1
|
Itoh Y. Vesicle transport of matrix metalloproteinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:361-380. [PMID: 38960480 DOI: 10.1016/bs.apcsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular organisms consist of cells and extracellular matrix (ECM). ECM creates a cellular microenvironment, and cells locally degrade the ECM according to their cellular activity. A major group of enzymes that modify ECM belongs to matrix metalloproteinases (MMPs) and play major roles in various pathophysiological events. ECM degradation by MMPs does not occur in all cellular surroundings but only where it is necessary, and cells achieve this by directionally secreting these proteolytic enzymes. Recent studies have indicated that such enzyme secretion is achieved by targeted vesicle transport along the microtubules, and several kinesin superfamily proteins (KIFs) have been identified as responsible motor proteins involved in the processes. This chapter discusses recent findings of the vesicle transport of MMPs and their roles.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
3
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
4
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
5
|
Jimi E, Honda H, Nakamura I. The unique function of p130Cas in regulating the bone metabolism. Pharmacol Ther 2021; 230:107965. [PMID: 34391790 DOI: 10.1016/j.pharmthera.2021.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
p130 Crk-associated substrate (Cas) functions as an adapter protein and plays important roles in certain cell functions, such as cell proliferation, spreading, migration, and invasion. Furthermore, it has recently been reported to have a new function as a mechanosensor. Since bone is a tissue that is constantly under gravity, it is exposed to mechanical stress. Mechanical unloading, such as in a microgravity environment in space or during bed rest, leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. Osteoclasts are multinucleated bone-resorbing giant cells that recognize bone and then form a ruffled border in the resorption lacuna. p130Cas is a molecule located downstream of c-Src that is important for the formation of a ruffled border in osteoclasts. Indeed, osteoclast-specific p130Cas-deficient mice exhibit osteopetrosis due to osteoclast dysfunction, similar to c-Src-deficient mice. Osteoblasts subjected to mechanical stress induce both the phosphorylation of p130Cas and osteoblast differentiation. In osteocytes, mechanical stress regulates bone mass by shuttling p130Cas between the cytoplasm and nucleus. Oral squamous cell carcinoma (OSCC) cells express p130Cas more strongly than epithelial cells in normal tissues. The knockdown of p130Cas in OSCC cells suppressed the cell growth, the expression of receptor activator of NF-κB ligand, which induces osteoclast formation, and bone invasion by OSCC. Taken together, these findings suggest that p130Cas might be a novel therapeutic target molecule in bone diseases, such as osteoporosis, rheumatoid arthritis, bone loss due to bed rest, and bone invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| |
Collapse
|
6
|
Interaction Network Provides Clues on the Role of BCAR1 in Cellular Response to Changes in Gravity. COMPUTATION 2021. [DOI: 10.3390/computation9080081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
When culturing cells in space or under altered gravity conditions on Earth to investigate the impact of gravity, their adhesion and organoid formation capabilities change. In search of a target where the alteration of gravity force could have this impact, we investigated p130cas/BCAR1 and its interactions more thoroughly, particularly as its activity is sensitive to applied forces. This protein is well characterized regarding its role in growth stimulation and adhesion processes. To better understand BCAR1′s force-dependent scaffolding of other proteins, we studied its interactions with proteins we had detected by proteome analyses of MCF-7 breast cancer and FTC-133 thyroid cancer cells, which are both sensitive to exposure to microgravity and express BCAR1. Using linked open data resources and our experiments, we collected comprehensive information to establish a semantic knowledgebase and analyzed identified proteins belonging to signaling pathways and their networks. The results show that the force-dependent phosphorylation and scaffolding of BCAR1 influence the structure, function, and degradation of intracellular proteins as well as the growth, adhesion and apoptosis of cells similarly to exposure of whole cells to altered gravity. As BCAR1 evidently plays a significant role in cell responses to gravity changes, this study reveals a clear path to future research performing phosphorylation experiments on BCAR1.
Collapse
|
7
|
Koudelková L, Brábek J, Rosel D. Src kinase: Key effector in mechanosignalling. Int J Biochem Cell Biol 2020; 131:105908. [PMID: 33359015 DOI: 10.1016/j.biocel.2020.105908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.
Collapse
Affiliation(s)
- Lenka Koudelková
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic.
| |
Collapse
|
8
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
9
|
Koudelková L, Pataki AC, Tolde O, Pavlik V, Nobis M, Gemperle J, Anderson K, Brábek J, Rosel D. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem Biol 2019; 26:255-268.e4. [DOI: 10.1016/j.chembiol.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
10
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
11
|
NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 2018; 9:25503-25516. [PMID: 29876004 PMCID: PMC5986644 DOI: 10.18632/oncotarget.25347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a component of the metastatic signatures of melanoma, breast cancer, glioblastoma, lung cancer and head and neck squamous cell carcinoma (HNSCC). Here we tested the efficacy of NEDD9's domains in stimulating matrix metalloproteinase (MMP) secretion and invadopodia formation in cells stably expressing various NEDD9 mutants. Replacement of the 13 YxxP motif substrate domain (SD) tyrosines and the C-terminal Y629 with phenylalanines (F14NEDD9) eliminated tyrosine phosphorylation, MMP9 secretion and loss of invadopodia formation. Mutation of the N-terminal SH3 domain Y12 to glutamic acid (Y12ENEDD9) or phenylalanine (Y12FNEDD9) reduced MMP9 secretion and inhibited invadopodia formation. SH3 domain deletion (∆SH3NEDD9) resulted in the loss of MMP9 secretion and a lack of invadopodia formation. The SH3–SD domain (SSNEDD9) construct exhibited tyrosine phosphorylation and stimulated MMP9 secretion, as did ∆CTNEDD9 which lacked the C-terminus (∆C-terminal; ∆CT). E13NEDD9 expression blocked MMP9 secretion and invadopodia formation. MICAL1 (molecule interacting with Cas-L1) silencing with a short hairpin RNA reduced MMP9 secretion, vimentin and E-cadherin levels while increasing N-cadherin and Rab6 levels, consistent with reduced invasive behavior. These findings indicate that NEDD9 SD phosphorylation and SH3 domain interactions are necessary for increasing MMP9 secretion and invadopodia formation.
Collapse
|
12
|
Gemperle J, Hexnerová R, Lepšík M, Tesina P, Dibus M, Novotný M, Brábek J, Veverka V, Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci Rep 2017; 7:8057. [PMID: 28808245 PMCID: PMC5556061 DOI: 10.1038/s41598-017-08303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic.
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic.
| |
Collapse
|
13
|
The role of focal adhesion anchoring domains of CAS in mechanotransduction. Sci Rep 2017; 7:46233. [PMID: 28406229 PMCID: PMC5390273 DOI: 10.1038/srep46233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/14/2017] [Indexed: 11/08/2022] Open
Abstract
CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.
Collapse
|
14
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Blangy A. Tensins are versatile regulators of Rho GTPase signalling and cell adhesion. Biol Cell 2016; 109:115-126. [DOI: 10.1111/boc.201600053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anne Blangy
- CNRS; UMR 5237 CRBM; Montpellier France
- Montpellier University; Montpellier France
| |
Collapse
|
16
|
Teckchandani A, Cooper JA. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells. eLife 2016; 5. [PMID: 27656905 PMCID: PMC5092051 DOI: 10.7554/elife.17440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI:http://dx.doi.org/10.7554/eLife.17440.001 Animal cells can move in the body, for example to heal a wound, by protruding a leading edge forwards, attaching it to the surroundings and then pulling against these new attachments while disassembling the older ones. Mechanical forces regulate the assembly and disassembly of these attachments, known as focal adhesions, and so do signals from outside the cell that are transmitted to the adhesions via specialized proteins. However, it was not clear how the assembly and disassembly of adhesions is coordinated. CRL5 is a ubiquitin ligase, an enzyme that can mark other proteins for destruction. Cells migrate more quickly if CRL5 is inhibited, and so Teckchandani and Cooper set out to uncover whether CRL5 affects the assembly and disassembly of focal adhesions. The experiments showed that human cells lacking a crucial component of the CRL5 complex, SOCS6, disassemble adhesions faster than normal cells, but only at their leading edge and not at the rear. Teckchandani and Cooper also found that SOCS6 localizes to the leading edge by binding to a focal adhesion protein called Cas. Shortly after the attachments assemble, the Cas protein becomes tagged with a phosphate group and then acts to promote the adhesion to disassemble. Further experiments indicated that Cas was marked by the CRL5 complex and possibly destroyed while in or very close to the leading edge adhesions, slowing their disassembly. Together, these findings suggest that by binding Cas, SOCS6 regulates the turnover of adhesions, specifically by inhibiting disassembly and allowing adhesions to grow at the leading edge. Since SOCS6 is not present in adhesions outside of the leading edge, this may help explain how the older adhesions are disassembled. Future studies could next focus on the exact sequence of events that occur in focal adhesions after the CRL5 complex binds to Cas as the cell migrates. DOI:http://dx.doi.org/10.7554/eLife.17440.002
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
17
|
Palanisamy AP, Suryakumar G, Panneerselvam K, Willey CD, Kuppuswamy D. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 2016; 116:2793-803. [PMID: 25976166 DOI: 10.1002/jcb.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.
Collapse
Affiliation(s)
- Arun P Palanisamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Geetha Suryakumar
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Kavin Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Christopher D Willey
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| |
Collapse
|
18
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
19
|
Vaškovičová K, Szabadosová E, Čermák V, Gandalovičová A, Kasalová L, Rösel D, Brábek J. PKCα promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness. BMC Cancer 2015; 15:326. [PMID: 25924946 PMCID: PMC4423130 DOI: 10.1186/s12885-015-1347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background The local invasion of tumor cells into the surrounding tissue is the first and most critical step of the metastatic cascade. Cells can invade either collectively, or individually. Individual cancer cell invasion can occur in the mesenchymal or amoeboid mode, which are mutually interchangeable. This plasticity of individual cancer cell invasiveness may represent an escape mechanism for invading cancer cells from anti-metastatic treatment. Methods To identify new signaling proteins involved in the plasticity of cancer cell invasiveness, we performed proteomic analysis of the amoeboid to mesenchymal transition with A375m2 melanoma cells in a 3D Matrigel matrix. Results In this screen we identified PKCα as an important protein for the maintenance of amoeboid morphology. We found that the activation of PKCα resulted in the mesenchymal-amoeboid transition of mesenchymal K2 and MDA-MB-231 cell lines. Consistently, PKCα inhibition led to the amoeboid-mesenchymal transition of amoeboid A375m2 cells. Next, we showed that PKCα inhibition resulted in a considerable decrease in the invading abilities of all analyzed cancer cell lines. Conclusions Our results suggest that PKCα is an important protein for maintenance of the amoeboid morphology of cancer cells, and that downregulation of PKCα results in the amoeboid to mesenchymal transition. Our data also suggest that PKCα is important for both mesenchymal and amoeboid invasiveness, making it an attractive target for anti-metastatic therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1347-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic. .,Current affiliation: Microscopy Unit, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Emilia Szabadosová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Vladimír Čermák
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Aneta Gandalovičová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Lenka Kasalová
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Daniel Rösel
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, Laboratory of Cancer Cell Invasion, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
20
|
Camacho Leal MDP, Sciortino M, Tornillo G, Colombo S, Defilippi P, Cabodi S. p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis. Gene 2015; 562:1-7. [PMID: 25727852 DOI: 10.1016/j.gene.2015.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
Abstract
BCAR1 (also known as p130Cas/BCAR1) is an adaptor protein that belongs to the CAS family of scaffold proteins. In the past years, increasing evidence has demonstrated the ability of p130Cas/BCAR1 to activate signaling originating from mechanical stimuli, cell-extracellular matrix (ECM) adhesion and growth factor stimulation cascades during normal development and disease in various biological models. In this review we will specifically discuss the more recent data on the contribution of p130Cas/BCAR1 in the regulation of tissue homeostasis and its potential implications in pathological conditions.
Collapse
Affiliation(s)
| | - Marianna Sciortino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Shana Colombo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
21
|
Sriram G, Jankowski W, Kasikara C, Reichman C, Saleh T, Nguyen KQ, Li J, Hornbeck P, Machida K, Liu T, Li H, Kalodimos CG, Birge RB. Iterative tyrosine phosphorylation controls non-canonical domain utilization in Crk. Oncogene 2014; 34:4260-9. [PMID: 25381819 PMCID: PMC4706174 DOI: 10.1038/onc.2014.361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/18/2023]
Abstract
Crk, the prototypical member of a class of SH2 and SH3 domain-containing proteins that controls the coordinated assembly of signaling complexes, is regulated by phosphorylation of Y221 in the linker region, which forms an intramolecular SH2-pY221 auto-clamp to interrupt SH2-SH3N signaling. Here, we show using LC-MS/MS and by generating phosphospecific antibodies that, iteratively with Y221, the Crk SH3C is routinely phosphorylated on Y239 and/or Y251 by several extracellular stimuli known to engage Crk. While phosphorylation at Y221 auto-inhibits the Crk SH2, phosphorylation of the SH3C generates an unconventional phosphoSH3C-SH3N unit in which the SH3N is fully functional to bind Polyproline Type II (PPII) ligands and the phosphoSH3C binds de novo to other SH2 domains. Using high throughput SH2 domain profiling, artificial neural network and position-specific scoring matrix based bio-informatics approaches, and unbiased MS, we found that the phosphoSH3C binds several SH2 domain-containing proteins, including specific non-receptor tyrosine kinases - Abl via pY251 and Csk via pY239. Functionally, we show that the phosphoSH3C modulates the Abl-mediated phenotypes of cell spreading and motility. Together, these studies describe a versatile mechanism wherein phosphorylation of Crk at Y221 is not an off switch but redirects signaling from the SH2-SH3N axis to a phosphoSH3C-SH3N axis, with the SH3N as a common denominator.
Collapse
Affiliation(s)
- G Sriram
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - W Jankowski
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - C Kasikara
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - C Reichman
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - T Saleh
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - K-Q Nguyen
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - J Li
- Cell Signaling Technology, Danvers, MA, USA
| | - P Hornbeck
- Cell Signaling Technology, Danvers, MA, USA
| | - K Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - T Liu
- Center for Advanced Proteomic Research, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - H Li
- Center for Advanced Proteomic Research, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - C G Kalodimos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - R B Birge
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
22
|
Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: The emerging role of p130Cas. Eur J Cell Biol 2014; 93:445-54. [DOI: 10.1016/j.ejcb.2014.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
|
23
|
Yang X, Lv W, Shi R, Cheng S, Zhang J, Xu Z. The clinical implications of Crk-like adaptor protein expression in papillary thyroid microcarcinoma. Tumour Biol 2014; 35:12435-40. [PMID: 25185652 DOI: 10.1007/s13277-014-2561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Papillary thyroid microcarcinoma (PMC) is the most common subtype of thyroid carcinomas with satisfactory prognosis. Crk-like (CrkL) adaptor protein was identified in the development of many carcinomas. However, the clinical implications of CrkL protein in PMC were still unknown. Here, we conducted immunohistochemistry to test and analyze CrkL expression in papillary thyroid carcinoma (PTC) (50 cases), PMC (50 cases), and nodular goiter (50 cases), and then western blot further identified the expression of CrkL proteins. In our present study, the positive rate and the mean optical density (MOD) value of CrkL expression in PTC and PMC tissues were statistically significantly different, compared with nodular goiter (p = 0.021, 0.037) and normal thyroid tissues (p = 0.003, 0.009), respectively. In addition, CrkL expression was not associated with age, gender, and tumor number. Conversely, significant differences between CrkL expression and metastasis (p < 0.01) and violation of capsule (p < 0.01) were observed. Notably, western blot indeed identified that the metastasis group of either PTC or PMC tissues had about twofold increased expression of CrkL compared with their non-metastasis groups (p < 0.05). In conclusion, CrkL is highly expressed in papillary thyroid carcinoma and papillary thyroid microcarcinoma and closely correlated to metastasis. Therefore, it is essential to carry out neck lymph node clearance in patients with papillary thyroid microcarcinoma.
Collapse
Affiliation(s)
- Xiangshan Yang
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
24
|
Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 2014; 7:ra57. [PMID: 24939893 PMCID: PMC4345117 DOI: 10.1126/scisignal.2004838] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.
Collapse
Affiliation(s)
- Yong Ho Bae
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keeley L Mui
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernadette Y Hsu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shu-Lin Liu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziba Razinia
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Xu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Hytönen VP, Wehrle-Haller B. Protein conformation as a regulator of cell–matrix adhesion. Phys Chem Chem Phys 2014; 16:6342-57. [DOI: 10.1039/c3cp54884h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational changes within proteins play key roles in the regulation of cell–matrix adhesion. We discuss the mechanisms involved in conformational regulation, including mechanical signals, posttranslational modifications and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vesa P. Hytönen
- University of Tampere
- Institute of Biomedical Technology and BioMediTech
- 33520 Tampere, Finland
- Fimlab Laboratories
- 33014 Tampere, Finland
| | - Bernhard Wehrle-Haller
- University of Geneva
- Department of Cell Physiology and Metabolism
- Centre Médical Universitaire
- 1211 Geneva 4, Switzerland
| |
Collapse
|
26
|
|
27
|
Goldmann WH. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction. Cell Biol Int 2013; 38:283-6. [PMID: 24497348 DOI: 10.1002/cbin.10204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/01/2013] [Indexed: 11/09/2022]
Abstract
Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation into the focal adhesion complex and for transmitting forces to the p130Cas molecule.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, 91052, Erlangen, Germany
| |
Collapse
|
28
|
P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys Chem 2013; 180-181:37-43. [DOI: 10.1016/j.bpc.2013.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 01/17/2023]
|
29
|
CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 2013; 71:727-44. [PMID: 23974298 PMCID: PMC3901934 DOI: 10.1007/s00018-013-1450-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.
Collapse
|
30
|
Kovářová D, Plachý J, Kosla J, Trejbalová K, Čermák V, Hejnar J. Downregulation of HOPX Controls Metastatic Behavior in Sarcoma Cells and Identifies Genes Associated with Metastasis. Mol Cancer Res 2013; 11:1235-47. [DOI: 10.1158/1541-7786.mcr-12-0687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Kosla J, Paňková D, Plachý J, Tolde O, Bicanová K, Dvořák M, Rösel D, Brábek J. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun Signal 2013; 11:51. [PMID: 23899007 PMCID: PMC3735423 DOI: 10.1186/1478-811x-11-51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there is extensive evidence for the amoeboid invasiveness of cancer cells in vitro, much less is known about the role of amoeboid invasiveness in metastasis and the importance of Rho/ROCK/MLC signaling in this process. RESULTS We analyzed the dependence of amoeboid invasiveness of rat and chicken sarcoma cells and the metastatic activity of chicken cells on individual elements of the Rho/ROCK/MLC pathway. In both animal models, inhibition of Rho, ROCK or MLC resulted in greatly decreased cell invasiveness in vitro, while inhibition of extracellular proteases using a broad spectrum inhibitor did not have a significant effect. The inhibition of both Rho activity and MLC phosphorylation by dominant negative mutants led to a decreased capability of chicken sarcoma cells to metastasize. Moreover, the overexpression of RhoA in non-metastatic chicken cells resulted in the rescue of both invasiveness and metastatic capability. Rho and ROCK, unlike MLC, appeared to be directly involved in the maintenance of the amoeboid phenotype, as their inhibition resulted in the amoeboid-mesenchymal transition in analyzed cell lines. CONCLUSION Taken together, these results suggest that protease-independent invasion controlled by elements of the Rho/ROCK/MLC pathway can be frequently exploited by metastatic sarcoma cells.
Collapse
Affiliation(s)
- Jan Kosla
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 12843 Prague 2, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 2013; 14:509-19. [PMID: 23681438 DOI: 10.1038/embor.2013.49] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/21/2013] [Indexed: 12/27/2022] Open
Abstract
Cells perceive information about the biochemical and biophysical properties of their tissue microenvironment through integrin-mediated cell-matrix adhesions, which connect the cytoskeleton with the extracellular matrix and thereby allow cohesion and long-range mechanical connections within tissues. The formation of cell-matrix adhesions and integrin signalling involves the dynamic recruitment and assembly of an inventory of proteins, collectively termed the 'adhesome', at the adhesive site. The recruitment of some adhesome proteins, most notably the Lin11-, Isl1- and Mec3-domain-containing proteins, depends on mechanical tension generated by myosin II-mediated contractile forces exerted on cell-matrix adhesions. When exposed to force, mechanosensitive adhesome proteins can change their conformation or expose cryptic-binding sites leading to the recruitment of proteins, rearrangement of the cytoskeleton, reinforcement of the adhesive site and signal transduction. Biophysical methods and proteomics revealed force ranges within the adhesome and cytoskeleton, and also force-dependent changes in adhesome composition. In this review, we provide an overview of the compositional dynamics of cell-matrix adhesions, discuss the most prevalent functional domains in adhesome proteins and review literature and concepts about mechanosensing mechanisms that operate at the adhesion site.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
33
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
34
|
Paňková D, Jobe N, Kratochvílová M, Buccione R, Brábek J, Rösel D. NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. Eur J Cell Biol 2012; 91:969-77. [PMID: 22699001 DOI: 10.1016/j.ejcb.2012.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022] Open
Abstract
The aim of this study was to analyze the potential role of NG2 chondroitin sulfate proteoglycan in amoeboid morphology and invasiveness of cancer cells. In the highly metastatic amoeboid cell lines A3 and A375M2, siRNA-mediated down-regulation of NG2 induced an amoeboid-mesenchymal transition associated with decreased invasiveness in 3D collagen and inactivation of the GTPase Rho. Conversely, the expression of NG2 in mesenchymal sarcoma K2 cells as well as in A375M2 cells resulted in an enhanced amoeboid phenotype associated with increased invasiveness and elevated Rho-GTP levels. Remarkably, the amoeboid-mesenchymal transition in A375M2 cells triggered by NG2 down-regulation was associated with increased extracellular matrix-degrading ability, although this was not sufficient to compensate for the decreased invasive capability caused by down-regulated Rho/ROCK signaling. Conversely, in K2 cells with overexpression of NG2, the ability to degrade the extracellular matrix was greatly reduced. Taken together, we suggest that NG2-mediated activation of Rho leading to effective amoeboid invasiveness is a possible mechanism through which NG2 could contribute to tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Daniela Paňková
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Tatárová Z, Brábek J, Rösel D, Novotný M. SH3 domain tyrosine phosphorylation--sites, role and evolution. PLoS One 2012; 7:e36310. [PMID: 22615764 PMCID: PMC3352900 DOI: 10.1371/journal.pone.0036310] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/01/2012] [Indexed: 11/30/2022] Open
Abstract
Background SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. Results To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c–Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F). This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. Conclusions While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.
Collapse
Affiliation(s)
- Zuzana Tatárová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
37
|
Sriram G, Birge RB. Commentary: The carboxyl-terminal Crk SH3 domain: Regulatory strategies and new perspectives. FEBS Lett 2012; 586:2615-8. [PMID: 22710158 DOI: 10.1016/j.febslet.2012.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/17/2022]
Abstract
Since their discovery as cellular counterparts of viral oncogenes more than two decades ago, enormous progress has been made in unraveling the complex regulatory pathways of signal transduction initiated by the Crk family of proteins. New structural and biochemical studies have uncovered novel insights into both negative and positive regulation of Crk mediated by its atypical carboxyl-terminal SH3 domain (SH3C). Moreover, SH3C is tyrosine phosphorylated by receptor tyrosine kinases and non-receptor tyrosine kinases, thereby permitting assemblages of other SH2/PTB domain containing proteins. Such non-canonical signaling by the Crk SH3C reveals new regulatory strategies for adaptor proteins.
Collapse
Affiliation(s)
- Ganapathy Sriram
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|