1
|
Hough ZJ, Nasehi F, Corum DG, Norris RA, Foley AC, Muise-Helmericks RC. Akt3 links mitochondrial function to the regulation of Aurora B and mitotic fidelity. PLoS One 2025; 20:e0315751. [PMID: 40048438 PMCID: PMC11884723 DOI: 10.1371/journal.pone.0315751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/29/2024] [Indexed: 03/09/2025] Open
Abstract
Akt3 is a key regulator of mitochondrial homeostasis in the endothelium. Akt3 depletion results in mitochondrial dysfunction, decreased mitochondrial biogenesis, and decreased angiogenesis. Here we link mitochondrial homeostasis with mitotic fidelity-depletion of Akt3 results in the missegregation of chromosomes as visualized by multinucleation and micronuclei formation. We have connected Akt3 to Aurora B, a significant player in chromosome segregation. Akt3 localizes to the nucleus, where it associates with and regulates WDR12. During mitosis, WDR12 is localized to the dividing chromosomes, and its depletion results in a similar mitotic phenotype to Akt3 depletion. WDR12 associates with Aurora B, both of which are downregulated under conditions of Akt3 depletion. We used the model oxidant paraquat to induce mitochondrial dysfunction to test whether the Akt3-dependent effect on mitochondrial homeostasis is linked to mitotic function. Paraquat treatment also causes chromosome missegregation by inhibiting the expression of Akt3, WDR12, and Aurora B. The inhibition of ROS rescued both the mitotic fidelity and the expression of Akt3 and Aurora B. Akt3 directly phosphorylates the major nuclear export protein CRM-1, causing an increase in its expression, resulting in the inhibition of PGC-1 nuclear localization, the master regulator of mitochondrial biogenesis. The Akt3/Aurora B pathway is also dependent on CRM-1. CRM-1 overexpression resulted in chromosome missegregation and downregulation of Aurora B similar to that of Akt3 depletion. Akt3 null hearts at midgestation (E14.5), a stage in which proliferation is occurring, have decreased Aurora B expression, increased CRM-1 expression, decreased proliferation, and increased apoptosis. Akt3 null hearts are smaller and have a thinner compact cell layer than age-matched wild-type mice. Akt3 null tissue has dysmorphic nuclear structures, suggesting mitotic catastrophe. Our findings show that mitochondrial dysfunction induced by paraquat or Akt3 depletion results in a CRM-1-dependent disruption of Aurora B and mitotic fidelity.
Collapse
Affiliation(s)
- Zachary J. Hough
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fatemeh Nasehi
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Daniel G. Corum
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ann C. Foley
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
2
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
3
|
Funakoshi T, Imamoto N. Reconstitution of nuclear envelope subdomain formation on mitotic chromosomes in semi-intact cells. Cell Struct Funct 2024; 49:31-46. [PMID: 38839376 PMCID: PMC11926407 DOI: 10.1247/csf.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences
| |
Collapse
|
4
|
Tang X, Luo X, Wang X, Zhang Y, Xie J, Niu X, Lu X, Deng X, Xu Z, Wu F. Chrysin Inhibits TAMs-Mediated Autophagy Activation via CDK1/ULK1 Pathway and Reverses TAMs-Mediated Growth-Promoting Effects in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2024; 17:515. [PMID: 38675475 PMCID: PMC11055150 DOI: 10.3390/ph17040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of chrysin on the growth of NSCLC cells and the pro-cancer effects of tumor-associated macrophages (TAMs) and their mechanisms. We observed that M2-TAMs significantly promoted the growth and migration of NSCLC cells, while also markedly activating the autophagy level of these cells. Chrysin displayed a significant inhibitory effect on the growth of NSCLC cells, and it could also suppress the pro-cancer effects of M2-TAMs and inhibit their mediated autophagy. Furthermore, combining network pharmacology, we found that chrysin inhibited TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 signaling pathway, rather than the classical mTOR/ULK1 signaling pathway. Our study reveals a novel mechanism by which chrysin inhibits TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 pathway, thereby suppressing NSCLC growth. This discovery not only provides new therapeutic strategies for NSCLC but also opens up new avenues for further research on chrysin.
Collapse
Affiliation(s)
- Xinglinzi Tang
- Central Lab, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xiaoru Luo
- Central Lab, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xiao Wang
- Department of Basic Theory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510330, China
| | - Yi Zhang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510330, China
| | - Jiajia Xie
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xuan Niu
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xiaopeng Lu
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xi Deng
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Zheng Xu
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Fanwei Wu
- Department of Classic Traditional Chinese Medicine, The Seventh Clinical Medicial College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| |
Collapse
|
5
|
Ivanovska IL, Tobin MP, Bai T, Dooling LJ, Discher DE. Small lipid droplets are rigid enough to indent a nucleus, dilute the lamina, and cause rupture. J Cell Biol 2023; 222:e202208123. [PMID: 37212777 PMCID: PMC10202833 DOI: 10.1083/jcb.202208123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
The nucleus in many cell types is a stiff organelle, but fat-filled lipid droplets (FDs) in cytoplasm are seen to indent and displace the nucleus. FDs are phase-separated liquids with a poorly understood interfacial tension γ that determines how FDs interact with other organelles. Here, micron-sized FDs remain spherical as they indent peri-nuclear actomyosin and the nucleus, while causing local dilution of Lamin-B1 independent of Lamin-A,C and sometimes triggering nuclear rupture. Focal accumulation of the cytosolic DNA sensor cGAS at the rupture site is accompanied by sustained mislocalization of DNA repair factors to cytoplasm, increased DNA damage, and delayed cell cycle. Macrophages show FDs and engulfed rigid beads cause similar indentation dilution. Spherical shapes of small FDs indicate a high γ, which we measure for FDs mechanically isolated from fresh adipose tissue as ∼40 mN/m. This value is far higher than that of protein condensates, but typical of oils in water and sufficiently rigid to perturb cell structures including nuclei.
Collapse
Affiliation(s)
- Irena L. Ivanovska
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Tobin
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyi Bai
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence J. Dooling
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
7
|
van der Zanden SY, Jongsma MLM, Neefjes ACM, Berlin I, Neefjes J. Maintaining soluble protein homeostasis between nuclear and cytoplasmic compartments across mitosis. Trends Cell Biol 2023; 33:18-29. [PMID: 35778326 DOI: 10.1016/j.tcb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022]
Abstract
The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Anna C M Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Snyers L, Löhnert R, Weipoltshammer K, Schöfer C. Emerin prevents BAF-mediated aggregation of lamin A on chromosomes in telophase to allow nuclear membrane expansion and nuclear lamina formation. Mol Biol Cell 2022; 33:ar137. [PMID: 36200863 PMCID: PMC9727812 DOI: 10.1091/mbc.e22-01-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several studies have suggested a role for the LEM-domain protein emerin and the DNA binding factor BAF in nuclear envelope reformation after mitosis, but the exact molecular mechanisms are not understood. Using HeLa cells deficient for emerin or both emerin and lamin A, we show that emerin deficiency induces abnormal aggregation of lamin A at the nuclear periphery in telophase. As a result, nuclear membrane expansion is impaired and BAF accumulates at the core region, the middle part of telophase nuclei. Aggregates do not form when lamin A carries the mutation R435C in the immunoglobulin fold known to prevent interaction of lamin A with BAF suggesting that aggregation is caused by a stabilized association of lamin A with BAF bound to chromosomal DNA. Reintroduction of emerin in the cells prevents formation of lamin A clusters and BAF accumulation at the core region. Therefore emerin is required for the expansion of the nuclear membrane at the core region to enclose the nucleus and for the rapid reformation of the nuclear lamina based on lamin A/C in telophase. Finally, we show that LEM-domain and lumenal domain are required for the targeting of emerin to exert its function at the core region.
Collapse
Affiliation(s)
- L. Snyers
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria,*Address correspondence to: L. Snyers ()
| | - R. Löhnert
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - K. Weipoltshammer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - C. Schöfer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
9
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res 2022; 824:111776. [PMID: 35247630 DOI: 10.1016/j.mrfmmm.2022.111776] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.
Collapse
|
11
|
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: An integrated view on early spindle assembly. Semin Cell Dev Biol 2021; 117:42-51. [PMID: 33726956 DOI: 10.1016/j.semcdb.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022]
Abstract
Accurate chromosome segregation requires a complete restructuring of cellular organization. Microtubules remodel to assemble a mitotic spindle and the actin cytoskeleton rearranges to form a stiff actomyosin cortex. These cytoplasmic events must be spatially and temporally coordinated with mitotic chromosome condensation and nuclear envelope permeabilization, in order to ensure mitotic timing and fidelity. Here, we discuss the main cytoskeletal and nuclear events that occur during mitotic entry in proliferating animal cells, focusing on their coordinated contribution for early mitotic spindle assembly. We will also explore recent progress in understanding their regulatory biochemical and mechanical pathways.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; BiotechHealth PhD Programe, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Christodoulou A, Maimaris G, Makrigiorgi A, Charidemou E, Lüchtenborg C, Ververis A, Georgiou R, Lederer CW, Haffner C, Brügger B, Santama N. TMEM147 interacts with lamin B receptor, regulates its localization and levels, and affects cholesterol homeostasis. J Cell Sci 2020; 133:jcs245357. [PMID: 32694168 DOI: 10.1242/jcs.245357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023] Open
Abstract
The structurally and functionally complex endoplasmic reticulum (ER) hosts critical processes including lipid synthesis. Here, we focus on the functional characterization of transmembrane protein TMEM147, and report that it localizes at the ER and nuclear envelope in HeLa cells. Silencing of TMEM147 drastically reduces the level of lamin B receptor (LBR) at the inner nuclear membrane and results in mistargeting of LBR to the ER. LBR possesses a modular structure and corresponding bifunctionality, acting in heterochromatin organization via its N-terminus and in cholesterol biosynthesis via its sterol-reductase C-terminal domain. We show that TMEM147 physically interacts with LBR, and that the C-terminus of LBR is essential for their functional interaction. We find that TMEM147 also physically interacts with the key sterol reductase DHCR7, which is involved in cholesterol biosynthesis. Similar to what was seen for LBR, TMEM147 downregulation results in a sharp decline of DHCR protein levels and co-ordinate transcriptional decreases of LBR and DHCR7 expression. Consistent with this, lipidomic analysis upon TMEM147 silencing identified changes in cellular cholesterol levels, cholesteryl ester levels and profile, and in cellular cholesterol uptake, raising the possibility that TMEM147 is an important new regulator of cholesterol homeostasis in cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Andri Makrigiorgi
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Antonis Ververis
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Renos Georgiou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia and Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Christof Haffner
- Institute of Stroke and Dementia Research, University of Munich, 81377 Munich, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|
13
|
VPS72/YL1-Mediated H2A.Z Deposition Is Required for Nuclear Reassembly after Mitosis. Cells 2020; 9:cells9071702. [PMID: 32708675 PMCID: PMC7408173 DOI: 10.3390/cells9071702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.
Collapse
|
14
|
Wei W, Hu Z, Jia Y, Gu T, Zhao W, Ji S. Characterization of lamin B receptor of Sf9 cells and its fate during Autographa californica nucleopolyhedrovirus infection. Cytotechnology 2020; 72:315-325. [PMID: 32246222 DOI: 10.1007/s10616-020-00380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/17/2020] [Indexed: 11/29/2022] Open
Abstract
Baculovirus nucleocapsids egress from the nuclear membrane during infection. However, details of alternation of nuclear membrane structure during baculovirus egress are unknown. In this study, we examined the changes of lamin B receptor (LBR), a main inner nuclear membrane component, during Autographa californica nucleopolyhedrovirus (AcMNPV) infection. Firstly, the open reading frame (Orf) of Sf9 lbr was cloned by reverse transcription PCR, and the distribution of LBR in Sf9 cells were observed by fusing LBR with the red fluorescence protein mcherry. Besides, the amount of endogenous LBR during AcMNPV infection was detected by western blotting. Moreover, the distribution of LBR after AcMNPV infection was observed under the confocal fluorescence microscopy. Furthermore, the effects of protein kinase C (PKC) inhibitor on stability of LBR and release of budded virus (BVs) were determined. The results showed that Sf9 lbr contains an Orf of 2040 nucleotides (NTs), which encodes a predicted protein of 679 amino acids (AAs). Fluorescence microscopy showed that LBR is localized to the nuclear membrane. Western blotting result showed that the amount of endogenous LBR is significantly reduced after AcMNPV infection. Transfection and infection assay demonstrated that the fluorescence of LBR nearly completely disappeared after viral infection. PKC inhibitor can suppress the degradation of LBR induced by AcMNPV, resulting in the reduction of viral titer of progeny viruses. The electron microscopy analysis demonstrated that PKC inhibitor did not influence virion entry, uncoating, and assembly, but may partially protect the nuclear membrane from disruption by AcMNPV. Taken together, AcMNPV infection can distort the expression of LBR, which may promote the egress of nucleocapsids.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China. .,Henan International Joint Laboratory for Nuclear Protein in Gene Regulation, Henan University, Kaifeng, 475004, Henan, China. .,Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Zichao Hu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - TingXuan Gu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Wei Zhao
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
15
|
Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ. An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis. Mol Cell 2020; 77:228-240.e7. [PMID: 31733992 PMCID: PMC6964153 DOI: 10.1016/j.molcel.2019.10.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/19/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
Collapse
Affiliation(s)
- Richard I Odle
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon A Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - David Oxley
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Rebecca Gilley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Oliver Florey
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nicholas T Ktistakis
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
16
|
Chen RH. Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis. Mol Biol Cell 2019; 30:1578-1586. [PMID: 31017826 PMCID: PMC6727638 DOI: 10.1091/mbc.e19-02-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitosis in metazoans involves detachment of chromosomes from the nuclear envelope (NE) and NE breakdown, whereas yeasts maintain the nuclear structure throughout mitosis. It remains unknown how chromosome attachment to the NE might affect chromosome movement in yeast. By using a rapamycin-induced dimerization system to tether a specific locus of the chromosome to the NE, I found that the tethering delays the separation and causes missegregation of the region distal to the tethered site. The phenotypes are exacerbated by mutations in kinetochore components and Aurora B kinase Ipl1. The chromosome region proximal to the centromere is less affected by the tether, but it exhibits excessive oscillation before segregation. Furthermore, the tether impacts full extension of the mitotic spindle, causing abrupt shrinkage or bending of the spindle in shortened anaphase. The study supports detachment of chromosomes from the NE being required for faithful chromosome segregation in yeast and segregation of tethered chromosomes being dependent on a fully functional mitotic apparatus.
Collapse
Affiliation(s)
- Rey-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
17
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
18
|
Dubińska-Magiera M, Kozioł K, Machowska M, Piekarowicz K, Filipczak D, Rzepecki R. Emerin Is Required for Proper Nucleus Reassembly after Mitosis: Implications for New Pathogenetic Mechanisms for Laminopathies Detected in EDMD1 Patients. Cells 2019; 8:E240. [PMID: 30871242 PMCID: PMC6468536 DOI: 10.3390/cells8030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), β-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Katarzyna Kozioł
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Daria Filipczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
19
|
Champion L, Pawar S, Luithle N, Ungricht R, Kutay U. Dissociation of membrane-chromatin contacts is required for proper chromosome segregation in mitosis. Mol Biol Cell 2018; 30:427-440. [PMID: 30586323 PMCID: PMC6594442 DOI: 10.1091/mbc.e18-10-0609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear envelope (NE) aids in organizing the interphase genome by tethering chromatin to the nuclear periphery. During mitotic entry, NE–chromatin contacts are broken. Here, we report on the consequences of impaired NE removal from chromatin for cell division of human cells. Using a membrane–chromatin tether that cannot be dissociated when cells enter mitosis, we show that a failure in breaking membrane–chromatin interactions impairs mitotic chromatin organization, chromosome segregation and cytokinesis, and induces an aberrant NE morphology in postmitotic cells. In contrast, chromosome segregation and cell division proceed successfully when membrane attachment to chromatin is induced during metaphase, after chromosomes have been singularized and aligned at the metaphase plate. These results indicate that the separation of membranes and chromatin is critical during prometaphase to allow for proper chromosome compaction and segregation. We propose that one cause of these defects is the multivalency of membrane–chromatin interactions.
Collapse
Affiliation(s)
- Lysie Champion
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Sumit Pawar
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Naemi Luithle
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Rosemarie Ungricht
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
20
|
Smet-Nocca C, Page A, Cantrelle FX, Nikolakaki E, Landrieu I, Giannakouros T. The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation. Biochim Biophys Acta Gen Subj 2018; 1862:825-835. [PMID: 29337275 DOI: 10.1016/j.bbagen.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/24/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-β-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-β-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. GENERAL SIGNIFICANCE Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| | - Adeline Page
- Proteomics Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - François-Xavier Cantrelle
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Isabelle Landrieu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Lukášová E, Kovařík A, Kozubek S. Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence. Cells 2018; 7:cells7020011. [PMID: 29415520 PMCID: PMC5850099 DOI: 10.3390/cells7020011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/28/2023] Open
Abstract
Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells. It is replaced by lamin A/C with specific lamin A/C binding proteins at the beginning of cell differentiation and in differentiated cells. Our functional experiments in cancer cell lines show that heterochromatin in cancer cells is tethered to the INM by LBR, which is downregulated together with lamin B1 at the onset of cell transition to senescence. The downregulation of these proteins in senescent cells leads to the detachment of centromeric repetitive sequences from INM, their relocation to the nucleoplasm, and distension. In cells, the expression of LBR and LB1 is highly coordinated as evidenced by the reduction of both proteins in LBR shRNA lines. The loss of the constitutive heterochromatin structure containing LADs results in changes in chromatin architecture and genome function and can be the reason for the permanent loss of cell proliferation in senescence.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| |
Collapse
|
22
|
Lee SH, Hadipour-Lakmehsari S, Miyake T, Gramolini AO. Three-dimensional imaging reveals endo(sarco)plasmic reticulum-containing invaginations within the nucleoplasm of muscle. Am J Physiol Cell Physiol 2017; 314:C257-C267. [PMID: 29167149 DOI: 10.1152/ajpcell.00141.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian nucleus has invaginations from the cytoplasm, termed nucleoplasmic reticulum (NR). With increased resolution of cellular imaging, progress has been made in understanding the formation and function of NR. In fact, nucleoplasmic Ca2+ homeostasis has been implicated in the regulation of gene expression, DNA repair, and cell death. However, the majority of studies focus on cross-sectional or single-plane analyses of NR invaginations, providing an incomplete assessment of its distribution and content. Here, we provided advanced imaging and three-dimensional reconstructive analyses characterizing the molecular constituents of nuclear invaginations in the nucleoplasm in HEK293 cells, murine C2C12 muscle cells, and cardiac myocytes. We demonstrated the presence of critical Ca2+ regulatory channels, including sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a), stromal interaction molecule 1 (STIM1), and Ca2+ release-activated Ca2+ channel protein 1 (ORAI1), in the nucleoplasm in isolated primary mouse cardiomyocytes. We have shown for the first time the presence of STIM1 and ORAI1 in the nucleoplasm, suggesting the presence of store-operated calcium entry (SOCE) mechanism in nucleoplasmic Ca2+ regulation. These results show that nucleoplasmic invaginations contain continuous endoplasmic reticulum components, mitochondria, and intact nuclear membranes, highlighting the extremely detailed and complex nature of this organellar structure.
Collapse
Affiliation(s)
- Shin-Haw Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research , Toronto, Ontario , Canada.,Faculty of Medicine, Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Sina Hadipour-Lakmehsari
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research , Toronto, Ontario , Canada.,Faculty of Medicine, Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Tetsuaki Miyake
- Faculty of Medicine, Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research , Toronto, Ontario , Canada.,Faculty of Medicine, Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
23
|
Golubtsova NN, Filippov FN, Gunin AG. Age-Related Changes in the Expression of Lamin B Receptors in Human Dermal Fibroblasts. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Nikolakaki E, Mylonis I, Giannakouros T. Lamin B Receptor: Interplay between Structure, Function and Localization. Cells 2017; 6:cells6030028. [PMID: 28858257 PMCID: PMC5617974 DOI: 10.3390/cells6030028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3 BIOPOLIS, Larissa 41500, Greece.
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| |
Collapse
|
25
|
Abstract
As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.
Collapse
|
26
|
Cellular Reorganization during Mitotic Entry. Trends Cell Biol 2017; 27:26-41. [DOI: 10.1016/j.tcb.2016.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
27
|
Mimura Y, Takagi M, Clever M, Imamoto N. ELYS regulates the localization of LBR by modulating its phosphorylation state. J Cell Sci 2016; 129:4200-4212. [PMID: 27802161 PMCID: PMC5117198 DOI: 10.1242/jcs.190678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
Lamin B receptor (LBR), an inner nuclear membrane (INM) protein, contributes to the functional integrity of the nucleus by tethering heterochromatin to the nuclear envelope. We have previously reported that the depletion of embryonic large molecule derived from yolk sac (ELYS; also known as AHCTF1), a component of the nuclear pore complex, from cells perturbs the localization of LBR to the INM, but little is known about the underlying molecular mechanism. In this study, we found that the depletion of ELYS promoted LBR phosphorylation at the residues known to be phosphorylated by cyclin-dependent kinase (CDK) and serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2, respectively). These phosphorylation events were most likely to be counter-balanced by protein phosphatase 1 (PP1), and the depletion of PP1 from cells consistently caused the mislocalization of LBR. These observations point to a new mechanism regulating the localization of LBR, which is governed by an ELYS-mediated phosphorylation network. This phosphorylation-dependent coordination between INM proteins and the nuclear pore complex might be important for the integrity of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Mimura
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| | | | - Michaela Clever
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, Riken, Saitama 351-0198, Japan
| |
Collapse
|
28
|
Schellhaus AK, De Magistris P, Antonin W. Nuclear Reformation at the End of Mitosis. J Mol Biol 2015; 428:1962-85. [PMID: 26423234 DOI: 10.1016/j.jmb.2015.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
Cells have developed highly sophisticated ways to accurately pass on their genetic information to the daughter cells. In animal cells, which undergo open mitosis, the nuclear envelope breaks down at the beginning of mitosis and the chromatin massively condenses to be captured and segregated by the mitotic spindle. These events have to be reverted in order to allow the reformation of a nucleus competent for DNA transcription and replication, as well as all other nuclear processes occurring in interphase. Here, we summarize our current knowledge of how, in animal cells, the highly compacted mitotic chromosomes are decondensed at the end of mitosis and how a nuclear envelope, including functional nuclear pore complexes, reassembles around these decondensing chromosomes.
Collapse
Affiliation(s)
| | - Paola De Magistris
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes. PLoS One 2015; 10:e0127271. [PMID: 25946333 PMCID: PMC4422613 DOI: 10.1371/journal.pone.0127271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 04/13/2015] [Indexed: 12/04/2022] Open
Abstract
The inner nuclear membrane (INM) protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs) and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.
Collapse
|
30
|
Poleshko A, Mansfield KM, Burlingame CC, Andrake MD, Shah NR, Katz RA. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep 2015; 5:292-301. [PMID: 24209742 DOI: 10.1016/j.celrep.2013.09.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/21/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022] Open
Abstract
The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.
Collapse
|
31
|
Affiliation(s)
- Helder Maiato
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| | - Olga Afonso
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| | - Irina Matos
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| |
Collapse
|
32
|
Chen WT, Hsieh YF, Huang YJ, Lin CC, Lin YT, Liu YC, Lien CC, Cheng IHJ. G206D Mutation of Presenilin-1 Reduces Pen2 Interaction, Increases Aβ42/Aβ40 Ratio and Elevates ER Ca(2+) Accumulation. Mol Neurobiol 2014; 52:1835-1849. [PMID: 25394380 DOI: 10.1007/s12035-014-8969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/28/2014] [Indexed: 12/23/2022]
Abstract
Early-onset familial Alzheimer's disease (AD) is most commonly associated with the mutations in presenilin-1 (PS1). PS1 is the catalytic component of the γ-secretase complex, which cleaves amyloid precursor protein to produce amyloid-β (Aβ), the major cause of AD. Presenilin enhancer 2 (Pen2) is critical for activating γ-secretase and exporting PS1 from endoplasmic reticulum (ER). Among all the familial AD-linked PS1 mutations, mutations at the G206 amino acid are the most adjacent position to the Pen2 binding site. Here, we characterized the effect of a familial AD-linked PS1 G206D mutation on the PS1-Pen2 interaction and the accompanied alteration in γ-secretase-dependent and -independent functions. We found that the G206D mutation reduced PS1-Pen2 interaction, but did not abolish γ-secretase formation and PS1 endoproteolysis. For γ-secretase-dependent function, the G206D mutation increased Aβ42 production but not Notch cleavage. For γ-secretase-independent function, this mutation disrupted the ER calcium homeostasis but not lysosomal calcium homeostasis and autophagosome maturation. Impaired ER calcium homeostasis may due to the reduced mutant PS1 level in the ER. Although this mutation did not alter the cell survival under stress, both increased Aβ42 ratio and disturbed ER calcium regulation could be the mechanisms underlying the pathogenesis of the familial AD-linked PS1 G206D mutation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fang Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Jing Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Che-Ching Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Tung Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chao Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan. .,Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Brain Science, School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
33
|
Wong X, Luperchio TR, Reddy KL. NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Curr Opin Cell Biol 2014; 28:105-20. [PMID: 24886773 DOI: 10.1016/j.ceb.2014.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/21/2014] [Accepted: 04/11/2014] [Indexed: 01/13/2023]
Abstract
In recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology. While further studies are needed, it is clear that the differential nuclear envelope proteome contributes to cell-type specific nuclear identity and functions. This review discusses the importance of proteome diversity at the nuclear periphery and highlights the putative roles of NET proteins, with a focus on nuclear architecture.
Collapse
Affiliation(s)
- Xianrong Wong
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States
| | - Teresa R Luperchio
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States
| | - Karen L Reddy
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States.
| |
Collapse
|
34
|
Alvarez-Fernández M, Malumbres M. Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry. Bioessays 2014; 36:757-65. [PMID: 24889070 DOI: 10.1002/bies.201400040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosome segregation requires the ordered separation of the newly replicated chromosomes between the two daughter cells. In most cells, this requires nuclear envelope (NE) disassembly during mitotic entry and its reformation at mitotic exit. Nuclear envelope breakdown (NEB) results in the mixture of two cellular compartments. This process is controlled through phosphorylation of multiple targets by cyclin-dependent kinase 1 (Cdk1)-cyclin B complexes as well as other mitotic enzymes. Experimental evidence also suggests that nucleo-cytoplasmic transport of critical cell cycle regulators such as Cdk1-cyclin B complexes or Greatwall, a kinase responsible for the inactivation of PP2A phosphatases, plays a major role in maintaining the boost of mitotic phosphorylation thus preventing the potential mitotic collapse derived from NEB. These data suggest the relevance of nucleo-cytoplasmic transport not only to communicate cytoplasmic and nuclear compartments during interphase, but also to prepare cells for the mixture of these two compartments during mitosis.
Collapse
|
35
|
Abstract
There are many ways that the nuclear envelope can influence the cell cycle. In addition to roles of lamins in regulating the master cell cycle regulator pRb and nuclear envelope breakdown in mitosis, many other nuclear envelope proteins influence the cell cycle through regulatory or structural functions. Of particular note among these are the nuclear envelope transmembrane proteins (NETs) that appear to influence cell cycle regulation through multiple separate mechanisms. Some NETs and other nuclear envelope proteins accumulate on the mitotic spindle, suggesting functional or structural roles in the cell cycle. In interphase exogenous overexpression of some NETs promotes an increase in G1 populations, while others promote an increase in G2/M populations, sometimes associated with the induction of senescence. Intriguingly, most of the NETs linked to the cell cycle are highly restricted in their tissue expression; thus, their misregulation in cancer could contribute to the many tissue-specific types of cancer.
Collapse
|
36
|
de Las Heras JI, Meinke P, Batrakou DG, Srsen V, Zuleger N, Kerr AR, Schirmer EC. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus 2013; 4:460-77. [PMID: 24213376 PMCID: PMC3925691 DOI: 10.4161/nucl.26872] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.
Collapse
Affiliation(s)
- Jose I de Las Heras
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Peter Meinke
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Alastair Rw Kerr
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology; University of Edinburgh; Edinburgh, UK
| |
Collapse
|
37
|
Clever M, Mimura Y, Funakoshi T, Imamoto N. Regulation and coordination of nuclear envelope and nuclear pore complex assembly. Nucleus 2013; 4:105-14. [PMID: 23412657 PMCID: PMC3621742 DOI: 10.4161/nucl.23796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In metazoans with “open” mitosis, cells undergo structural changes involving the complete disassembly of the nuclear envelope (NE). In post-mitosis, the dividing cell faces the difficulty to reassemble NE structures in a highly regulated fashion around separated chromosomes. The de novo formation of nuclear pore complexes (NPCs), which are gateways between the cytoplasm and nucleoplasm across the nuclear membrane, is an archetype of macromolecular assembly and is therefore of special interest. The reformation of a functional NE further involves the reassembly and organization of other NE components, the nuclear membrane and NE proteins, around chromosomes in late mitosis.
Here, we discuss the function of NE components, such as lamins and INM proteins, in NE reformation and highlight recent results on coordination of NPC and NE assembly.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute 2-1 Hirosawa, Wako, Japan
| | | | | | | |
Collapse
|
38
|
Varicella-zoster virus ORF12 protein activates the phosphatidylinositol 3-kinase/Akt pathway to regulate cell cycle progression. J Virol 2012. [PMID: 23192871 DOI: 10.1128/jvi.02395-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and alters cell cycle progression, but the viral protein(s) responsible for these activities is unknown. We previously reported that the VZV open reading frame 12 (ORF12) protein triggers phosphorylation of ERK. Here, we demonstrate that the VZV ORF12 protein also activates the PI3K/Akt pathway to regulate cell cycle progression. Transfection of cells with a plasmid expressing the ORF12 protein induced phosphorylation of Akt, which was dependent on PI3K. Infection of cells with wild-type VZV triggered phosphorylation of Akt, while infection with an ORF12 deletion mutant induced less phosphorylated Akt. The activation of Akt by ORF12 protein was associated with its binding to the p85 subunit of PI3K. Infection of cells with wild-type VZV resulted in increased levels of cyclin B1, cyclin D3, and phosphorylated glycogen synthase kinase 3β (GSK-3β), while infection with the ORF12 deletion mutant induced lower levels of these proteins. Wild-type VZV infection reduced the G(1) phase cell population and increased the M phase cell population, while infection with the ORF12 deletion mutant had a reduced effect on the G(1) and M phase populations. Inhibition of Akt activity with LY294002 reduced the G(1) and M phase differences observed in cells infected with wild-type and ORF12 mutant viruses. In conclusion, we have found that the VZV ORF12 protein activates the PI3K/Akt pathway to regulate cell cycle progression. Since VZV replicates in both dividing (e.g., keratinocytes) and nondividing (neurons) cells, the ability of the VZV ORF12 protein to regulate the cell cycle is likely important for VZV replication in various cell types in the body.
Collapse
|
39
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
40
|
Abstract
Temporal and spatial organization of the nucleus is critical for the control of transcription, mRNA processing and the assembly of ribosomes. This includes the occupancy of specific territories by mammalian chromosomes, the presence of subnuclear compartments such as the nucleolus and Cajal bodies and the division of chromatin between active and inactive states. These latter are commonly associated with the location of DNA within euchromatin and heterochromatin respectively; critically these distinctions arise through modifications to chromatin-associated proteins, including histones, as well as the preferential localization of heterochromatin at the nuclear periphery. Most research on nuclear organization has focused on metazoa and fungi; however, recent technical advances have made more divergent eukaryotes accessible to study, with some surprising results. For example, the organization of heterochromatin is mediated in metazoan nuclei in large part by lamins, the prototypical intermediate filament proteins. Despite the presence of heterochromatin, detected both biochemically and by EM in most eukaryotic organisms, until this year lamins were thought to be restricted to metazoan taxa, and the proteins comprising the lamina in other lineages were unknown. Recent work indicates the presence of lamin orthologs in amoeba, while trypanosomatids possess a large coiled-coil protein, NUP-1, that performs functions analogous to lamins. These data indicate that the presence of a nuclear lamina is substantially more widespread than previously thought, with major implications for the evolution of eukaryotic gene expression mechanisms. We discuss these and other recent findings on the organization of nuclei in diverse organisms, and the implications of these findings for the evolutionary origin of eukaryotes.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology; University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
41
|
Clever M, Funakoshi T, Mimura Y, Takagi M, Imamoto N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells. Nucleus 2012; 3:187-99. [PMID: 22555603 PMCID: PMC3383574 DOI: 10.4161/nucl.19595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are initially formed as core or noncore regions on mitotic chromosomes, respectively. Although postmitotic NE formation has been extensively studied, little is known about the coordination of NPC and NE assembly. Here, we report that the nucleoporin ELYS/Mel28, which is crucial for postmitotic NPC formation, is essential for recruiting the lamin B receptor (LBR) to the chromosomal noncore region. Furthermore, ELYS/Mel28 is responsible for focusing of A-type lamin-binding proteins like emerin, Lap2α and the barrier-to-autointegration factor (BAF) at the chromosomal core region. ELYS/Mel28 biochemically interacts with the LBR in a phosphorylation-dependent manner. Recruitment of the LBR depends on the nucleoporin Nup107, which interacts with ELYS/Mel28 but not on nucleoporin Pom121, suggesting that the specific molecular interactions with ELYS/Mel28 are involved in the NE assembly at the noncore region. The depletion of the LBR affected neither the behavior of emerin nor Lap2α indicating that the recruitment of the LBR to mitotic chromosomes is not involved in formation of the core region. The depletion of ELYS/Mel28 also accelerates the entry into cytokinesis after recruitment of emerin to chromosomes. Our data show that ELYS/Mel28 plays a role in NE subdomain formation in late mitosis.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Tomoko Funakoshi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
- Live-Cell Molecular Imaging Research Team; Riken Advanced Science Institute; Saitama, Japan
| | - Yasuhiro Mimura
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| |
Collapse
|