1
|
Odiba AS, Ezechukwu CS, Liao G, Hong Y, Fang W, Jin C, Gartner A, Wang B. SMC-5/6 complex subunit NSE-1 plays a crucial role in meiosis and DNA repair in Caenorhabditis elegans. DNA Repair (Amst) 2024; 137:103669. [PMID: 38507953 DOI: 10.1016/j.dnarep.2024.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
The SMC5/6 complex is evolutionarily conserved across all eukaryotes and plays a pivotal role in preserving genomic stability. Mutations in genes encoding SMC5/6 complex subunits have been associated with human lung disease, immunodeficiency, and chromosome breakage syndrome. Despite its critical importance, much about the SMC5/6 complex remains to be elucidated. Various evidences have suggested possible role of a subunit of the SMC5/6 complex, NSE1, in chromosome segregation and DNA repair. Current knowledge regarding the role of NSE1 is primarily derived from single-cell-based analyses in yeasts, Arabidopsis thaliana, and human cell lines. However, our understanding of its function is still limited and requires further investigation. This study delves into the role of nse-1 in Caenorhabditis elegans, revealing its involvement in meiotic recombination and DNA repair. nse-1 mutants display reduced fertility, increased male incidence, and increased sensitivity to genotoxic chemicals due to defects in meiotic chromosome segregation and DNA repair. These defects manifest as increased accumulation of RAD-51 foci, increased chromosome fragmentation, and susceptibility to MMS, cisplatin, and HU. Furthermore, nse-1 mutation exacerbates germ cell death by upregulating ced-13 and egl-1 genes involved in the CEP-1/p53-mediated apoptotic pathway. NSE-1 is essential for the proper localization of NSE-4 and MAGE-1 on the chromosomes. Collectively, these findings firmly establish nse-1 as a crucial factor in maintaining genomic stability.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guiyan Liao
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Kolesar P, Stejskal K, Potesil D, Murray JM, Palecek JJ. Role of Nse1 Subunit of SMC5/6 Complex as a Ubiquitin Ligase. Cells 2022; 11:165. [PMID: 35011726 PMCID: PMC8750328 DOI: 10.3390/cells11010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function.
Collapse
Affiliation(s)
- Peter Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karel Stejskal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| | - Jan J. Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| |
Collapse
|
3
|
Smc5/6, an atypical SMC complex with two RING-type subunits. Biochem Soc Trans 2021; 48:2159-2171. [PMID: 32964921 DOI: 10.1042/bst20200389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
The Smc5/6 complex plays essential roles in chromosome segregation and repair, by promoting disjunction of sister chromatids. The core of the complex is constituted by an heterodimer of Structural Maintenance of Chromosomes (SMC) proteins that use ATP hydrolysis to dynamically associate with and organize chromosomes. In addition, the Smc5/6 complex contains six non-SMC subunits. Remarkably, and differently to other SMC complexes, the Nse1 and Nse2 subunits contain RING-type domains typically found in E3 ligases, pointing to the capacity to regulate other proteins and complexes through ubiquitin-like modifiers. Nse2 codes for a C-terminal SP-RING domain with SUMO ligase activity, assisting Smc5/6 functions in chromosome segregation through sumoylation of several chromosome-associated proteins. Nse1 codes for a C-terminal NH-RING domain and, although it has been proposed to have ubiquitin ligase activity, no Smc5/6-dependent ubiquitylation target has been described to date. Here, we review the function of the two RING domains of the Smc5/6 complex in the broader context of SMC complexes as global chromosome organizers of the genome.
Collapse
|
4
|
Gong M, Wang Z, Liu Y, Li W, Ye S, Zhu J, Zhang H, Wang J, He K. A transcriptomic analysis of Nsmce1 overexpression in mouse hippocampal neuronal cell by RNA sequencing. Funct Integr Genomics 2019; 20:459-470. [PMID: 31792732 DOI: 10.1007/s10142-019-00728-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Mouse Nsmce1 gene is the homolog of non-structural maintenance of chromosomes element 1 (NSE1) that is mainly involved in maintenance of genome integrity, DNA damage response, and DNA repair. Defective DNA repair may cause neurological disorders such as Alzheimer's disease (AD). So far, there is no direct evidence for the correlation between Nsmce1 and AD. In order to explore the function of Nsmce1 in the regulation of nervous system, we have overexpressed or knocked down Nsmce1 in the mouse hippocampal neuronal cells (MHNCs) HT-22 and detected its regulation of AD marker genes as well as cell proliferation. The results showed that the expression of App, Bace2, and Mapt could be inhibited by Nsmce1 overexpression and activated by the knockdown of Nsmce1. Moreover, the HT-22 cell proliferation ability could be promoted by Nsmce1 overexpression and inhibited by knockdown of Nsmce1. Furthermore, we performed a transcriptomics study by RNA sequencing (RNA-seq) to evaluate and quantify the gene expression profiles in response to the overexpression of Nsmce1 in HT-22 cells. As a result, 224 significantly dysregulated genes including 83 upregulated and 141 downregulated genes were identified by the comparison of Nsmce1 /+ to WT cells, which were significantly enriched in several Gene Ontology (GO) terms and pathways. In addition, the complexity of the alternative splicing (AS) landscape was increased by Nsmce1 overexpression in HT-22 cells. Thousands of AS events were identified to be mainly involved in the pathway of ubiquitin-mediated proteolysis (UMP) as well as 3 neurodegenerative diseases including AD. The protein-protein interaction network was reconstructed to show top 10 essential genes regulated by Nsmce1. Our sequencing data is available in the Gene Expression Omnibus (GEO) database with accession number as GSE113436. These results may provide some evidence of molecular and cellular functions of Nsmce1 in MHNCs.
Collapse
Affiliation(s)
- Mengting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanjun Liu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Wenxing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Jie Zhu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Hui Zhang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Jing Wang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
5
|
A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proc Natl Acad Sci U S A 2019; 116:15288-15296. [PMID: 31285327 DOI: 10.1073/pnas.1900308116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage decreases genome stability and alters genetic information in all organisms. Conserved protein complexes have been evolved for DNA repair in eukaryotes, such as the structural maintenance complex 5/6 (SMC5/6), a chromosomal ATPase involved in DNA double-strand break (DSB) repair. Several factors have been identified for recruitment of SMC5/6 to DSBs, but this complex is also associated with chromosomes under normal conditions; how SMC5/6 dissociates from its original location and moves to DSB sites is completely unknown. In this study, we determined that SWI3B, a subunit of the SWI/SNF complex, is an SMC5-interacting protein in Arabidopsis thialiana Knockdown of SWI3B or SMC5 results in increased DNA damage accumulation. During DNA damage, SWI3B expression is induced, but the SWI3B protein is not localized at DSBs. Notably, either knockdown or overexpression of SWI3B disrupts the DSB recruitment of SMC5 in response to DNA damage. Overexpression of a cotranscriptional activator ADA2b rescues the DSB localization of SMC5 dramatically in the SWI3B-overexpressing cells but only weakly in the SWI3B knockdown cells. Biochemical data confirmed that ADA2b attenuates the interaction between SWI3B and SMC5 and that SWI3B promotes the dissociation of SMC5 from chromosomes. In addition, overexpression of SMC5 reduces DNA damage accumulation in the SWI3B knockdown plants. Collectively, these results indicate that the presence of an appropriate level of SWI3B enhances dissociation of SMC5 from chromosomes for its further recruitment at DSBs during DNA damage in plant cells.
Collapse
|
6
|
Brc1 Promotes the Focal Accumulation and SUMO Ligase Activity of Smc5-Smc6 during Replication Stress. Mol Cell Biol 2019; 39:MCB.00271-18. [PMID: 30348841 DOI: 10.1128/mcb.00271-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
As genetic instability drives disease or loss of cell fitness, cellular safeguards have evolved to protect the genome, especially during sensitive cell cycle phases, such as DNA replication. Fission yeast Brc1 has emerged as a key factor in promoting cell survival when replication forks are stalled or collapsed. Brc1 is a multi-BRCT protein that is structurally related to the budding yeast Rtt107 and human PTIP DNA damage response factors, but functional similarities appear limited. Brc1 is a dosage suppressor of a mutation in the essential Smc5-Smc6 genome stability complex and is thought to act in a bypass pathway. In this study, we reveal an unexpectedly intimate connection between Brc1 and Smc5-Smc6 function. Brc1 is required for the accumulation of the Smc5-Smc6 genome stability complex in foci during replication stress and for activation of the intrinsic SUMO ligase activity of the complex by collapsed replication forks. Moreover, we show that the chromatin association and SUMO ligase activity of Smc5-Smc6 require the Nse5-Nse6 heterodimer, explaining how this nonessential cofactor critically supports the DNA repair roles of Smc5-Smc6. We also found that Brc1 interacts with Nse5-Nse6, as well as gamma-H2A, so it can tether Smc5-Smc6 at replicative DNA lesions to promote survival.
Collapse
|
7
|
Oravcová M, Boddy MN. Recruitment, loading, and activation of the Smc5-Smc6 SUMO ligase. Curr Genet 2019; 65:669-676. [PMID: 30600397 DOI: 10.1007/s00294-018-0922-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Duplication of the genome poses one of the most significant threats to genetic integrity, cellular fitness, and organismal health. Therefore, numerous mechanisms have evolved that maintain replication fork stability in the face of DNA damage and allow faithful genome duplication. The fission yeast BRCT-domain-containing protein Brc1, and its budding yeast orthologue Rtt107, has emerged as a "hub" factor that integrates multiple replication fork protection mechanisms. Notably, the cofactors and pathways through which Brc1, Rtt107, and their human orthologue (PTIP) act have appeared largely distinct. This either represents true evolutionary functional divergence, or perhaps an incomplete genetic and biochemical analysis of each protein. In this regard, we recently showed that like Rtt107, Brc1 supports key functions of the Smc5-Smc6 complex, including its recruitment into DNA repair foci, chromatin association, and SUMO ligase activity. Furthermore, fission yeast cells lacking the Nse5-Nse6 genome stability factor were found to exhibit defects in Smc5-Smc6 function, similar to but more severe than those in cells lacking Brc1. Here, we place these findings in context with the known functions of Brc1, Rtt107, and Smc5-Smc6, present data suggesting a role for acetylation in Smc5-Smc6 chromatin loading, and discuss wider implications for genome stability.
Collapse
Affiliation(s)
- Martina Oravcová
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael N Boddy
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 2018; 37:embj.201798306. [PMID: 29769404 DOI: 10.15252/embj.201798306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 11/09/2022] Open
Abstract
Modification of chromosomal proteins by conjugation to SUMO is a key step to cope with DNA damage and to maintain the integrity of the genome. The recruitment of SUMO E3 ligases to chromatin may represent one layer of control on protein sumoylation. However, we currently do not understand how cells upregulate the activity of E3 ligases on chromatin. Here we show that the Nse2 SUMO E3 in the Smc5/6 complex, a critical player during recombinational DNA repair, is directly stimulated by binding to DNA Activation of sumoylation requires the electrostatic interaction between DNA and a positively charged patch in the ARM domain of Smc5, which acts as a DNA sensor that subsequently promotes a stimulatory activation of the E3 activity in Nse2. Specific disruption of the interaction between the ARM of Smc5 and DNA sensitizes cells to DNA damage, indicating that this mechanism contributes to DNA repair. These results reveal a mechanism to enhance a SUMO E3 ligase activity by direct DNA binding and to restrict sumoylation in the vicinity of those Smc5/6-Nse2 molecules engaged on DNA.
Collapse
Affiliation(s)
- Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Ibars
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Jara Lascorz
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Colomina
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Jordi Torres-Rosell
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Wani S, Maharshi N, Kothiwal D, Mahendrawada L, Kalaivani R, Laloraya S. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability. Curr Genet 2017; 64:599-617. [DOI: 10.1007/s00294-017-0776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
|
10
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
12
|
Peng J, Feng W. Incision of damaged DNA in the presence of an impaired Smc5/6 complex imperils genome stability. Nucleic Acids Res 2016; 44:10216-10229. [PMID: 27536003 PMCID: PMC5137426 DOI: 10.1093/nar/gkw720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/14/2022] Open
Abstract
The Smc5/6 complex is implicated in homologous recombination-mediated DNA repair during DNA damage or replication stress. Here, we analysed genome-wide replication dynamics in a hypomorphic budding yeast mutant, smc6-P4. The overall replication dynamics in the smc6 mutant is similar to that in the wild-type cells. However, we captured a difference in the replication profile of an early S phase sample in the mutant, prompting the hypothesis that the mutant incorporates ribonucleotides and/or accumulates single-stranded DNA gaps during replication. We tested if inhibiting the ribonucleotide excision repair pathway would exacerbate the smc6 mutant in response to DNA replication stress. Contrary to our expectation, impairment of ribonucleotide excision repair, as well as virtually all other DNA repair pathways, alleviated smc6 mutant's hypersensitivity to induced replication stress. We propose that nucleotide incision in the absence of a functional Smc5/6 complex has more disastrous outcomes than the damage per se. Our study provides novel perspectives for the role of the Smc5/6 complex during DNA replication.
Collapse
Affiliation(s)
- Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
13
|
Nie M, Boddy MN. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016; 6:14. [PMID: 26927199 PMCID: PMC4808808 DOI: 10.3390/biom6010014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael N Boddy
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Tapia-Alveal C, Lin SJ, O’Connell MJ. Functional interplay between cohesin and Smc5/6 complexes. Chromosoma 2014; 123:437-45. [PMID: 24981336 PMCID: PMC4169997 DOI: 10.1007/s00412-014-0474-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J. O’Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
15
|
Abstract
Replication stress is a significant contributor to genome instability. Recent studies suggest that the centromere is particularly susceptible to replication stress and prone to rearrangements and genome damage, as well as chromosome loss. This effect is enhanced by loss of heterochromatin. The resulting changes in genetic organization, including chromosome loss, increased mutation and loss of heterozygosity, are important contributors to malignant growth.
Collapse
|
16
|
Tapia-Alveal C, Lin SJ, Yeoh A, Jabado OJ, O'Connell MJ. H2A.Z-dependent regulation of cohesin dynamics on chromosome arms. Mol Cell Biol 2014; 34:2092-104. [PMID: 24687850 PMCID: PMC4019066 DOI: 10.1128/mcb.00193-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 11/20/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes and DNA topoisomerases are major determinants of chromosome structure and dynamics. The cohesin complex embraces sister chromatids throughout interphase, but during mitosis most cohesin is stripped from chromosome arms by early prophase, while the remaining cohesin at kinetochores is cleaved at anaphase. This two-step removal of cohesin is required for sister chromatids to separate. The cohesin-related Smc5/6 complex has been studied mostly as a determinant of DNA repair via homologous recombination. However, chromosome segregation fails in Smc5/6 null mutants or cells treated with small interfering RNAs. This also occurs in Smc5/6 hypomorphs in the fission yeast Schizosaccharomyces pombe following genotoxic and replication stress, or topoisomerase II dysfunction, and these mitotic defects are due to the postanaphase retention of cohesin on chromosome arms. Here we show that mitotic and repair roles for Smc5/6 are genetically separable in S. pombe. Further, we identified the histone variant H2A.Z as a critical factor to modulate cohesin dynamics, and cells lacking H2A.Z suppress the mitotic defects conferred by Smc5/6 dysfunction. Together, H2A.Z and the SMC complexes ensure genome integrity through accurate chromosome segregation.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aaron Yeoh
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omar J. Jabado
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew J. O'Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Initiation of DNA damage responses through XPG-related nucleases. EMBO J 2012; 32:290-302. [PMID: 23211746 DOI: 10.1038/emboj.2012.322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/09/2012] [Indexed: 11/08/2022] Open
Abstract
Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness.
Collapse
|
18
|
Kliszczak M, Stephan AK, Flanagan AM, Morrison CG. SUMO ligase activity of vertebrate Mms21/Nse2 is required for efficient DNA repair but not for Smc5/6 complex stability. DNA Repair (Amst) 2012; 11:799-810. [PMID: 22921571 DOI: 10.1016/j.dnarep.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/03/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022]
Abstract
Nse2/Mms21 is an E3 SUMO ligase component of the Smc5/6 complex, which plays multiple roles in maintaining genome stability. To study the functions of the vertebrate Nse2 orthologue, we generated Nse2-deficient chicken DT40 cells. Nse2 was dispensable for DT40 cell viability and required for efficient repair of bulky DNA lesions, although Nse2-deficient cells showed normal sensitivity to ionising radiation-induced DNA damage. Homologous recombination activities were reduced in Nse2(-/-/-) cells. Nse2 deficiency destabilised Smc5, but not Smc6. In rescue experiments, we found that the SUMO ligase activity of Nse2 was required for an efficient response to MMS- or cis-platin-induced DNA damage, and for homologous recombination, but not for Smc5 stability. Gel filtration analysis indicated that Smc5 and Nse2 remain associated during the cell cycle and after DNA damage and Smc5/Smc6 association is independent of Nse2. Analysis of Nse2(-/-/-)Smc5(-) clones, which were viable although slow-growing, showed no significant increase in DNA damage sensitivity. We propose that Nse2 determines the activity, but not the assembly, of the Smc5/6 complex in vertebrate cells, and this activity requires the Nse2 SUMO ligase function.
Collapse
Affiliation(s)
- Maciej Kliszczak
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | |
Collapse
|
19
|
Bass KL, Murray JM, O'Connell MJ. Brc1-dependent recovery from replication stress. J Cell Sci 2012; 125:2753-64. [PMID: 22366461 DOI: 10.1242/jcs.103119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BRCT-containing protein 1 (Brc1) is a multi-BRCT (BRCA1 carboxyl terminus) domain protein in Schizosaccharomyces pombe that is required for resistance to chronic replicative stress, but whether this reflects a repair or replication defect is unknown and the subject of this study. We show that brc1Δ cells are significantly delayed in recovery from replication pausing, though this does not activate a DNA damage checkpoint. DNA repair and recombination protein Rad52 is a homologous recombination protein that loads the Rad51 recombinase at resected double-stranded DNA (dsDNA) breaks and is also recruited to stalled replication forks, where it may stabilize structures through its strand annealing activity. Rad52 is required for the viability of brc1Δ cells, and brc1Δ cells accumulate Rad52 foci late in S phase that are potentiated by replication stress. However, these foci contain the single-stranded DNA (ssDNA) binding protein RPA, but not Rad51 or γH2A. Further, these foci are not associated with increased recombination between repeated sequences, or increased post-replication repair. Thus, these Rad52 foci do not represent sites of recombination. Following the initiation of DNA replication, the induction of these foci by replication stress is suppressed by defects in origin recognition complex (ORC) function, which is accompanied by loss of viability and severe mitotic defects. This suggests that cells lacking Brc1 undergo an ORC-dependent rescue of replication stress, presumably through the firing of dormant origins, and this generates RPA-coated ssDNA and recruits Rad52. However, as Rad51 is not recruited, and the checkpoint effector kinase Chk1 is not activated, these structures must not contain the unprotected primer ends found at sites of DNA damage that are required for recombination and checkpoint activation.
Collapse
Affiliation(s)
- Kirstin L Bass
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|