217 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research (B) / 20H0413 Ministry of Education, Culture, Sports, Science and Technology
- Japan Society for the Promotion of Science Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and SciencesOchanomizu UniversityTokyoJapan
- Institute for Human Life InnovationOchanomizu UniversityTokyoJapan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
- Research Institute for Biomedical Sciences (RIBS)Tokyo University of ScienceChibaJapan
| |
Collapse
|
12
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
13
|
Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell 2023; 83:890-910. [PMID: 36931257 DOI: 10.1016/j.molcel.2023.02.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, β-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.
Collapse
Affiliation(s)
- Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, Sun Q, van Wijk KJ. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:1339-1357. [PMID: 35946374 DOI: 10.1111/nph.18426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.
Collapse
Affiliation(s)
- Elden Rowland
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Jitae Kim
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
- S-Korea Bioenergy Research Center, Chonnam National University, Gwangju, 61186, South Korea
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Anton Poliakov
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Garrido C, Wollman FA, Lafontaine I. The evolutionary history of peptidases involved in the processing of Organelle-Targeting Peptides. Genome Biol Evol 2022; 14:6618273. [PMID: 35758251 PMCID: PMC9291397 DOI: 10.1093/gbe/evac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Most of the proteins present in mitochondria and chloroplasts, the organelles acquired via endosymbiotic events, are encoded in the nucleus and translated into the cytosol. Most of such nuclear-encoded proteins are specifically recognized via an N-terminal-encoded targeting peptide (TP) and imported into the organelles via a translocon machinery. Once imported, the TP is degraded by a succession of cleavage steps ensured by dedicated peptidases. Here, we retrace the evolution of the families of the mitochondrial processing peptidase (MPP), stromal processing peptidase (SPP), presequence protease (PreP), and organellar oligo-peptidase (OOP) that play a central role in TP processing and degradation across the tree of life. Their bacterial distributions are widespread but patchy, revealing unsurprisingly complex history of lateral transfers among bacteria. We provide evidence for the eukaryotic acquisition of MPP, OOP, and PreP by lateral gene transfers from bacteria at the time of the mitochondrial endosymbiosis. We show that the acquisition of SPP and of a second copy of OOP and PreP at the time of the chloroplast endosymbiosis was followed by a differential loss of one PreP paralog in photosynthetic eukaryotes. We identified some contrasting sequence conservations between bacterial and eukaryotic homologs that could reflect differences in the functional context of their peptidase activity. The close vicinity of the eukaryotic peptidases MPP and OOP to those of several bacterial pathogens, showing antimicrobial resistance, supports a scenario where such bacteria were instrumental in the establishment of the proteolytic pathway for TP degradation in organelles. The evidence for their role in the acquisition of PreP is weaker, and none is observed for SPP, although it cannot be excluded by the present study.
Collapse
Affiliation(s)
- Clotilde Garrido
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis André Wollman
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
16
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
17
|
Xiang X, Bao R, Wu Y, Luo Y. Targeting Mitochondrial Proteases for Therapy of Acute Myeloid Leukemia. Br J Pharmacol 2022; 179:3268-3282. [PMID: 35352341 DOI: 10.1111/bph.15844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Targeting cancer metabolism has emerged as an attractive approach to improve therapeutic regimens in acute myeloid leukemia (AML). Mitochondrial proteases are closely related to cancer metabolism, but their biological functions have not been well characterized in AML. According to different catogory, we comprehensively reviewed the role of mitochondrial proteases in AML. This review highlights some 'powerful' mitochondrial protease targets, including their biological function, chemical modulators, and applicative prospect in AML.
Collapse
Affiliation(s)
- Xinrong Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Bao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophys Rev 2022; 13:983-994. [PMID: 35059022 DOI: 10.1007/s12551-021-00899-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Peroxiredoxins (Prxs) are cysteine-based peroxidases that play a central role in keeping the H2O2 at physiological levels. Eukaryotic cells express different Prxs isoforms, which differ in their subcellular locations and substrate specificities. Mitochondrial Prxs are synthesized in the cytosol as precursor proteins containing N-terminal cleavable presequences that act as mitochondrial targeting signals. Due to the fact that presequence controls the import of the vast majority of mitochondrial matrix proteins, the mitochondrial Prxs were initially predicted to be localized exclusively in the matrix. However, recent studies showed that mitochondrial Prxs are also targeted to the intermembrane space by mechanisms that remain poorly understood. While in yeast the IMP complex can translocate Prx1 to the intermembrane space, the maturation of yeast Prx1 and mammalian Prdx3 and Prdx5 in the matrix has been associated with sequential cleavages of the presequence by MPP and Oct1/MIP proteases. In this review, we describe the state of the art of the molecular mechanisms that control the mitochondrial import and maturation of Prxs of yeast and human cells. Once mitochondria are considered the major intracellular source of H2O2, understanding the mitochondrial Prx biogenesis pathways is essential to increase our knowledge about the H2O2-dependent cellular signaling, which is relevant to the pathophysiology of some human diseases.
Collapse
|
19
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
20
|
Pulman J, Ruzzenente B, Horak M, Barcia G, Boddaert N, Munnich A, Rötig A, Metodiev MD. Variants in the MIPEP gene presenting with complex neurological phenotype without cardiomyopathy, impair OXPHOS protein maturation and lead to a reduced OXPHOS abundance in patient cells. Mol Genet Metab 2021; 134:267-273. [PMID: 34620555 DOI: 10.1016/j.ymgme.2021.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/12/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to mitochondria via N-terminal mitochondrial targeting signals (MTS) that are proteolytically removed upon import. Sometimes, MTS removal is followed by a cleavage of an octapeptide by the mitochondrial intermediate peptidase (MIP), encoded by the MIPEP gene. Previously, MIPEP variants were linked to four cases of multisystemic disorder presenting with cardiomyopathy, developmental delay, hypotonia and infantile lethality. We report here a patient carrying compound heterozygous MIPEP variants-one was not previously linked to mitochondrial disease-who did not have cardiomyopathy and who is alive at the age of 20 years. This patient had developmental delay, global hypotonia, mild optic neuropathy and mild ataxia. Functional characterization of patient fibroblasts and HEK293FT cells carrying MIPEP hypomorphic alleles demonstrated that deficient MIP activity was linked to impaired post-import processing of subunits from four of the five OXPHOS complexes and decreased abundance and activity of some of these complexes in human cells possibly underlying the development of mitochondrial disease. Thus, our work expands the genetic and clinical spectrum of MIPEP-linked disease and establishes MIP as an important regulator of OXPHOS biogenesis and function in human cells.
Collapse
Affiliation(s)
- Juliette Pulman
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Benedetta Ruzzenente
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Martin Horak
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Giulia Barcia
- Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker-Enfants-Malades, AP-HP, Université de Paris, INSERM U1163, Institut Imagine, Paris, France
| | - Arnold Munnich
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France; Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Hôpital Necker-Enfants-Malades, Paris, France
| | - Agnès Rötig
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Metodi D Metodiev
- Genetics of Mitochondrial Disorders, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
21
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
22
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Brunetti D, Catania A, Viscomi C, Deleidi M, Bindoff LA, Ghezzi D, Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines 2021; 9:biomedicines9070833. [PMID: 34356897 PMCID: PMC8301332 DOI: 10.3390/biomedicines9070833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence shows a link between mitochondrial dysfunction and neurodegenerative disorders, including Alzheimer Disease. Increased oxidative stress, defective mitodynamics, and impaired oxidative phosphorylation leading to decreased ATP production, can determine synaptic dysfunction, apoptosis, and neurodegeneration. Furthermore, mitochondrial proteostasis and the protease-mediated quality control system, carrying out degradation of potentially toxic peptides and misfolded or damaged proteins inside mitochondria, are emerging as potential pathogenetic mechanisms. The enzyme pitrilysin metallopeptidase 1 (PITRM1) is a key player in these processes; it is responsible for degrading mitochondrial targeting sequences that are cleaved off from the imported precursor proteins and for digesting a mitochondrial fraction of amyloid beta (Aβ). In this review, we present current evidence obtained from patients with PITRM1 mutations, as well as the different cellular and animal models of PITRM1 deficiency, which points toward PITRM1 as a possible driving factor of several neurodegenerative conditions. Finally, we point out the prospect of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Dario Brunetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany;
| | - Laurence A. Bindoff
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence: (D.G.); (M.Z.)
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35128 Padova, Italy
- Correspondence: (D.G.); (M.Z.)
| |
Collapse
|
24
|
Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci 2021; 78:5925-5951. [PMID: 34228161 PMCID: PMC8316193 DOI: 10.1007/s00018-021-03887-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.
Collapse
|
25
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
26
|
Fernández-del-Río L, Clarke CF. Coenzyme Q Biosynthesis: An Update on the Origins of the Benzenoid Ring and Discovery of New Ring Precursors. Metabolites 2021; 11:385. [PMID: 34198496 PMCID: PMC8231959 DOI: 10.3390/metabo11060385] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (ubiquinone or CoQ) is a conserved polyprenylated lipid essential for mitochondrial respiration. CoQ is composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. A classic pathway leading to CoQ biosynthesis employs 4-hydroxybenzoic acid (4HB). Recent studies with stable isotopes in E. coli, yeast, and plant and animal cells have identified CoQ intermediates and new metabolic pathways that produce 4HB. Stable isotope labeling has identified para-aminobenzoic acid as an alternate ring precursor of yeast CoQ biosynthesis, as well as other natural products, such as kaempferol, that provide ring precursors for CoQ biosynthesis in plants and mammals. In this review, we highlight how stable isotopes can be used to delineate the biosynthetic pathways leading to CoQ.
Collapse
Affiliation(s)
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA;
| |
Collapse
|
27
|
Maturation of Mitochondrially Targeted Prx V Involves a Second Cleavage by Mitochondrial Intermediate Peptidase That Is Sensitive to Inhibition by H 2O 2. Antioxidants (Basel) 2021; 10:antiox10030346. [PMID: 33669127 PMCID: PMC7996597 DOI: 10.3390/antiox10030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Prx V mRNA contains two in-frame AUG codons, producing a long (L-Prx V) and short form of Prx V (S-Prx V), and mouse L-Prx V is expressed as a precursor protein containing a 49-amino acid N-terminal mitochondria targeting sequence. Here, we show that the N-terminal 41-residue sequence of L-Prx V is cleaved by mitochondrial processing peptidase (MPP) in the mitochondrial matrix to produce an intermediate Prx V (I-Prx V) with a destabilizing phenylalanine at its N-terminus, and further, that the next 8-residue sequence is cleaved by mitochondrial intermediate peptidase (MIP) to convert I-Prx V to a stabilized mature form that is identical to S-Prx V. Further, we show that when mitochondrial H2O2 levels are increased in HeLa cells using rotenone, in several mouse tissues by deleting Prx III, and in the adrenal gland by deleting Srx or by exposing mice to immobilized stress, I-Prx V accumulates transiently and mature S-Prx V levels decrease in mitochondria over time. These findings support the view that MIP is inhibited by H2O2, resulting in the accumulation and subsequent degradation of I-Prx V, identifying a role for redox mediated regulation of Prx V proteolytic maturation and expression in mitochondria.
Collapse
|
28
|
Gomez-Fabra Gala M, Vögtle FN. Mitochondrial proteases in human diseases. FEBS Lett 2021; 595:1205-1222. [PMID: 33453058 DOI: 10.1002/1873-3468.14039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria contain more than 1000 different proteins, including several proteolytic enzymes. These mitochondrial proteases form a complex system that performs limited and terminal proteolysis to build the mitochondrial proteome, maintain, and control its functions or degrade mitochondrial proteins and peptides. During protein biogenesis, presequence proteases cleave and degrade mitochondrial targeting signals to obtain mature functional proteins. Processing by proteases also exerts a regulatory role in modulation of mitochondrial functions and quality control enzymes degrade misfolded, aged, or superfluous proteins. Depending on their different functions and substrates, defects in mitochondrial proteases can affect the majority of the mitochondrial proteome or only a single protein. Consequently, mutations in mitochondrial proteases have been linked to several human diseases. This review gives an overview of the components and functions of the mitochondrial proteolytic machinery and highlights the pathological consequences of dysfunctional mitochondrial protein processing and turnover.
Collapse
Affiliation(s)
- Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Friederike-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
29
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
30
|
Kücükköse C, Taskin AA, Marada A, Brummer T, Dennerlein S, Vögtle FN. Functional coupling of presequence processing and degradation in human mitochondria. FEBS J 2021; 288:600-613. [PMID: 32491259 DOI: 10.1111/febs.15358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
The mitochondrial proteome is built and maintained mainly by import of nuclear-encoded precursor proteins. Most of these precursors use N-terminal presequences as targeting signals that are removed by mitochondrial matrix proteases. The essential mitochondrial processing protease MPP cleaves presequences after import into the organelle thereby enabling protein folding and functionality. The cleaved presequences are subsequently degraded by peptidases. While most of these processes have been discovered in yeast, characterization of the human enzymes is still scarce. As the matrix presequence peptidase PreP has been reported to play a role in Alzheimer's disease, analysis of impaired peptide turnover in human cells is of huge interest. Here, we report the characterization of HEK293T PreP knockout cells. Loss of PreP causes severe defects in oxidative phosphorylation and changes in nuclear expression of stress response marker genes. The mitochondrial defects upon lack of PreP result from the accumulation of presequence peptides that trigger feedback inhibition of MPP and accumulation of nonprocessed precursor proteins. Also, the mitochondrial intermediate peptidase MIP that cleaves eight residues from a subset of precursors after MPP processing is compromised upon loss of PreP suggesting that PreP also degrades MIP generated octapeptides. Investigation of the PrePR183Q patient mutation associated with neurological disorders revealed that the mutation destabilizes the protein making it susceptible to enhanced degradation and aggregation upon heat shock. Taken together, our data reveal a functional coupling between precursor processing by MPP and MIP and presequence degradation by PreP in human mitochondria that is crucial to maintain a functional organellar proteome.
Collapse
Affiliation(s)
- Cansu Kücükköse
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Asli Aras Taskin
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| | - Adinarayana Marada
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Germany
| | - Tilman Brummer
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Germany
- Comprehensive Cancer Centre Freiburg, University of Freiburg, Germany
- DKTK Partner Site Freiburg and DKFZ, Heidelberg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Friederike-Nora Vögtle
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
31
|
Yang Y, Liu MC, Li H, Yang YG, Su N, Wu YJ, Wang H. Proteomics analysis of the protective effect of canola (Brassica campestris L.) bee pollen flavonoids on the tert-butyl hydroperoxide-induced EA.hy926 cell injury model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Identification of Putative Mitochondrial Protease Substrates. Methods Mol Biol 2020. [PMID: 33230781 DOI: 10.1007/978-1-0716-0834-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondrial proteases constitute a fundamental part of the organellar protein quality control system to ensure the timely removal of damaged or obsolete proteins. The analysis of proteases is often limited to the identification of bona fide substrates that are degraded in the presence and become more abundant in the absence of the respective protease. However, proteases in numerous organisms from bacteria to humans can process specific substrates to release shortened proteins with potentially altered activities. Here, we describe an adaptation of the substrate-trapping approach, as well as the N-terminal profiling protocol Terminal Amine Isotope Labeling of Substrates (TAILS) for the identification of bona fide substrates and mitochondrial proteins that undergo complete or partial proteolysis.
Collapse
|
33
|
Friedl J, Knopp MR, Groh C, Paz E, Gould SB, Herrmann JM, Boos F. More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Mol Biol Cell 2020; 31:2657-2668. [PMID: 32997570 PMCID: PMC8734313 DOI: 10.1091/mbc.e20-08-0524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/11/2022] Open
Abstract
Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a "ticket canceller" for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Jana Friedl
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael R. Knopp
- Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Carina Groh
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Eyal Paz
- Departments of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sven B. Gould
- Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes M. Herrmann
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
34
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
35
|
Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A, Huesgen PF. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Mol Cell Proteomics 2020; 19:1330-1345. [PMID: 32467259 PMCID: PMC8014998 DOI: 10.1074/mcp.ra120.002082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.
Collapse
Affiliation(s)
- Eduard Hofsetz
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, School of Biomedical Engineering, Department of Pathology & Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Pitter F Huesgen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
36
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
37
|
Bohnenkamp AC, Kruis AJ, Mars AE, Wijffels RH, van der Oost J, Kengen SWM, Weusthuis RA. Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:65. [PMID: 32280373 PMCID: PMC7137189 DOI: 10.1186/s13068-020-01703-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ethyl acetate is a widely used industrial solvent that is currently produced by chemical conversions from fossil resources. Several yeast species are able to convert sugars to ethyl acetate under aerobic conditions. However, performing ethyl acetate synthesis anaerobically may result in enhanced production efficiency, making the process economically more viable. RESULTS We engineered an E. coli strain that is able to convert glucose to ethyl acetate as the main fermentation product under anaerobic conditions. The key enzyme of the pathway is an alcohol acetyltransferase (AAT) that catalyses the formation of ethyl acetate from acetyl-CoA and ethanol. To select a suitable AAT, the ethyl acetate-forming capacities of Atf1 from Saccharomyces cerevisiae, Eat1 from Kluyveromyces marxianus and Eat1 from Wickerhamomyces anomalus were compared. Heterologous expression of the AAT-encoding genes under control of the inducible LacI/T7 and XylS/Pm promoters allowed optimisation of their expression levels. CONCLUSION Engineering efforts on protein and fermentation level resulted in an E. coli strain that anaerobically produced 42.8 mM (3.8 g/L) ethyl acetate from glucose with an unprecedented efficiency, i.e. 0.48 C-mol/C-mol or 72% of the maximum pathway yield.
Collapse
Affiliation(s)
- Anna C. Bohnenkamp
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aleksander J. Kruis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Astrid E. Mars
- Biobased Products, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
38
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 652] [Impact Index Per Article: 130.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Kruis AJ, Bohnenkamp AC, Nap B, Nielsen J, Mars AE, Wijffels RH, van der Oost J, Kengen SWM, Weusthuis RA. From Eat to trEat: engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:76. [PMID: 32328168 PMCID: PMC7168974 DOI: 10.1186/s13068-020-01711-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/04/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Genetic engineering of microorganisms has become a common practice to establish microbial cell factories for a wide range of compounds. Ethyl acetate is an industrial solvent that is used in several applications, mainly as a biodegradable organic solvent with low toxicity. While ethyl acetate is produced by several natural yeast species, the main mechanism of production has remained elusive until the discovery of Eat1 in Wickerhamomyces anomalus. Unlike other yeast alcohol acetyl transferases (AATs), Eat1 is located in the yeast mitochondria, suggesting that the coding sequence contains a mitochondrial pre-sequence. For expression in prokaryotic hosts such as E. coli, expression of heterologous proteins with eukaryotic signal sequences may not be optimal. RESULTS Unprocessed and synthetically truncated eat1 variants of Kluyveromyces marxianus and Wickerhamomyces anomalus have been compared in vitro regarding enzyme activity and stability. While the specific activity remained unaffected, half-life improved for several truncated variants. The same variants showed better performance regarding ethyl acetate production when expressed in E. coli. CONCLUSION By analysing and predicting the N-terminal pre-sequences of different Eat1 proteins and systematically trimming them, the stability of the enzymes in vitro could be improved, leading to an overall improvement of in vivo ethyl acetate production in E. coli. Truncated variants of eat1 could therefore benefit future engineering approaches towards efficient ethyl acetate production.
Collapse
Affiliation(s)
- Aleksander J. Kruis
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anna C. Bohnenkamp
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bram Nap
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jochem Nielsen
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Astrid E. Mars
- Biobased Products, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
40
|
Saladi S, Boos F, Poglitsch M, Meyer H, Sommer F, Mühlhaus T, Schroda M, Schuldiner M, Madeo F, Herrmann JM. The NADH Dehydrogenase Nde1 Executes Cell Death after Integrating Signals from Metabolism and Proteostasis on the Mitochondrial Surface. Mol Cell 2020; 77:189-202.e6. [DOI: 10.1016/j.molcel.2019.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
|
41
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
42
|
Ghifari AS, Huang S, Murcha MW. The peptidases involved in plant mitochondrial protein import. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6005-6018. [PMID: 31738432 DOI: 10.1093/jxb/erz365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/08/2019] [Indexed: 05/17/2023]
Abstract
The endosymbiotic origin of the mitochondrion and the subsequent transfer of its genome to the host nucleus has resulted in intricate mechanisms of regulating mitochondrial biogenesis and protein content. The majority of mitochondrial proteins are nuclear encoded and synthesized in the cytosol, thus requiring specialized and dedicated machinery for the correct targeting import and sorting of its proteome. Most proteins targeted to the mitochondria utilize N-terminal targeting signals called presequences that are cleaved upon import. This cleavage is carried out by a variety of peptidases, generating free peptides that can be detrimental to organellar and cellular activity. Research over the last few decades has elucidated a range of mitochondrial peptidases that are involved in the initial removal of the targeting signal and its sequential degradation, allowing for the recovery of single amino acids. The significance of these processing pathways goes beyond presequence degradation after protein import, whereby the deletion of processing peptidases induces plant stress responses, compromises mitochondrial respiratory capability, and alters overall plant growth and development. Here, we review the multitude of plant mitochondrial peptidases that are known to be involved in protein import and processing of targeting signals to detail how their activities can affect organellar protein homeostasis and overall plant growth.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Shaobai Huang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| |
Collapse
|
43
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
44
|
Vazquez-Calvo C, Suhm T, Büttner S, Ott M. The basic machineries for mitochondrial protein quality control. Mitochondrion 2019; 50:121-131. [PMID: 31669238 DOI: 10.1016/j.mito.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
Mitochondria play pivotal roles in cellular energy metabolism, the synthesis of essential biomolecules and the regulation of cell death and aging. The proper folding, unfolding and degradation of the many proteins active within mitochondria is surveyed by the mitochondrial quality control machineries. Here, we describe the principal components of the mitochondrial quality control system and recent developments in the elucidation of the molecular mechanisms maintaining a functional mitochondrial proteome.
Collapse
Affiliation(s)
- Carmela Vazquez-Calvo
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden
| | - Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden.
| |
Collapse
|
45
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
46
|
Sharma P, Maklashina E, Cecchini G, Iverson TM. Maturation of the respiratory complex II flavoprotein. Curr Opin Struct Biol 2019; 59:38-46. [PMID: 30851631 DOI: 10.1016/j.sbi.2019.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
Respiratory complexes are complicated multi-subunit cofactor-containing machines that allow cells to harvest energy from the environment. Maturation of these complexes requires protein folding, cofactor insertion, and assembly of multiple subunits into a final, functional complex. Because the intermediate states in complex maturation are transitory, these processes are poorly understood. This review gives an overview of the process of maturation in respiratory complex II with a focus on recent structural studies on intermediates formed during covalent flavinylation of the catalytic subunit, SDHA. Covalent flavinylation has an evolutionary significance because variants of complex II enzymes with the covalent ligand removed by mutagenesis cannot oxidize succinate, but can still perform the reverse reaction and reduce fumarate. Since succinate oxidation is a key step of aerobic respiration, the covalent bond of complex II appears to be important for aerobic life.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, United States; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, United States; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
47
|
Kruis AJ, Gallone B, Jonker T, Mars AE, van Rijswijck IMH, Wolkers-Rooijackers JCM, Smid EJ, Steensels J, Verstrepen KJ, Kengen SWM, van der Oost J, Weusthuis RA. Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Front Microbiol 2018; 9:3202. [PMID: 30622529 PMCID: PMC6308380 DOI: 10.3389/fmicb.2018.03202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Esters are essential for the flavor and aroma of fermented products, and are mainly produced by alcohol acyl transferases (AATs). A recently discovered AAT family named Eat (Ethanol acetyltransferase) contributes to ethyl acetate synthesis in yeast. However, its effect on the synthesis of other esters is unknown. In this study, the role of the Eat family in ester synthesis was compared to that of other Saccharomyces cerevisiae AATs (Atf1p, Atf2p, Eht1p, and Eeb1p) in silico and in vivo. A genomic study in a collection of industrial S. cerevisiae strains showed that variation of the primary sequence of the AATs did not correlate with ester production. Fifteen members of the EAT family from nine yeast species were overexpressed in S. cerevisiae CEN.PK2-1D and were able to increase the production of acetate and propanoate esters. The role of Eat1p was then studied in more detail in S. cerevisiae CEN.PK2-1D by deleting EAT1 in various combinations with other known S. cerevisiae AATs. Between 6 and 11 esters were produced under three cultivation conditions. Contrary to our expectations, a strain where all known AATs were disrupted could still produce, e.g., ethyl acetate and isoamyl acetate. This study has expanded our understanding of ester synthesis in yeast but also showed that some unknown ester-producing mechanisms still exist.
Collapse
Affiliation(s)
- Aleksander J Kruis
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| | - Brigida Gallone
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory of Genetics and Genomics, Centre of Microbial and Plant Genetics, Department of M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| | - Timo Jonker
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Astrid E Mars
- Biobased Products, Wageningen University and Research, Wageningen, Netherlands
| | - Irma M H van Rijswijck
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory of Genetics and Genomics, Centre of Microbial and Plant Genetics, Department of M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory of Genetics and Genomics, Centre of Microbial and Plant Genetics, Department of M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
48
|
Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, Perrone M, Ferrarese M, Giorgi C, Pinotti M, Galluzzi L, Kroemer G, Pinton P. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca 2+ levels and tumor growth. EMBO J 2018; 38:embj.201899435. [PMID: 30504268 DOI: 10.15252/embj.201899435] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although mitochondria play a multifunctional role in cancer progression and Ca2+ signaling is remodeled in a wide variety of tumors, the underlying mechanisms that link mitochondrial Ca2+ homeostasis with malignant tumor formation and growth remain elusive. Here, we show that phosphorylation at the N-terminal region of the mitochondrial calcium uniporter (MCU) regulatory subunit MICU1 leads to a notable increase in the basal mitochondrial Ca2+ levels. A pool of active Akt in the mitochondria is responsible for MICU1 phosphorylation, and mitochondrion-targeted Akt strongly regulates the mitochondrial Ca2+ content. The Akt-mediated phosphorylation impairs MICU1 processing and stability, culminating in reactive oxygen species (ROS) production and tumor progression. Thus, our data reveal the crucial role of the Akt-MICU1 axis in cancer and underscore the strategic importance of the association between aberrant mitochondrial Ca2+ levels and tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mariangela Corricelli
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy .,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| |
Collapse
|
49
|
Alcohol Acetyltransferase Eat1 Is Located in Yeast Mitochondria. Appl Environ Microbiol 2018; 84:AEM.01640-18. [PMID: 30054364 DOI: 10.1128/aem.01640-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
Eat1 is a recently discovered alcohol acetyltransferase responsible for bulk ethyl acetate production in yeasts such as Wickerhamomyces anomalus and Kluyveromyces lactis These yeasts have the potential to become efficient bio-based ethyl acetate producers. However, some fundamental features of Eat1 are still not understood, which hampers the rational engineering of efficient production strains. The cellular location of Eat1 in yeast is one of these features. To reveal its location, Eat1 was fused with yeast-enhanced green fluorescent protein (yEGFP) to allow intracellular tracking. Despite the current assumption that bulk ethyl acetate production occurs in the yeast cytosol, most of Eat1 localized to the mitochondria of Kluyveromyces lactis CBS 2359 Δku80 We then compared five bulk ethyl acetate-producing yeasts in iron-limited chemostats with glucose as the carbon source. All yeasts produced ethyl acetate under these conditions. This strongly suggests that the mechanism and location of bulk ethyl acetate synthesis are similar in these yeast strains. Furthermore, an in silico analysis showed that Eat1 proteins from various yeasts were mostly predicted as mitochondrial. Altogether, it is concluded that Eat1-catalyzed ethyl acetate production occurs in yeast mitochondria. This study has added new insights into bulk ethyl acetate synthesis in yeast, which is relevant for developing efficient production strains.IMPORTANCE Ethyl acetate is a common bulk chemical that is currently produced from petrochemical sources. Several Eat1-containing yeast strains naturally produce large amounts of ethyl acetate and are potential cell factories for the production of bio-based ethyl acetate. Rational design of the underlying metabolic pathways may result in improved production strains, but it requires fundamental knowledge on the function of Eat1. A key feature is the location of Eat1 in the yeast cell. The precursors for ethyl acetate synthesis can be produced in multiple cellular compartments through different metabolic pathways. The location of Eat1 determines the relevance of each pathway, which will provide future targets for the metabolic engineering of bulk ethyl acetate production in yeast.
Collapse
|
50
|
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:79-128. [PMID: 30072094 PMCID: PMC6402875 DOI: 10.1016/bs.ircmb.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are localized throughout mitochondria and function as critical regulators of all aspects of mitochondrial biology. As such, the activities of these proteases are sensitively regulated through transcriptional and post-translational mechanisms to adapt mitochondrial function to specific cellular demands. Here, we discuss the stress-responsive mechanisms responsible for regulating mitochondrial protease activity and the implications of this regulation on mitochondrial function. Furthermore, we describe how imbalances in the activity or regulation of mitochondrial proteases induced by genetic, environmental, or aging-related factors influence mitochondria in the context of disease. Understanding the molecular mechanisms by which cells regulate mitochondrial function through alterations in protease activity provide insights into the contributions of these proteases in pathologic mitochondrial dysfunction and reveals new therapeutic opportunities to ameliorate this dysfunction in the context of diverse classes of human disease.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - T Kelly Rainbolt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|