1
|
Wu Y, Luo Y, Li T. A metabolic reprogramming-related gene signature correlates with prognosis and proliferation of BLCA. Discov Oncol 2024; 15:338. [PMID: 39115575 PMCID: PMC11310377 DOI: 10.1007/s12672-024-01219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/02/2024] [Indexed: 08/11/2024] Open
Abstract
Bladder cancer (BLCA) is one of the most frequent urothelium carcinoma, but with poor prognosis due to lack of reliable predictive biomarkers. Metabolic reprogramming involving in various nutrients, and is reported to be closely associated with malignant progression in BLCA. With the use of transcriptome sequencing data profiles of 349 patients from The Cancer Genome Atlas, we established a three-gene glycolysis-related signature to predict the prognosis of BLCA patients. Our signature constructed on the basis of AK3, GALK1 and NUP205 expression, detail features and interactions between these three genes were further explored. We established a nomogram by integrating clinical variables and the risk score. Glycolytic level and proliferation ability were detected to study the role and mechanisms of NUP205 on BLCA. The connections between three genes in our signature were independent. We found our signature gains more value for patients with highly malignant stage. The established nomogram also confirmed that the signature had a eligible clinically predict capacity. After inhibited NUP205 expression, we found the glycolysis level of BLCA cells decreased and proliferation ability suppressed, mainly through AMPK signaling pathway inactivation. Collectively, our study explored a three-gene glycolysis-related signature that predict the prognosis of patients with BLCA, and highlights NUP205 as a potential therapeutic target for inhibiting glycolytic processes and proliferation in BLCA cells.
Collapse
Affiliation(s)
- Yaoxin Wu
- Health Management Center, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Luo
- The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Tinghao Li
- The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
2
|
Burdet V, Bournonville L, Das M, Wenger E, Delattre M, Steiner FA, Guichard P, Hamel V. Ultrastructure Expansion Microscopy applied to C. elegans embryos. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001033. [PMID: 38774216 PMCID: PMC11106672 DOI: 10.17912/micropub.biology.001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Visualization of organelles using expansion microscopy has been previously applied to Caenorhadbitis elegans adult gonads or worms. However, its application to embryos has remained a challenge due to the protective eggshell barrier. Here, by combining freeze-cracking and ultrastructure expansion microscopy (U-ExM), we demonstrate a four-time isotropic expansion of C. elegans embryos. As an example structure, we chose the nuclear pore and demonstrate that we achieve sufficient resolution to distinguish them individually. Our work provides proof of principle for U-ExM in C. elegans embryos, which will be applicable for imaging a wide range of cellular structures in this model system.
Collapse
Affiliation(s)
- Valentin Burdet
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Lorène Bournonville
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Moushumi Das
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Eva Wenger
- Ecole Normale Supérieure de Lyon, Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Marie Delattre
- Ecole Normale Supérieure de Lyon, Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Florian A. Steiner
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Paul Guichard
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| | - Virginie Hamel
- Molecular and Cellular Biology Department, University of Geneva, Switzerland
| |
Collapse
|
3
|
Kapoor S, Adhikary K, Kotak S. PP2A-B55 SUR-6 promotes nuclear envelope breakdown in C. elegans embryos. Cell Rep 2023; 42:113495. [PMID: 37995185 DOI: 10.1016/j.celrep.2023.113495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Nuclear envelope (NE) disassembly during mitosis is critical to ensure faithful segregation of the genetic material. NE disassembly is a phosphorylation-dependent process wherein mitotic kinases hyper-phosphorylate lamina and nucleoporins to initiate nuclear envelope breakdown (NEBD). In this study, we uncover an unexpected role of the PP2A phosphatase B55SUR-6 in NEBD during the first embryonic division of Caenorhabditis elegans embryo. B55SUR-6 depletion delays NE permeabilization and stabilizes lamina and nucleoporins. As a result, the merging of parental genomes and chromosome segregation is impaired. NEBD defect upon B55SUR-6 depletion is not due to delayed mitotic onset or mislocalization of mitotic kinases. Importantly, we demonstrate that microtubule-dependent mechanical forces synergize with B55SUR-6 for efficient NEBD. Finally, our data suggest that the lamin LMN-1 is likely a bona fide target of PP2A-B55SUR-6. These findings establish a model highlighting biochemical crosstalk between kinases, PP2A-B55SUR-6 phosphatase, and microtubule-generated mechanical forces in timely NE dissolution.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
4
|
Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadf7826. [PMID: 37467327 PMCID: PMC10355831 DOI: 10.1126/sciadv.adf7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Nkombo Nkoula
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lucie Van Hove
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Géraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
5
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Drey
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Onyundo
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Nkoula SN, Velez-Aguilera G, Ossareh-Nazari B, Hove LV, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of Nuclear Pore Complex disassembly by the mitotic Polo-Like Kinase 1 (PLK-1) in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528438. [PMID: 36865292 PMCID: PMC9980100 DOI: 10.1101/2023.02.21.528438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.
Collapse
|
7
|
Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Joly N, Pintard L. Cortical microtubule pulling forces contribute to the union of the parental genomes in the C. elegans zygote. eLife 2022; 11:75382. [PMID: 35259092 PMCID: PMC8956289 DOI: 10.7554/elife.75382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single Caenorhabditis elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelope scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here, we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelopes remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.
Collapse
Affiliation(s)
| | | | - Lucie Van Hove
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| | - Nicolas Joly
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| | - Lionel Pintard
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| |
Collapse
|
8
|
de la Cruz Ruiz P, Romero-Bueno R, Askjaer P. Analysis of Nuclear Pore Complexes in Caenorhabditis elegans by Live Imaging and Functional Genomics. Methods Mol Biol 2022; 2502:161-182. [PMID: 35412238 DOI: 10.1007/978-1-0716-2337-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear pore complexes (NPCs) are essential to communication of macromolecules between the cell nucleus and the surrounding cytoplasm. RNA synthesized in the nucleus is exported through NPCs to function in the cytoplasm, whereas transcription factors and other proteins are selectively and actively imported. In addition, many NPC constituents, known as nuclear pore proteins (nucleoporins or nups), also play critical roles in other processes, such as genome organization, gene expression, and kinetochore function. Thanks to its genetic amenability and transparent body, the nematode Caenorhabditis elegans is an attractive model to study NPC dynamics. We provide here an overview of available genome engineered strains and FLP/Frt-based tools to study tissue-specific functions of individual nucleoporins. We also present protocols for live imaging of fluorescently tagged nucleoporins in intact tissues of embryos, larvae, and adult and for analysis of interactions between nucleoporins and chromatin by DamID.
Collapse
Affiliation(s)
- Patricia de la Cruz Ruiz
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Raquel Romero-Bueno
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
9
|
Rahman M, Chang IY, Harned A, Maheshwari R, Amoateng K, Narayan K, Cohen-Fix O. C. elegans pronuclei fuse after fertilization through a novel membrane structure. J Cell Biol 2020; 219:e201909137. [PMID: 31834351 PMCID: PMC7041684 DOI: 10.1083/jcb.201909137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.
Collapse
Affiliation(s)
- Mohammad Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Irene Y. Chang
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kwabena Amoateng
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J, Joly N, Desai A, Doye V, Pintard L. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans. Dev Cell 2017; 43:157-171.e7. [PMID: 29065307 PMCID: PMC8184135 DOI: 10.1016/j.devcel.2017.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.
Collapse
Affiliation(s)
- Lisa Martino
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Stéphanie Morchoisne-Bolhy
- Non-conventional Functions of Nuclear Pore, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lucie Van Hove
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Dumont
- Cell Division and Reproduction, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Joly
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Valérie Doye
- Non-conventional Functions of Nuclear Pore, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lionel Pintard
- Cell Cycle and Development, Institut Jacques Monod, UMR7592 CNRS - Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
11
|
Ferreira J, Stear JH, Saumweber H. Nucleoporins NPP-10, NPP-13 and NPP-20 are required for HCP-4 nuclear import to establish correct centromere assembly. J Cell Sci 2017; 130:963-974. [PMID: 28122936 DOI: 10.1242/jcs.196709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Centromeres form a chromosomal platform for the assembly of the kinetochores, which are required for orderly chromosome segregation. Assembly of both centromeres and kinetochores proceeds by a step-by-step mechanism that is regulated in time and space. It has been suggested that the regulated nuclear import of centromeric proteins is involved in this process. We show that the knockdown of nucleoporins NPP-10, NPP-13 and NPP-20 in Caenorhabditiselegans affects early steps in centromere formation and sister centromere resolution, and results in severe chromosomal defects in the early embryo. These phenotypes mirror the knockdown phenotype of HCP-4 (an ortholog of mammalian CENP-C), a key factor for centromere formation and inner kinetochore assembly. HCP-4 is present in the cytoplasm during interphase. It is imported into nuclei and assembled in centromeres during prophase. Following the knockdown of NPP-10, NPP-13 and NPP-20, HCP-4 remains in the cytosol throughout prophase due to stalled import. In prometaphase and later mitotic stages after breakdown of the nuclear envelope, HCP-4 is not incorporated into centromeres. These results indicate that correct timing of the availability of HCP-4 by nuclear import is essential.
Collapse
Affiliation(s)
- Jorge Ferreira
- Cytogenetics group, Institute of Biology, Humboldt-Universität zu Berlin, Chausseestr. 117, Berlin 10115, Germany
| | - Jeffrey H Stear
- University of New South Wales, School of Medical Sciences, Sydney, New South Wales 2052, Australia
| | - Harald Saumweber
- Cytogenetics group, Institute of Biology, Humboldt-Universität zu Berlin, Chausseestr. 117, Berlin 10115, Germany
| |
Collapse
|
12
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
13
|
Makarova M, Oliferenko S. Mixing and matching nuclear envelope remodeling and spindle assembly strategies in the evolution of mitosis. Curr Opin Cell Biol 2016; 41:43-50. [PMID: 27062548 PMCID: PMC7100904 DOI: 10.1016/j.ceb.2016.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotes, cellular genome is enclosed inside a membrane-bound organelle called the nucleus. The nucleus compartmentalizes genome replication, repair and expression, keeping these activities separated from protein synthesis and other metabolic processes. Each proliferative division, the duplicated chromosomes must be equipartitioned between the daughter cells and this requires precise coordination between assembly of the microtubule-based mitotic spindle and nuclear remodeling. Here we review a surprising variety of strategies used by modern eukaryotes to manage these processes and discuss possible mechanisms that might have led to the emergence of this diversity in evolution.
Collapse
Affiliation(s)
- Maria Makarova
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Snezhana Oliferenko
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
14
|
Rahman MM, Munzig M, Kaneshiro K, Lee B, Strome S, Müller-Reichert T, Cohen-Fix O. Caenorhabditis elegans polo-like kinase PLK-1 is required for merging parental genomes into a single nucleus. Mol Biol Cell 2015; 26:4718-35. [PMID: 26490119 PMCID: PMC4678026 DOI: 10.1091/mbc.e15-04-0244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/13/2015] [Indexed: 11/11/2022] Open
Abstract
Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1-dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mandy Munzig
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology Dresden, 01307 Dresden, Germany
| | - Kiyomi Kaneshiro
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Brandon Lee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Thomas Müller-Reichert
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology Dresden, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Tavernier N, Panbianco C, Gotta M, Pintard L. Cdk1 plays matchmaker for the Polo-like kinase and its activator SPAT-1/Bora. Cell Cycle 2015; 14:2394-8. [PMID: 26038951 DOI: 10.1080/15384101.2015.1053673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.
Collapse
Affiliation(s)
- Nicolas Tavernier
- a Jacques Monod Institute; UMR7592; Paris-Diderot University; CNRS ; Paris , France
| | | | | | | |
Collapse
|
16
|
Arquint C, Gabryjonczyk AM, Nigg EA. Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0464. [PMID: 25047618 DOI: 10.1098/rstb.2013.0464] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosomes-as well as the related spindle pole bodies (SPBs) of yeast-have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole-ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept-in need of further scrutiny. We hope that this review will stimulate thought and experimentation.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Vollmer B, Antonin W. The diverse roles of the Nup93/Nic96 complex proteins - structural scaffolds of the nuclear pore complex with additional cellular functions. Biol Chem 2014; 395:515-28. [PMID: 24572986 DOI: 10.1515/hsz-2013-0285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/22/2014] [Indexed: 11/15/2022]
Abstract
Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.
Collapse
|
18
|
Blake J, Riddell A, Theiss S, Gonzalez AP, Haase B, Jauch A, Janssen JWG, Ibberson D, Pavlinic D, Moog U, Benes V, Runz H. Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation. PLoS One 2014; 9:e90894. [PMID: 24625750 PMCID: PMC3953210 DOI: 10.1371/journal.pone.0090894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/06/2014] [Indexed: 01/31/2023] Open
Abstract
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.
Collapse
Affiliation(s)
- Jonathon Blake
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Andrew Riddell
- Flow Cytometry Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Susanne Theiss
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Bettina Haase
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - David Ibberson
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
- CellNetworks Sequencing Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL. The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. ACTA ACUST UNITED AC 2014; 204:523-39. [PMID: 24515347 PMCID: PMC3926959 DOI: 10.1083/jcb.201307043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the nuclear pore complex and spindle pole body to ensure proper nuclear envelope insertion of both complexes. In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | | | | |
Collapse
|
20
|
Askjaer P, Galy V, Meister P. Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods Cell Biol 2014; 122:277-310. [DOI: 10.1016/b978-0-12-417160-2.00013-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Ikegami K, Lieb JD. Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans. Mol Cell 2013; 51:840-9. [PMID: 24011592 DOI: 10.1016/j.molcel.2013.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022]
Abstract
Nuclear pores associate with active protein-coding genes in yeast and have been implicated in transcriptional regulation. Here, we show that in addition to transcriptional regulation, key components of C. elegans nuclear pores are required for processing of a subset of small nucleolar RNAs (snoRNAs) and tRNAs transcribed by RNA polymerase (Pol) III. Chromatin immunoprecipitation of NPP-13 and NPP-3, two integral nuclear pore components, and importin-β IMB-1 provides strong evidence that this requirement is direct. All three proteins associate specifically with tRNA and snoRNA genes undergoing Pol III transcription. These pore components bind immediately downstream of the Pol III preinitiation complex but are not required for Pol III recruitment. Instead, NPP-13 is required for cleavage of tRNA and snoRNA precursors into mature RNAs, whereas Pol II transcript processing occurs normally. Our data suggest that integral nuclear pore proteins act to coordinate transcription and processing of Pol III transcripts in C. elegans.
Collapse
Affiliation(s)
- Kohta Ikegami
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
22
|
Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol 2013; 26:1-9. [PMID: 24529240 DOI: 10.1016/j.ceb.2013.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
A defining feature of eukaryotic cells is the nucleus, which houses the genome inside the nuclear envelope (NE): a double lipid bilayer that separates the nuclear and cytoplasmic materials. Although the NE is commonly viewed as a barrier that is overcome only by embedded nuclear pore complexes (NPCs) that facilitate nuclear-cytoplasmic trafficking, recent work in a wide range of eukaryotes reveals that the NE is a dynamic organelle that is modified each time the cell divides to ultimately establish two functional daughter nuclei. Here, we review how studies of divergent mitotic strategies have helped elucidate common properties of NE biology that allow it to function throughout the cell cycle.
Collapse
Affiliation(s)
- Christine J Smoyer
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
23
|
Bukata L, Parker SL, D'Angelo MA. Nuclear pore complexes in the maintenance of genome integrity. Curr Opin Cell Biol 2013; 25:378-86. [PMID: 23567027 DOI: 10.1016/j.ceb.2013.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 03/13/2013] [Indexed: 11/26/2022]
Abstract
Maintaining genome integrity is crucial for successful organismal propagation and for cell and tissue homeostasis. Several processes contribute to safeguarding the genomic information of cells. These include accurate replication of genetic information, detection and repair of DNA damage, efficient segregation of chromosomes, protection of chromosome ends, and proper organization of genome architecture. Interestingly, recent evidence shows that nuclear pore complexes, the channels connecting the nucleus with the cytoplasm, play important roles in these processes suggesting that these multiprotein platforms are key regulators of genome integrity.
Collapse
Affiliation(s)
- Lucas Bukata
- Cardiovascular Research Institute, Biochemistry and Biophysics Department, University of California San Francisco, San Francisco, CA 94158, United States
| | | | | |
Collapse
|