1
|
Tsukagoshi-Yamaguchi A, Koshizaka M, Ishibashi R, Ishikawa K, Ishikawa T, Shoji M, Ide S, Ide K, Baba Y, Terayama R, Hattori A, Takemoto M, Ouchi Y, Maezawa Y, Yokote K. Metabolomic analysis of serum samples from a clinical study on ipragliflozin and metformin treatment in Japanese patients with type 2 diabetes: Exploring human metabolites associated with visceral fat reduction. Pharmacotherapy 2023; 43:1317-1326. [PMID: 37772313 DOI: 10.1002/phar.2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
STUDY OBJECTIVE The effects of the sodium-dependent glucose transporter-2 inhibitor ipragliflozin were compared with metformin in a previous study, which revealed that ipragliflozin reduced visceral fat content by 12%; however, the underlying mechanism was unclear. Therefore, this sub-analysis aimed to compare metabolomic changes associated with ipragliflozin and metformin that may contribute to their biological effects. DESIGN A sub-analysis of a randomized controlled study. SETTING Chiba University Hospital and ten hospitals in Japan. PATIENTS Fifteen patients with type 2 diabetes in the ipragliflozin group and 15 patients with type 2 diabetes in the metformin group with matching characteristics, such as age, sex, baseline A1C, baseline visceral fat area, smoking status, and concomitant medication. INTERVENTIONS Ipragliflozin 50 mg or metformin 1000 mg daily. MEASUREMENTS The clinical data were reanalyzed, and metabolomic analysis of serum samples collected before and 24 weeks after drug administration was performed using capillary electrophoresis time-of-flight mass spectrometry. MAIN RESULTS The reduction in the mean visceral fat area after 24 weeks of treatment was significantly larger (p = 0.002) in the ipragliflozin group (-19.8%) than in the metformin group (-2.5%), as were the subcutaneous fat area and body weight. The A1C and blood glucose levels decreased in both groups. Glutamic pyruvic oxaloacetic transaminase, γ-glutamyl transferase, uric acid, and triglyceride levels decreased in the ipragliflozin group. Low-density lipoprotein cholesterol levels decreased in the metformin group. After ipragliflozin administration, N2-phenylacetylglutamine, inosine, guanosine, and 1-methyladenosine levels increased, whereas galactosamine, glucosamine, 11-aminoundecanoic acid, morpholine, and choline levels decreased. After metformin administration, metformin, hypotaurine, methionine, methyl-2-oxovaleric acid, 3-nitrotyrosine, and cyclohexylamine levels increased, whereas citrulline, octanoic acid, indole-3-acetaldehyde, and hexanoic acid levels decreased. CONCLUSIONS Metabolites that may affect visceral fat reduction were detected in the ipragliflozin group. Studies are required to further elucidate the underlying mechanisms.
Collapse
Affiliation(s)
| | - Masaya Koshizaka
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
- Center for Preventive Medical Science, Chiba University, Chiba City, Japan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
- Division of Diabetes, Endocrinology, and Metabolism, Kimitsu Chuo Hospital, Kisarazu City, Japan
| | - Ko Ishikawa
- Department of Diabetes and Endocrinology, Chiba Rosai Hospital, Ichihara City, Japan
| | - Takahiro Ishikawa
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of General Medical Science, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Mayumi Shoji
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Shintaro Ide
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Kana Ide
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Yusuke Baba
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Ryo Terayama
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
| | - Akiko Hattori
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Minoru Takemoto
- Division of Diabetes, Department of Medicine, Metabolism and Endocrinology, International University of Health and Welfare, Narita City, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba City, Japan
- Altos Labs, California, San Diego, USA
| | - Yoshiro Maezawa
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Koutaro Yokote
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba City, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba City, Japan
| |
Collapse
|
2
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
3
|
Toward understanding the emergence of life: A dual function of the system of nucleotides in the metabolically closed autopoietic organization. Biosystems 2023; 224:104837. [PMID: 36649884 DOI: 10.1016/j.biosystems.2023.104837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
General structure of metabolism includes the reproduction of catalysts that govern metabolism. In this structure, the system becomes autopoietic in the sense of Maturana and Varela, and it is closed to efficient causation as defined by Robert Rosen. The autopoietic maintenance and operation of the catalysts takes place via the set of free nucleotides while the synthesis of catalysts occurs via the information encoded by the set of nucleotides arranged in polymers of RNA and DNA. Both energy charge and genetic information use the components of the same pool of nucleoside triphosphates, which is equilibrated by thermodynamic buffering enzymes such as nucleoside diphosphate kinase and adenylate kinase. This occurs in a way that the system becomes internally stable and metabolically closed, which initially could be realized at the level of ribozymes catalyzing basic metabolic reactions as well as own reproduction. The function of ATP, GTP, UTP, and CTP is dual, as these species participate both in the general metabolism as free nucleotides and in the transfer of genetic information via covalent polymerization to nucleic acids. The changes in their pools directly impact both bioenergetic pathways and nucleic acid turnover. Here we outline the concept of metabolic closure of biosystems grounded in the dual function of nucleotide coenzymes that serve both as energetic and informational molecules and through this duality generate the autopoietic performance and the ability for codepoietic evolutionary transformations of living systems starting from the emergence of prebiotic systems.
Collapse
|
4
|
Killiny N. Made for Each Other: Vector-Pathogen Interfaces in the Huanglongbing Pathosystem. PHYTOPATHOLOGY 2022; 112:26-43. [PMID: 34096774 DOI: 10.1094/phyto-05-21-0182-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus greening, or huanglongbing (HLB), currently is the most destructive disease of citrus. HLB disease is putatively caused by the phloem-restricted α-proteobacterium 'Candidatus Liberibacter asiaticus'. This bacterium is transmitted primarily by the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Most animal pathogens are considered pathogenic to their insect vectors, whereas the relationships between plant pathogens and their insect vectors are variable. Lately, the relationship of 'Ca. L. asiaticus' with its insect vector, D. citri, has been well investigated at the molecular, biochemical, and biological levels in many studies. Herein, the findings concerning this relationship are discussed and molecular features of the acquisition of 'Ca. L. asiaticus' from the plant host and its growth and circulation within D. citri, as well as its transmission to plants, are presented. In addition, the effects of 'Ca. L. asiaticus' on the energy metabolism (respiration, tricarboxylic acid cycle, and adenosine triphosphate production), metabolic pathways, immune system, endosymbionts, and detoxification enzymes of D. citri are discussed together with other impacts such as shorter lifespan, altered feeding behavior, and higher fecundity. Overall, although 'Ca. L. asiaticus' has significant negative effects on its insect vector, it increases its vector fitness, indicating that it develops a mutualistic relationship with its vector. This review will help in understanding the specific interactions between 'Ca. L. asiaticus' and its psyllid vector in order to design innovative management strategies.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
5
|
Yang Y, Zhang Y, Gao J, Xu W, Xu Z, Li Z, Cheng J, Tao L. Pyrethrum extract induces oxidative DNA damage and AMPK/mTOR-mediated autophagy in SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139925. [PMID: 32562985 DOI: 10.1016/j.scitotenv.2020.139925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Pyrethrum extract is used to produce the most widely applied botanical pesticides in agriculture. Though it primarily targets voltage-gated sodium channels in pests, its toxic effects in non-target systems, particularly in humans, is unclear. In this study, we investigated potential cytotoxic effects and their underlying mechanisms on human nerve cells in vitro. We found that pyrethrum extract exposure markedly inhibited cell viability and triggered oxidative DNA damage in human SH-SY5Y cells. It also induced LC3-II formation, upregulated Beclin-1 protein production, downregulated p62 protein production, and facilitated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR). These results indicate that cytotoxic exposure to pyrethrum extract could be associated with AMPK/mTOR-mediated autophagy in human nerve cells. Furthermore, the oxidative DNA damage suggests that pyrethrum extract exerts severe toxic effects on human nerve cells. In conclusion, pyrethrum extract carries a risk to human health by inducing cytotoxicity.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 2020; 151:104553. [DOI: 10.1016/j.phrs.2019.104553] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/14/2023]
|
7
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Bhagat HA, Compton SA, Musso DL, Laudeman CP, Jackson KMP, Yi NY, Nierobisz LS, Forsberg L, Brenman JE, Sexton JZ. N-substituted phenylbenzamides of the niclosamide chemotype attenuate obesity related changes in high fat diet fed mice. PLoS One 2018; 13:e0204605. [PMID: 30359371 PMCID: PMC6201879 DOI: 10.1371/journal.pone.0204605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Obesity and insulin resistance are primary risk factors for Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD is generally exhibited by non-progressive simple steatosis. However, a significant subset of patient's progress to nonalcoholic steatohepatitis (NASH) that is defined by the presence of steatosis, inflammation and hepatocyte injury with fibrosis. Unfortunately, there are no approved therapies for NAFLD or NASH and therefore therapeutic approaches are urgently needed. Niclosamide is an U.S. Food and Drug Administration (FDA)-approved anthelmintic drug that mediates its effect by uncoupling oxidative phosphorylation. Niclosamide and its salt forms, Niclosamide Ethanolamine (NEN), and Niclosamide Piperazine (NPP) have shown efficacy in murine models of diet induced obesity characterized by attenuation of the prominent fatty liver disease phenotype and improved glucose metabolism. While the exact mechanism(s) underlying these changes remains unclear, the ability to uncouple oxidative phosphorylation leading to increased energy expenditure and lipid metabolism or attenuation of PKA mediated glucagon signaling in the liver have been proposed. Unfortunately, niclosamide has very poor water solubility, leading to low oral bioavailability. This, in addition to mitochondrial uncoupling activity and potential genotoxicity have reduced enthusiasm for its clinical use. More recently, salt forms of niclosamide, NEN and NPP, have demonstrated improved oral bioavailability while retaining activity. This suggests that development of safer more effective niclosamide derivatives for the treatment of NAFLD and Type 2 Diabetes may be possible. Herein we explored the ability of a series of N-substituted phenylbenzamide derivatives of the niclosamide salicylanilide chemotype to attenuate hepatic steatosis using a novel phenotypic in vitro model of fatty liver and the high fat diet-fed mouse model of diet induced obesity. These studies identified novel compounds with improved pre-clinical properties that attenuate hepatic steatosis in vitro and in vivo. These compounds with improved drug properties may be useful in alleviating symptoms and protection against disease progression in patients with metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Hiral A Bhagat
- Curl Bio LLC, Durham, North Carolina, United States of America
| | - Sarah A Compton
- Curl Bio LLC, Durham, North Carolina, United States of America
| | - David L Musso
- Curl Bio LLC, Durham, North Carolina, United States of America
| | | | | | - Na Young Yi
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Lidia S Nierobisz
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Lawrence Forsberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay E Brenman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z Sexton
- Curl Bio LLC, Durham, North Carolina, United States of America
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Molecular signature pathway of gene protein interaction in human mitochondrial DNA (mtDNA) metabolism linked disease. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2018. [DOI: 10.1016/j.injms.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins encoded by the nme (non-metastatic cells) genes, also called NM23. NDPKs catalyze the transfer of γ-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high-energy phosphohistidine intermediate. Growing evidence shows that NDPKs, particularly NDPK-B, can additionally act as a protein histidine kinase. Protein kinases and phosphatases that regulate reversible O-phosphorylation of serine, threonine, and tyrosine residues have been studied extensively in many organisms. Interestingly, other phosphoamino acids histidine, lysine, arginine, aspartate, glutamate, and cysteine exist in abundance but remain understudied due to the paucity of suitable methods and antibodies. The N-phosphorylation of histidine by histidine kinases via the two- or multi-component signaling systems is an important mediator in cellular responses in prokaryotes and lower eukaryotes, like yeast, fungi, and plants. However, in vertebrates knowledge of phosphohistidine signaling has lagged far behind and the identity of the protein kinases and protein phosphatases involved is not well established. This article will therefore provide an overview of our current knowledge on protein histidine phosphorylation particularly the role of nm 23 gene products as protein histidine kinases.
Collapse
Affiliation(s)
- Paul V Attwood
- School of Molecular Sciences, The University of Western Australia (M310), Crawley, WA, Australia
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. J Transl Med 2018; 98:283-290. [PMID: 29200201 DOI: 10.1038/labinvest.2017.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins encoded by the nme (non-metastatic cells) genes, also called NM23. NDPKs catalyze the transfer of γ-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high-energy phosphohistidine intermediate. Growing evidence shows that NDPKs, particularly NDPK-B, can additionally act as a protein histidine kinase. Protein kinases and phosphatases that regulate reversible O-phosphorylation of serine, threonine, and tyrosine residues have been studied extensively in many organisms. Interestingly, other phosphoamino acids histidine, lysine, arginine, aspartate, glutamate, and cysteine exist in abundance but remain understudied due to the paucity of suitable methods and antibodies. The N-phosphorylation of histidine by histidine kinases via the two- or multi-component signaling systems is an important mediator in cellular responses in prokaryotes and lower eukaryotes, like yeast, fungi, and plants. However, in vertebrates knowledge of phosphohistidine signaling has lagged far behind and the identity of the protein kinases and protein phosphatases involved is not well established. This article will therefore provide an overview of our current knowledge on protein histidine phosphorylation particularly the role of nm 23 gene products as protein histidine kinases.
Collapse
|
12
|
Luzarowski M, Kosmacz M, Sokolowska E, Jasińska W, Willmitzer L, Veyel D, Skirycz A. Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3487-3499. [PMID: 28586477 PMCID: PMC5853561 DOI: 10.1093/jxb/erx183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/04/2017] [Indexed: 05/22/2023]
Abstract
Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Ewelina Sokolowska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Weronika Jasińska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- Correspondence:
| |
Collapse
|
13
|
Luzarowski M, Kosmacz M, Sokolowska E, Jasinska W, Willmitzer L, Veyel D, Skirycz A. Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. JOURNAL OF EXPERIMENTAL BOTANY 2017. [PMID: 28586477 DOI: 10.93/jxb/erx183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ewelina Sokolowska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Weronika Jasinska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice. PLoS One 2017; 12:e0176502. [PMID: 28437447 PMCID: PMC5402959 DOI: 10.1371/journal.pone.0176502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.
Collapse
Affiliation(s)
- Sarah W. Renner
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Lauren M. Walker
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jay E. Brenman
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism. Appl Environ Microbiol 2017; 83:AEM.03005-16. [PMID: 28039132 DOI: 10.1128/aem.03005-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023] Open
Abstract
Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical levels. The growth of the plant-pathogenic bacteria in the hemolymph of their vectors indicated that the hemolymph contains all the necessary nutrients for their growth. In addition to nutrients, "Candidatus Liberibacter asiaticus" (CLas) can take up energetic nucleotides, such as ATP, from its vector, Diaphorina citri, using ATP translocase. In this study, we found that the CLas pathogen manipulates the energy metabolism of its insect vector. The accumulation of ATP in CLas-infected D. citri psyllids indicated that CLas induces ATP production to fulfill its need for this energetic compound. As a result of ATP accumulation, a shorter life span and altered feeding behavior were observed. These findings increase our knowledge of insect transmission of the persistent-circulative-propagative type of plant pathogens vectored by insects.
Collapse
|
16
|
Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity. Genes (Basel) 2017; 8:genes8010046. [PMID: 28117753 PMCID: PMC5295039 DOI: 10.3390/genes8010046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
The ability of all organisms to copy their genetic information via DNA replication is a prerequisite for cell division and a biological imperative of life. In multicellular organisms, however, mutations arising from DNA replication errors in the germline and somatic cells are the basis of genetic diseases and cancer, respectively. Within human tumors, replication errors additionally contribute to mutator phenotypes and tumor heterogeneity, which are major confounding factors for cancer therapeutics. Successful DNA replication involves the coordination of many large-scale, complex cellular processes. In this review, we focus on the roles that defects in enzymes that normally act at the replication fork and dysregulation of enzymes that inappropriately damage single-stranded DNA at the fork play in causing mutations that contribute to carcinogenesis. We focus on tumor data and experimental evidence that error-prone variants of replicative polymerases promote carcinogenesis and on research indicating that the primary target mutated by APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) cytidine deaminases is ssDNA present at the replication fork. Furthermore, we discuss evidence from model systems that indicate replication stress and other cancer-associated metabolic changes may modulate mutagenic enzymatic activities at the replication fork.
Collapse
|
17
|
Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. ACTA ACUST UNITED AC 2016; 219:2673-86. [PMID: 27335449 DOI: 10.1242/jeb.141176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023]
Abstract
Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | | | - Kelly M Cox
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Kelly R Karch
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
18
|
Onyenwoke RU, Brenman JE. Lysosomal Storage Diseases-Regulating Neurodegeneration. J Exp Neurosci 2016; 9:81-91. [PMID: 27081317 PMCID: PMC4822725 DOI: 10.4137/jen.s25475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Jay E Brenman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Abstract
In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -β, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC, USA.
| | - Jay E Brenman
- Department of Cell Biology and Physiology, Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama. Comp Biochem Physiol A Mol Integr Physiol 2015; 192:28-37. [PMID: 26603556 DOI: 10.1016/j.cbpa.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Abstract
Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions.
Collapse
|
21
|
Abstract
The exact mechanisms underlying the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV) are unclear. In the present study, we provide evidence that mTOR regulates the opening and closing of the lysosomal channel responsible for MLIV through phosphorylation. Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca2+ efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.
Collapse
|
22
|
Ou T, Hou X, Guan S, Dai J, Han W, Li R, Wang W, Qu X, Zhang M. Targeting AMPK signalling pathway with natural medicines for atherosclerosis therapy: an integration of in silico screening and in vitro assay. Nat Prod Res 2015; 30:1240-7. [PMID: 26166578 DOI: 10.1080/14786419.2015.1050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An integration of virtual screening and kinase assay was reported to identify AMPK kinase inhibitors from various natural medicines.The activation of AMP-activated protein kinase (AMPK) signalling pathway plays a central role in the pathologic progression of atherosclerosis (AS). Targeting the AMPK is thus considered as a potential therapeutics to attenuate AS. Here, we report the establishment of a synthetic pipeline that integrates in silico virtual screening and in vitro kinase assay to discover new lead compounds of AMPK inhibitors. The screening is performed against a large-size pool of structurally diverse natural products, from which a number of compounds are inferred as promising candidates, and few of them are further tested in vitro by using a standard kinase assay protocol to determine their inhibitory potency against AMPK. With this scheme we successfully identify five potent AMPK inhibitors with IC50 values at micromolar level. We also examine the structural basis and molecular mechanism of nonbonded interaction network across the modelled complex interface of AMPK kinase domain with a newly identified natural medicine.
Collapse
Affiliation(s)
- Tiantong Ou
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Xumin Hou
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Shaofeng Guan
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Jinjie Dai
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Wenzheng Han
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Ruogu Li
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Wenxia Wang
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Xinkai Qu
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| | - Min Zhang
- a Cardiology Department of Shanghai Chest Hospital , Shanghai Jiaotong University , 241 West Huaihai Road, Shanghai 200030 , P.R. China
| |
Collapse
|
23
|
Takács-Vellai K, Vellai T, Farkas Z, Mehta A. Nucleoside diphosphate kinases (NDPKs) in animal development. Cell Mol Life Sci 2015. [PMID: 25537302 DOI: 10.07/s00018-014-1803-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In textbooks of biochemistry, nucleoside diphosphate conversion to a triphosphate by nucleoside diphosphate 'kinases' (NDPKs, also named NME or NM23 proteins) merits a few lines of text. Yet this essential metabolic function, mediated by a multimeric phosphotransferase protein, has effects that lie beyond a simple housekeeping role. NDPKs attracted more attention when NM23-H1 was identified as the first metastasis suppressor gene. In this review, we examine these NDPK enzymes from a developmental perspective because of the tractable phenotypes found in simple animal models that point to common themes. The data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. NDPKs regulate different forms of membrane enclosure that engulf dying cells during development. We suggest that NDPK enzymes have been essential for the regulated uptake of objects such as bacteria or micronutrients, and this evolutionarily conserved endocytic function contributes to their activity towards the regulation of metastasis.
Collapse
Affiliation(s)
- Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary,
| | | | | | | |
Collapse
|
24
|
Takács-Vellai K, Vellai T, Farkas Z, Mehta A. Nucleoside diphosphate kinases (NDPKs) in animal development. Cell Mol Life Sci 2015; 72:1447-62. [PMID: 25537302 PMCID: PMC11113130 DOI: 10.1007/s00018-014-1803-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
In textbooks of biochemistry, nucleoside diphosphate conversion to a triphosphate by nucleoside diphosphate 'kinases' (NDPKs, also named NME or NM23 proteins) merits a few lines of text. Yet this essential metabolic function, mediated by a multimeric phosphotransferase protein, has effects that lie beyond a simple housekeeping role. NDPKs attracted more attention when NM23-H1 was identified as the first metastasis suppressor gene. In this review, we examine these NDPK enzymes from a developmental perspective because of the tractable phenotypes found in simple animal models that point to common themes. The data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. NDPKs regulate different forms of membrane enclosure that engulf dying cells during development. We suggest that NDPK enzymes have been essential for the regulated uptake of objects such as bacteria or micronutrients, and this evolutionarily conserved endocytic function contributes to their activity towards the regulation of metastasis.
Collapse
Affiliation(s)
- Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary,
| | | | | | | |
Collapse
|
25
|
Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A 2015; 112:E2467-76. [PMID: 25827231 DOI: 10.1073/pnas.1422934112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.
Collapse
|
26
|
Chuang HC, Chou CC, Kulp SK, Chen CS. AMPK as a potential anticancer target - friend or foe? Curr Pharm Des 2015; 20:2607-18. [PMID: 23859619 DOI: 10.2174/13816128113199990485] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted.
Collapse
Affiliation(s)
| | | | | | - Ching-Shih Chen
- Rm 336, Parks Hall, College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: studies on development, cardiovascular disease, and cancer metastasis exemplified. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:109-17. [PMID: 25585611 PMCID: PMC10153104 DOI: 10.1007/s00210-014-1079-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
28
|
The ubiquitin E3 ligase SCF-FBXO24 recognizes deacetylated nucleoside diphosphate kinase A to enhance its degradation. Mol Cell Biol 2015; 35:1001-13. [PMID: 25582197 DOI: 10.1128/mcb.01185-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Skp-Cul-F box (SCF) ubiquitin E3 ligase machinery recognizes predominantly phosphodegrons or, less commonly, an (I/L)Q molecular signature within substrates to facilitate their recruitment in mediating protein ubiquitination and degradation. Here, we examined the molecular signals that determine the turnover of the multifunctional enzyme nucleoside diphosphate kinase A (NDPK-A) that controls cell proliferation. NDPK-A protein exhibits a half-life of ∼6 h in HeLa cells and is targeted for ubiquitylation through actions of the F-box protein FBXO24. SCF-FBXO24 polyubiquitinates NDPK-A at K85, and two NH(2)-terminal residues, L55 and K56, were identified as important molecular sites for FBXO24 interaction. Importantly, K56 acetylation impairs its interaction with FBXO24, and replacing K56 with Q56, an acetylation mimic, reduces NDPK-A FBXO24 binding capacity. The acetyltransferase GCN5 catalyzes K56 acetylation within NDPK-A, thereby stabilizing NDPK-A, whereas GCN5 depletion in cells accelerates NDPK-A degradation. Cellular expression of an NDPK-A acetylation mimic or FBXO24 silencing increases NDPK-A life span which, in turn, impairs cell migration and wound healing. We propose that lysine acetylation when presented in the appropriate context may be recognized by some F-box proteins as a unique inhibitory molecular signal for their recruitment to restrict substrate degradation.
Collapse
|
29
|
Francois-Moutal L, Marcillat O, Granjon T. Structural comparison of highly similar nucleoside-diphosphate kinases: Molecular explanation of distinct membrane-binding behavior. Biochimie 2014; 105:110-8. [DOI: 10.1016/j.biochi.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
|
30
|
Ignesti M, Barraco M, Nallamothu G, Woolworth JA, Duchi S, Gargiulo G, Cavaliere V, Hsu T. Notch signaling during development requires the function of awd, the Drosophila homolog of human metastasis suppressor gene Nm23. BMC Biol 2014; 12:12. [PMID: 24528630 PMCID: PMC3937027 DOI: 10.1186/1741-7007-12-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/10/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Drosophila abnormal wing discs (awd) belongs to a highly conserved family of genes implicated in metastasis suppression, metabolic homeostasis and epithelial morphogenesis. The cellular function of the mammalian members of this family, the Nm23 proteins, has not yet been clearly defined. Previous awd genetic analyses unraveled its endocytic role that is required for proper internalization of receptors controlling different signaling pathways. In this study, we analyzed the role of Awd in controlling Notch signaling during development. RESULTS To study the awd gene function we used genetic mosaic approaches to obtain cells homozygous for a loss of function allele. In awd mutant follicle cells and wing disc cells, Notch accumulates in enlarged early endosomes, resulting in defective Notch signaling. Our results demonstrate that awd function is required before γ-secretase mediated cleavage since over-expression of the constitutively active form of the Notch receptor in awd mutant follicle cells allows rescue of the signaling. By using markers of different endosomal compartments we show that Notch receptor accumulates in early endosomes in awd mutant follicle cells. A trafficking assay in living wing discs also shows that Notch accumulates in early endosomes. Importantly, constitutively active Rab5 cannot rescue the awd phenotype, suggesting that awd is required for Rab5 function in early endosome maturation. CONCLUSIONS In this report we demonstrate that awd is essential for Notch signaling via its endocytic role. In addition, we identify the endocytic step at which Awd function is required for Notch signaling and we obtain evidence indicating that Awd is necessary for Rab5 function. These findings provide new insights into the developmental and pathophysiological function of this important gene family.
Collapse
Affiliation(s)
- Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Selmi, 3, Bologna 40126, Italy
| | - Marilena Barraco
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Selmi, 3, Bologna 40126, Italy
- Present address: Institute of Hematology “L. e A. Seràgnoli”, University of Bologna, Bologna, Italy
| | - Gouthami Nallamothu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Julie A Woolworth
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Serena Duchi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Selmi, 3, Bologna 40126, Italy
- Present address: Bone Regeneration Laboratory, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Selmi, 3, Bologna 40126, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Selmi, 3, Bologna 40126, Italy
| | - Tien Hsu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| |
Collapse
|
31
|
Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Wang KZQ, Zhu J, Klein-Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayir H, Kagan VE. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013; 15:1197-1205. [PMID: 24036476 PMCID: PMC3806088 DOI: 10.1038/ncb2837] [Citation(s) in RCA: 825] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an 'eat-me' signal for the elimination of damaged mitochondria from neuronal cells.
Collapse
Affiliation(s)
- Charleen T. Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jing Ji
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ruben K. Dagda
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jian Fei Jiang
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alexandr A. Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Dariush Mohammadyani
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Jianhui Zhu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Krishnakumar Balasubramanian
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Grigory Borisenko
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Zhentai Huang
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Aaron M. Gusdon
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amin Cheikhi
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Erin K. Steer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ruth Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Catherine Baty
- Department of Cell Biology and Physiology and Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Simon Watkins
- Department of Cell Biology and Physiology and Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, PA 15213
| | - Hülya Bayir
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
32
|
Kroeker AL, Ezzati P, Coombs KM, Halayko AJ. Influenza A Infection of Primary Human Airway Epithelial Cells Up-Regulates Proteins Related to Purine Metabolism and Ubiquitin-Related Signaling. J Proteome Res 2013; 12:3139-51. [DOI: 10.1021/pr400464p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea L. Kroeker
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Peyman Ezzati
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
- Department of Medical Microbiology,
Faculty of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - Andrew J. Halayko
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
| |
Collapse
|
33
|
King JD, Lee J, Riemen CE, Neumann D, Xiong S, Foskett JK, Mehta A, Muimo R, Hallows KR. Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase. J Biol Chem 2012; 287:33389-400. [PMID: 22869372 PMCID: PMC3460441 DOI: 10.1074/jbc.m112.396036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel mutations cause cystic fibrosis lung disease. A better understanding of CFTR regulatory mechanisms could suggest new therapeutic strategies. AMP-activated protein kinase (AMPK) binds to and phosphorylates CFTR, attenuating PKA-activated CFTR gating. However, the requirement for AMPK binding to CFTR and the potential role of other proteins in this regulation are unclear. We report that nucleoside diphosphate kinase A (NDPK-A) interacts with both AMPK and CFTR in overlay blots of airway epithelial cell lysates. Binding studies in Xenopus oocytes and transfected HEK-293 cells revealed that a CFTR peptide fragment that binds AMPK (CFTR-1420-57) disrupted the AMPK-CFTR interaction. Introduction of CFTR-1420-57 into human bronchial Calu-3 cells enhanced forskolin-stimulated whole cell conductance in patch clamp measurements. Similarly, injection of CFTR-1420-57 into Xenopus oocytes blocked the inhibition of cAMP-stimulated CFTR conductance by AMPK in two-electrode voltage clamp studies. AMPK also inhibited CFTR conductance with co-expression of WT NDPK-A in two-electrode voltage clamp studies, but co-expression of a catalytically inactive H118F mutant or various Ser-120 NDPK-A mutants prevented this inhibition. In vitro phosphorylation of WT NDPK-A was enhanced by purified active AMPK, but phosphorylation was prevented in H118F and phosphomimic Ser-120 NDPK-A mutants. AMPK does not appear to phosphorylate NDPK-A directly but rather promotes an NDPK-A autophosphorylation event that involves His-118 and Ser-120. Taken together, these results suggest that NDPK-A exists in a functional cellular complex with AMPK and CFTR in airway epithelia, and NDPK-A catalytic function is required for the AMPK-dependent regulation of CFTR.
Collapse
Affiliation(s)
- J Darwin King
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|