1
|
Zhong M, Zhu J, Zhang B, Shen H, Li H, Tang Y, Nie S, Mo F. Insulin level regulators may affect cognitive ability caused by motion sickness: an experimental study. Metab Brain Dis 2025; 40:203. [PMID: 40377761 DOI: 10.1007/s11011-025-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Abnormal acceleration induced motion sickness (MS) and elevated blood glucose levels, showing obviously cognitive impairments. The mechanism of cognitive impairment caused by MS is still unclear. Here, blood metabolite detection, insulin level regulators, stress hormones, cytokines and MS assessment were conducted for the population and MS model rats, correlation analysis of motion sickness index (MSI) and above factors were conducted by correlation analysis. We found glucose after acceleration was positively correlated with Graybiel's score. Insulin and leptin levels decreased, while ghrelin level increased after acceleration in both human and rat groups. We injected insulin level regulators into rats before being exposed to acceleration, the results showed that MSI of the insulin group (INS) was significantly lower than rotation group (ROT), streptozotocin group (STZ) and streptozotocin & insulin group (SINS). MSI in STZ was higher than ROT and INS. Rats injected with ghrelin showed higher MSI than the control group and ghrelin antagonist group. Acceleration stimulation induced phosphorylation of insulin receptor substrate 1 (IRS1) and expression of synaptic protein in hippocampus. We also found that the insulin microinjection into hippocampus prevented MS symptoms and cognitive ability as measured by the MSI, the Open Field Test, the T-maze, and the Morris water maze. Our study indicates that insulin and insulin level regulators can affect MS symptoms and cognitive ability.
Collapse
Affiliation(s)
- Mengyu Zhong
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
| | - Jian Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai, 201620, China
| | - Bohan Zhang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, 800 Xiangyin Rd, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
2
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Alqahtani SM, Al-Kuraishy HM, Al-Gareeb AI, Abdel-Fattah MM, Alsaiari AA, Alruwaili M, Papadakis M, Alexiou A, Batiha GES. Targeting of PP2 A/GSK3β/PTEN Axis in Alzheimer Disease: The Mooting Evidence, Divine, and Devil. Cell Mol Neurobiol 2025; 45:36. [PMID: 40251348 PMCID: PMC12008108 DOI: 10.1007/s10571-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease of the brain due to extracellular accumulation of Aβ. In addition, intracellular accumulation of hyperphosphorlyated tau protein which form neurofibrillary tangle (NFT) is associated with progressive neuronal injury and the development of AD. Aβ and NFTs interact together to induce inflammation and oxidative stress which further induce neurodegeneration in AD. The exact relationship between Aβ and tau, the two proteins that accumulate within these lesions, has proven elusive. A growing body of work supports the notion that Aβ may directly or indirectly interact with tau to accelerate NFTs formation. Aβ can adversely affect distinct molecular and cellular pathways, thereby facilitating tau phosphorylation, aggregation, mislocalization, and accumulation. Aβ may drive tau pathology by activating specific kinases, providing a straightforward mechanism by which Aβ may enhance tau hyperphosphorylation and NFT formation. Many cellular signaling pathways such as protein phosphatase 2A (PP2A), glycogen synthase kinase 3β (GSK3β), and phosphatase and tensin homologue (PTEN) are intricate in AD neuropathology. PP2A which involved in the dephosphorylation of tau protein is deregulated in AD, and correlated with cognitive impairment. PTEN is a critical regulator of neuronal growth, survival, and development, improving synaptic plasticity and axonal regeneration. Nevertheless, mutated PTEN is associated with the development of cognitive impairment by inhibiting the expression and the activity of PP2A. Furthermore, dysregulation of GSK3β affects Aβ, tau protein phosphorylation, synaptic plasticity and other signaling pathways involved in the pathogenesis of AD. Therefore, there is a close interaction among GSK3β, PTEN, and PP2A. GSK3β exaggerates AD neuropathology by inhibiting PP2A and activates the expression of PTEN. These findings specified a related interaction among GSK3β, PTEN, and PP2A, and modulation of the single component of this axis may not produce an effective effect against AD neuropathology. Modulation of this axis by metformin and statins can reduce AD neuropathology. Therefore, this review aims to discuss the role of GSK3β/PTEN/PP2A axis in AD neuropathology and how targeting of this axis by metformin and statins can produce effective therapeutic strategy in the management of AD. In conclusion, inhibition of GSK3β and PTEN and activation of PP2A may be more suitable than modulation of single signaling pathway. Metformin and statins by activating PP2A and inhibiting of GSK3β and PTEN attenuate the development and progression of AD.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology, Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, Po. Box (13), Kufa, Iraq
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- Department of Research & Development, Funogen, Athens, Greece
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
Xu S, Jiang L, Zhang Z, Luo X, Wu H, Tan Z. Network Toxicology and Molecular Docking Strategy for Analyzing the Toxicity and Mechanisms of Bisphenol A in Alzheimer's Disease. J Biochem Mol Toxicol 2025; 39:e70247. [PMID: 40192506 DOI: 10.1002/jbt.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 05/17/2025]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder marked by memory deterioration and cognitive impairment. Bisphenol A (BPA), a common environmental pollutant, has been linked to neurotoxicity and may contribute to AD development. This study aims to uncover potential toxicological targets and molecular mechanisms of BPA-induced AD. BPA's potential neurotoxic effects were predicted using ProTox and ADMETlab. Target prediction for BPA was conducted through the STITCH and Swiss Target Prediction platforms, while AD-related targets were compiled from GeneCards, OMIM, and the Therapeutic Target Database (TTD). Protein-protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Molecular docking was employed to evaluate the binding interactions between BPA and the identified core targets. Through systematic bioinformatics analyses, 137 candidate targets for BPA-elicited AD were identified. Screening via PPI network analysis highlighted five key targets: STAT3, AKT1, INS, EGFR, and PTEN. GO and KEGG pathway enrichment revealed significant involvement in oxidative stress, neuronal apoptosis, neurodegenerative processes, and pathways such as PI3K/AKT, MAPK, lipid and atherosclerosis, and AD signaling. Molecular docking simulations confirmed strong binding affinities between BPA and these core targets. This study sheds light on the molecular mechanisms underlying BPA's neurotoxic effects in the context of AD and provides a foundation for further research into preventive and therapeutic strategies. The integration of network toxicology and molecular docking offers a robust framework for unraveling toxic pathways of uncharacterized environmental and chemical agents.
Collapse
Affiliation(s)
- Sumei Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York, USA
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
5
|
Azimzadeh M, Cheah PS, Ling KH. Brain insulin resistance in Down syndrome: Involvement of PI3K-Akt/mTOR axis in early-onset of Alzheimer's disease and its potential as a therapeutic target. Biochem Biophys Res Commun 2024; 733:150713. [PMID: 39307112 DOI: 10.1016/j.bbrc.2024.150713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual impairment, characterised by an extra copy of chromosome 21. After the age of 40, DS individuals are highly susceptible to accelerated ageing and the development of early-onset Alzheimer-like neuropathology. In the context of DS, the brain presents a spectrum of neuropathological mechanisms and metabolic anomalies. These include heightened desensitisation of brain insulin and insulin-like growth factor-1 (IGF-1) reactions, compromised mitochondrial functionality, escalated oxidative stress, reduced autophagy, and the accumulation of amyloid beta and tau phosphorylation. These multifaceted factors intertwine to shape the intricate landscape of DS-related brain pathology. Altered brain insulin signalling is linked to Alzheimer's disease (AD). This disruption may stem from anomalies in the extracellular aspect (insulin receptor) or the intracellular facet, involving the inhibition of insulin receptor substrate 1 (IRS1). Both domains contribute to the intricate mechanism underlying this dysregulation. The PI3K-Akt/mammalian target of the rapamycin (mTOR) axis is a crucial intracellular element of the insulin signalling pathway that connects numerous physiological processes in the cell cycle. In age-related neurodegenerative disorders like AD, aberrant modulation of the PI3K-Akt signalling cascade is a key factor contributing to their onset. Aberrant and sustained hyperactivation of the PI3K/Akt-mTOR axis in the DS brain is implicated in early symptoms of AD development. Targeting the PI3K-Akt/mTOR pathway may help delay the onset of early-onset AD in individuals with DS, offering a potential way to slow disease progression and enhance their quality of life.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
7
|
Mishra D, Reddy I, Dey CS. PKCα Isoform Inhibits Insulin Signaling and Aggravates Neuronal Insulin Resistance. Mol Neurobiol 2023; 60:6642-6659. [PMID: 37470970 DOI: 10.1007/s12035-023-03486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Overexpression of PKCα has been linked to inhibit insulin signaling disrupting IRS-1 and Akt phosphorylations in skeletal muscle. PKCα inhibits IRS-1 and Akt phosphorylations, but not required for insulin-stimulated glucose transport in skeletal muscles. Inhibition of PKCα increased whereas in some studies decreased GLUT-4 levels at the plasma membrane in skeletal muscles and adipocytes. Controversial studies have reported opposite expression pattern of PKCα expression in insulin-resistant skeletal muscles. These findings indicate that the role of PKCα on insulin signaling is controversial and could be tissue specific. Evidently, studies are required to decipher the role of PKCα in regulating insulin signaling and preferably in other cellular systems. Utilizing neuronal cells, like Neuro-2a, SHSY-5Y and insulin-resistant diabetic mice brain tissues; we have demonstrated that PKCα inhibits insulin signaling, through IRS-Akt pathway in PP2A-dependent mechanism by an AS160-independent route involving 14-3-3ζ. Inhibition and silencing of PKCα improves insulin sensitivity by increasing GLUT-4 translocation to the plasma membrane and glucose uptake. PKCα regulates GSK3 isoforms in an opposite manner in insulin-sensitive and in insulin-resistant condition. Higher activity of PKCα aggravates insulin-resistant neuronal diabetic condition through GSK3β but not GSK3α. Our results mechanistically explored the contribution of PKCα in regulating neuronal insulin resistance and diabetes, which opens up new avenues in dealing with metabolic disorders and neurodegenerative disorders.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India.
| |
Collapse
|
8
|
Yadav Y, Sharma M, Dey CS. PP1γ regulates neuronal insulin signaling and aggravates insulin resistance leading to AD-like phenotypes. Cell Commun Signal 2023; 21:82. [PMID: 37085815 PMCID: PMC10120118 DOI: 10.1186/s12964-023-01071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND PP1γ is one of the isoforms of catalytic subunit of a Ser/Thr phosphatase PP1. The role of PP1γ in cellular regulation is largely unknown. The present study investigated the role of PP1γ in regulating neuronal insulin signaling and insulin resistance in neuronal cells. PP1 was inhibited in mouse neuroblastoma cells (N2a) and human neuroblastoma cells (SH-SY5Y). The expression of PP1α and PP1γ was determined in insulin resistant N2a, SH-SY5Y cells and in high-fat-diet-fed-diabetic mice whole-brain-lysates. PP1α and PP1γ were silenced by siRNA in N2a and SH-SY5Y cells and effect was tested on AKT isoforms, AS160 and GSK3 isoforms using western immunoblot, GLUT4 translocation by confocal microscopy and glucose uptake by fluorescence-based assay. RESULTS Results showed that, in one hand PP1γ, and not PP1α, regulates neuronal insulin signaling and insulin resistance by regulating phosphorylation of AKT2 via AKT2-AS160-GLUT4 axis. On the other hand, PP1γ regulates phosphorylation of GSK3β via AKT2 while phosphorylation of GSK3α via MLK3. Imbalance in this regulation results into AD-like phenotype. CONCLUSION PP1γ acts as a linker, regulating two pathophysiological conditions, neuronal insulin resistance and AD. Video Abstract.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
9
|
Yadav Y, Dey CS. PP2Cα aggravates neuronal insulin resistance leading to AD-like phenotype in vitro. Biochem Biophys Res Commun 2023; 644:49-54. [PMID: 36630734 DOI: 10.1016/j.bbrc.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Neuronal insulin resistance is a major risk for development of Alzheimer's Disease (AD). Studies already reported few kinases participating in neuronal insulin signaling connected with progression of AD pathogenesis, yet complete information is missing. α isoform of Protein Phosphatase-2C (PP2C) is a Ser/Thr phosphatase, only known in 3T3-L1 adipocytes as a positive regulator of insulin signaling. However, many aspects of its function in neuronal insulin signaling and insulin resistance are unidentified. Recently, we reported that PP2Cα positively regulates neuronal glucose uptake possibly by a mechanism of dephosphorylation of IRS-1 at Ser522 and by inactivating AMPK, exacerbating hyperinsulinemia mediated neuronal insulin resistance. Since PP2Cα affected neuronal insulin signaling and AD is connected to neuronal insulin resistance, in the present study, we studied the role of PP2Cα in regulating activities of both isoforms of GSK3α and GSK3β (one of the leading kinases for AD progression). The results led us to test the role of PP2Cα on AD hallmarks. Silencing of PP2Cα caused hyperphosphorylation of a potential kinase Tau, leading to NFT formation and increased Aβ deposition. Our study thereby demonstrates escalation of hyperinsulinemia mediated neuronal insulin resistance leading to AD-like pathogenesis by PP2Cα in vitro and hints a novel molecule, PP2Cα, linking AD pathogenesis.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 10016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 10016, India.
| |
Collapse
|
10
|
Dysregulation of sphingosine-1-phosphate (S1P) and S1P receptor 1 signaling in the 5xFAD mouse model of Alzheimer's disease. Brain Res 2023; 1799:148171. [PMID: 36410428 DOI: 10.1016/j.brainres.2022.148171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Sphingolipid-1-phosphate (S1P) signaling through the activation S1P receptors (S1PRs) plays critical roles in cellular events in the brain. Aberrant S1P metabolism has been identified in the brains of Alzheimer's disease (AD) patients. Our recent studies have shown that treatment with fingolimod, an analog of sphingosine, provides neuroprotective effects in five familiar Alzheimer disease (5xFAD) transgenic mice, resulting in the reduction of amyloid-β (Aβ) neurotoxicity, inhibition of activation of microglia and astrocytes, increased hippocampal neurogenesis, and improved learning and memory. However, the pathways by which dysfunctional S1P and S1PR signaling may associate with the development of AD-like pathology remain unknown. In this study, we investigated the alteration of signaling of S1P/S1P receptor 1 (S1PR1), the most abundant S1PR subtype in the brain, in the cortex of 5xFAD transgenic mice at 3, 8, and 14 months of age. Compared to non-transgenic wildtype (WT) littermates, we found significant decreased levels of sphingosine kinases (SphKs), increased S1P lyase (S1PL), and increased S1PR1 in 8- and 14-month-old, but not in 3-month-old 5xFAD mice. Furthermore, we detected increased activation of the S1PR1 downstream pathway of Akt/mTor/Tau signaling in aging 5xFAD mice. Treatment with fingolimod from 1 to 8 months of age reversed the levels of SphKs, S1PL, and furthermore, those of S1PR1 and its downstream pathway of Akt/mTor/Tau signaling. Together the data reveal that dysregulation of S1P and S1PR signaling may associate with the development of AD-like pathology through Akt/mTor/Tau signaling.
Collapse
|
11
|
Ma N, Liang Y, Yue L, Liu P, Xu Y, Zhu C. The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form. Front Aging Neurosci 2022; 14:1057281. [PMID: 36589543 PMCID: PMC9800792 DOI: 10.3389/fnagi.2022.1057281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimer's disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP). Methods 293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA). Results WTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay. Conclusion and discussion Overexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD.
Collapse
|
12
|
Yadav Y, Dey CS. PP2Cα positively regulates neuronal insulin signalling and aggravates neuronal insulin resistance. FEBS J 2022; 289:7561-7581. [PMID: 35810470 DOI: 10.1111/febs.16574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
PP2Cα is one of the newly identified isoforms of metal-dependent protein phosphatases (PPM). The role of this phosphatase in neuronal insulin signalling is completely unknown. In the present study, we show insulin-mediated rapid upregulation of a protein of the insulin signalling cascade, PP2Cα, in mouse N2a cells and human SH-SY5Y cells. By contrast, such PP2Cα upregulation is not observed in insulin-resistant conditions despite insulin stimulation. Here, we report that, under insulin-sensitive and insulin-resistant conditions, the translation of PP2Cα was regulated by insulin through c-Jun N-terminal kinase. PP2Cα in turn dephosphorylated a novel inhibitory site of insulin receptor substrate-1 at Ser522 and AMP-activated protein kinase, hence positively regulating neuronal insulin signalling and insulin resistance.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| |
Collapse
|
13
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
14
|
Sharma M, Dey CS. PHLPP isoforms differentially regulate Akt isoforms and AS160 affecting neuronal insulin signaling and insulin resistance via Scribble. Cell Commun Signal 2022; 20:179. [PMID: 36376971 PMCID: PMC9664818 DOI: 10.1186/s12964-022-00987-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of the present study was to determine the role of individual PHLPP isoforms in insulin signaling and insulin resistance in neuronal cells. METHODS PHLPP isoforms were either silenced or overexpressed individually, and the effects were observed on individual Akt isoforms, AS160 and on neuronal glucose uptake, under insulin sensitive and resistant conditions. To determine PHLPP regulation itself, we tested effect of scaffold protein, Scribble, on PHLPP isoforms and neuronal glucose uptake. RESULTS We observed elevated expression of both PHLPP1 and PHLPP2 in insulin resistant neuronal cells (Neuro-2A, mouse neuroblastoma; SHSY-5Y, human neuroblastoma) as well as in the whole brain lysates of high-fat-diet mediated diabetic mice. In insulin sensitive condition, PHLPP isoforms differentially affected activation of all Akt isoforms, wherein PHLPP1 regulated serine phosphorylation of Akt2 and Akt3, while PHLPP2 regulated Akt1 and Akt3. This PHLPP mediated Akt isoform specific regulation activated AS160 affecting glucose uptake. Under insulin resistant condition, a similar trend of results were observed in Akt isoforms, AS160 and glucose uptake. Over-expressed PHLPP isoforms combined with elevated endogenous expression under insulin resistant condition drastically affected downstream signaling, reducing neuronal glucose uptake. No compensation was observed amongst PHLPP isoforms under all conditions tested, indicating independent roles and pointing towards possible scaffolding interactions behind isoform specificity. Silencing of Scribble, a scaffolding protein known to interact with PHLPP, affected cellular localization of both PHLPP1 and PHLPP2, and caused increase in glucose uptake. CONCLUSIONS PHLPP isoforms play independent roles via Scribble in regulating Akt isoforms differentially, affecting AS160 and neuronal glucose uptake. Video abstract.
Collapse
Affiliation(s)
- Medha Sharma
- grid.417967.a0000 0004 0558 8755Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016 India
| | - Chinmoy Sankar Dey
- grid.417967.a0000 0004 0558 8755Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
15
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
16
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
17
|
Abstract
To maintain energy supply to the brain, a direct energy source called adenosine triphosphate (ATP) is produced by oxidative phosphorylation and aerobic glycolysis of glucose in the mitochondria and cytoplasm. Brain glucose metabolism is reduced in many neurodegenerative diseases, including Alzheimer's disease (AD), where it appears presymptomatically in a progressive and region-specific manner. Following dysregulation of energy metabolism in AD, many cellular repair/regenerative processes are activated to conserve the energy required for cell viability. Glucose metabolism plays an important role in the pathology of AD and is closely associated with the tricarboxylic acid cycle, type 2 diabetes mellitus, and insulin resistance. The glucose intake in neurons is from endothelial cells, astrocytes, and microglia. Damage to neurocentric glucose also damages the energy transport systems in AD. Gut microbiota is necessary to modulate bidirectional communication between the gastrointestinal tract and brain. Gut microbiota may influence the process of AD by regulating the immune system and maintaining the integrity of the intestinal barrier. Furthermore, some therapeutic strategies have shown promising therapeutic effects in the treatment of AD at different stages, including the use of antidiabetic drugs, rescuing mitochondrial dysfunction, and epigenetic and dietary intervention. This review discusses the underlying mechanisms of alterations in energy metabolism in AD and provides potential therapeutic strategies in the treatment of AD.
Collapse
|
18
|
FAK-Mediated Signaling Controls Amyloid Beta Overload, Learning and Memory Deficits in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23169055. [PMID: 36012331 PMCID: PMC9408823 DOI: 10.3390/ijms23169055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The non-receptor focal adhesion kinase (FAK) is highly expressed in the central nervous system during development, where it regulates neurite outgrowth and axon guidance, but its role in the adult healthy and diseased brain, specifically in Alzheimer's disease (AD), is largely unknown. Using the 3xTg-AD mouse model, which carries three mutations associated with familial Alzheimer's disease (APP KM670/671NL Swedish, PSEN1 M146V, MAPT P301L) and develops age-related progressive neuropathology including amyloid plaques and Tau tangles, we describe here, for the first time, the in vivo role of FAK in AD pathology. Our data demonstrate that while site-specific knockdown in the hippocampi of 3xTg-AD mice has no effect on learning and memory, hippocampal overexpression of the protein leads to a significant decrease in learning and memory capabilities, which is accompanied by a significant increase in amyloid β (Aβ) load. Furthermore, neuronal morphology is altered following hippocampal overexpression of FAK in these mice. High-throughput proteomics analysis of total and phosphorylated proteins in the hippocampi of FAK overexpressing mice indicates that FAK controls AD-like phenotypes by inhibiting cytoskeletal remodeling in neurons which results in morphological changes, by increasing Tau hyperphosphorylation, and by blocking astrocyte differentiation. FAK activates cell cycle re-entry and consequent cell death while downregulating insulin signaling, thereby increasing insulin resistance and leading to oxidative stress. Our data provide an overview of the signaling networks by which FAK regulates AD pathology and identify FAK as a novel therapeutic target for treating AD.
Collapse
|
19
|
Zhu Q, Yao Y, Xu L, Wu H, Wang W, He Y, Wang Y, Lu Y, Qi J, Ding Y, Li X, Huang J, Zhao H, Du Y, Sun K, Sun Y. Elevated SAA1 promotes the development of insulin resistance in ovarian granulosa cells in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:4. [PMID: 34980155 PMCID: PMC8721971 DOI: 10.1186/s12958-021-00873-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. METHODS Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. RESULTS Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). CONCLUSIONS Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.
Collapse
Affiliation(s)
- Qinling Zhu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yue Yao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Lizhen Xu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hasiximuke Wu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yao Lu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jia Qi
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Ying Ding
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Xinyu Li
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jiaan Huang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hanting Zhao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| | - Yun Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
20
|
Manglani K, Dey CS. CDK5 inhibition improves glucose uptake in insulin-resistant neuronal cells via ERK1/2 pathway. Cell Biol Int 2021; 46:488-497. [PMID: 34865281 DOI: 10.1002/cbin.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023]
Abstract
Role of CDK5 and its inhibition in various neuronal processes and functions are well established. However, role of CDK5 and its inhibition in neuronal insulin-signaling and-resistance is not yet explored. In the present study, we investigated the effect of CDK5 inhibition in neuronal insulin signaling, specifically insulin-stimulated glucose uptake. CDK5 expression in neuro-2a cells was increased under insulin-resistant state, developed by chronic treatment of insulin, confirming the crucial role of CDK5 in insulin resistance in neuronal cells. However, whether increased expression of CDK5 in hyperinsulinemia-mediated insulin-resistant conditions is a cause or a consequence, is still an unanswered question. We showed that CDK5 inhibition did not affect basal insulin signaling; however, insulin-stimulated glucose uptake enhanced in insulin-resistant cells. Moreover, CDK5 inhibition could improve glucose uptake, the ultimate outcome of insulin signaling, in insulin-resistant neuro-2a cells. We first time showed that CDK5 inhibition by roscovitine could ameliorate insulin resistance and increase glucose uptake in neuronal cells via ERK1/2 pathway. Our study provides intriguing insights about the effect of CDK5 inhibition on neuronal insulin resistance and opens up a new paradigm to develop new therapeutic strategies for neuronal insulin resistance and associated pathophysiological conditions.
Collapse
Affiliation(s)
- Kapil Manglani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Chinmoy S Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
21
|
Sharma M, Dey CS. Role of Akt isoforms in neuronal insulin signaling and resistance. Cell Mol Life Sci 2021; 78:7873-7898. [PMID: 34724097 PMCID: PMC11073101 DOI: 10.1007/s00018-021-03993-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the role of Akt isoforms in insulin signaling and resistance in neuronal cells. By silencing Akt isoforms individually and in pairs, in Neuro-2a and HT22 cells we observed that, in insulin-sensitive condition, Akt isoforms differentially reduced activation of AS160 and glucose uptake with Akt2 playing the major role. Under insulin-resistant condition, phosphorylation of all isoforms and glucose uptake were severely affected. Over-expression of individual isoforms in insulin-sensitive and resistant cells differentially reversed AS160 phosphorylation with concomitant reversal in glucose uptake indicating a compensatory role of Akt isoforms in controlling neuronal insulin signaling. Post-insulin stimulation Akt2 translocated to the membrane the most followed by Akt3 and Akt1, decreasing glucose uptake in the similar order in insulin-sensitive cells. None of the Akt isoforms translocated in insulin-resistant cells or high-fat-diet mediated diabetic mice brain cells. Based on our data, insulin-dependent differential translocation of Akt isoforms to the plasma membrane turns out to be the key factor in determining Akt isoform specificity. Thus, isoforms play parallel with predominant role by Akt2, and compensatory yet novel role by Akt1 and Akt3 to regulate neuronal insulin signaling, glucose uptake, and insulin-resistance.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
22
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
23
|
Liguori F, Mascolo E, Vernì F. The Genetics of Diabetes: What We Can Learn from Drosophila. Int J Mol Sci 2021; 22:ijms222011295. [PMID: 34681954 PMCID: PMC8541427 DOI: 10.3390/ijms222011295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a heterogeneous disease characterized by hyperglycemia due to impaired insulin secretion and/or action. All diabetes types have a strong genetic component. The most frequent forms, type 1 diabetes (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM), are multifactorial syndromes associated with several genes’ effects together with environmental factors. Conversely, rare forms, neonatal diabetes mellitus (NDM) and maturity onset diabetes of the young (MODY), are caused by mutations in single genes. Large scale genome screenings led to the identification of hundreds of putative causative genes for multigenic diabetes, but all the loci identified so far explain only a small proportion of heritability. Nevertheless, several recent studies allowed not only the identification of some genes as causative, but also as putative targets of new drugs. Although monogenic forms of diabetes are the most suited to perform a precision approach and allow an accurate diagnosis, at least 80% of all monogenic cases remain still undiagnosed. The knowledge acquired so far addresses the future work towards a study more focused on the identification of diabetes causal variants; this aim will be reached only by combining expertise from different areas. In this perspective, model organism research is crucial. This review traces an overview of the genetics of diabetes and mainly focuses on Drosophila as a model system, describing how flies can contribute to diabetes knowledge advancement.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Elisa Mascolo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Fiammetta Vernì
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|
24
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
25
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
26
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Liu QF, Zhang Y, Deng L, Zhang T, Xiao JP, Zhou ZM, Bi N. MiR-32 Suppresses the Development of Lung Cancer via Modulating PI3K/Akt. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our team utilized qRT-PCR for prospecting miR-32 expression level in primary lung carcinoma tissues and cell lines, as well as Kaplan–Meier method for dissecting the relation of miR-32 expression with the prognosis of lung carcinoma. We transfected lung cancer A549 cells with
miR-32 mimic/inhibitor and mimic/inhibitor NC, and appraised the influences of miR-32 on the phenotype changes of lung carcinoma cells via MTT assay, wound healing assay and cell apoptosis assay, separately. Then the target gene of miR-32 was predicted via bioinformatics. Finally, Western
blotting was adopted for analyzing the impact of alteration of miR-32 expression on the PI3K/Akt axis in A549 cells. In lung carcinoma tissues as well as cells, miR-32 expression is down-regulated, and miR-32 partakes in the progress of lung carcinoma via PI3K/Akt pathway.
Collapse
Affiliation(s)
- Qing-Feng Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Jian-Ping Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Zong-Mei Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, China
| |
Collapse
|
28
|
Type-2 diabetes, a co-morbidity in Covid-19: does insulin signaling matter? Biochem Soc Trans 2021; 49:987-995. [PMID: 33666220 DOI: 10.1042/bst20201062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Type-2 Diabetes is associated with one of the co-morbidities due to SARS-Coronavirus 2 (SARS-Cov2) infection. Clinical studies show out of control glucose levels in SARS-Cov2 infected patients with type-2 diabetes. There is no experimental evidence suggesting aberrant molecular pathway(s) that explains why SARS-Cov2 infected patients with type-2 diabetes have uncontrolled glucose homeostasis and are co-morbid. In this article, we have highlighted major proteins involved in SARS-Cov2 infection, like, ACE 2, proteases like, TMPRSS2, Furin and their connectivity to insulin signaling molecules like, PI3K, Akt, AMPK, MAPK, mTOR, those regulate glucose homeostasis and the possible outcome of that cross-talk. We also raised concerns about the effect of anti-SARS-Cov2 drugs on patients with type-2 diabetes with reference to insulin signaling and the outcome of their possible cross-talk. There are no studies to decipher the possibilities of these obvious cross-talks. The major objective of this article is to urge the scientific community to explore the possibility of determining whether derangement of insulin signaling could be one of the possible causes of the patients with type-2 diabetes being co-morbid due to SARS-Cov2 infection.
Collapse
|
29
|
Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, Wada Y, Ahmad MH, Ahmad WANW, Rasool AHG, Mokhtar SS. Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8830880. [PMID: 33995826 PMCID: PMC8099518 DOI: 10.1155/2021/8830880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, College of Pharmacy, Columbia, SC, USA
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
- School of Pharmacy Technician, Aminu Dabo College of Health Sciences and Technology, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
30
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
31
|
Nam Y, Moon GJ, Kim SR. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063064. [PMID: 33802760 PMCID: PMC8002454 DOI: 10.3390/ijms22063064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.
Collapse
Affiliation(s)
- Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Gyeong Joon Moon
- Center for Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
32
|
Zhou Y, Wu R, Su H, Li K, Chen C, Xie R. miR-18a increases insulin sensitivity by inhibiting PTEN. Aging (Albany NY) 2020; 13:1357-1368. [PMID: 33293478 PMCID: PMC7835052 DOI: 10.18632/aging.202319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023]
Abstract
The miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a) contributes to the occurrence and development of various diseases by inhibiting multiple target genes. Here, we explored the effects of miR-18a on insulin sensitivity. Quantitative real-time PCR indicated that serum miR-18a levels were lower in type 2 diabetes mellitus patients than in healthy controls, suggesting that miR-18a may influence blood glucose levels. Global overexpression of miR-18a in transgenic mice increased their glucose tolerance and insulin sensitivity, while it reduced expression of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) in their skeletal muscle and adipose tissue. Western blotting indicated that overexpressing miR-18a in 3T3-L1 and C2C12 cells enhanced insulin-stimulated AKT phosphorylation and suppressed PTEN expression, while inhibiting miR-18a had the opposite effects. These results suggest that miR-18a improves insulin sensitivity by downregulating PTEN. This makes miR-18a a potentially useful target for the treatment of diabetes mellitus in the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ruoqi Wu
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Huafang Su
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kejie Li
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Raoying Xie
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
33
|
Shigemizu D, Akiyama S, Higaki S, Sugimoto T, Sakurai T, Boroevich KA, Sharma A, Tsunoda T, Ochiya T, Niida S, Ozaki K. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data. ALZHEIMERS RESEARCH & THERAPY 2020; 12:145. [PMID: 33172501 PMCID: PMC7656734 DOI: 10.1186/s13195-020-00716-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. METHODS We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). RESULTS The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). CONCLUSIONS Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Collapse
Affiliation(s)
- Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan. .,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sayuri Higaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taiki Sugimoto
- The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Sakurai
- The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keith A Boroevich
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Alok Sharma
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.,University of the South Pacific, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
34
|
Manglani K, Dey CS. Tankyrase inhibition augments neuronal insulin sensitivity and glucose uptake via AMPK-AS160 mediated pathway. Neurochem Int 2020; 141:104854. [PMID: 33002563 DOI: 10.1016/j.neuint.2020.104854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
Tankyrase, a member of poly (ADP-ribose) polymerase (PARP) family, regulates various cellular pathways including wnt signaling, telomere maintenance and mitosis, has become a prime target for the development of cancer therapeutics. Inhibition of tankyrase, which leads to its increased cellular accumulation, reveal the role of tankyrase in the regulation of Glucose transporter type 4 (GLUT4) translocation and glucose homeostasis in peripheral insulin responsive tissues. While in adipocytes inhibition of tankyrase improves insulin sensitivity and glucose uptake, its inhibition in skeletal muscle leads to development of insulin resistance. Evidently further studies are required to determine the broader perspective of tankyrase in other cellular systems in regulating insulin signaling and insulin resistance. Role of tankyrase in neuronal tissues/cells has not been tested. In the present study, we investigated the effect of tankyrase inhibition in insulin-sensitive and insulin-resistant Neuro-2a cells. Here, we report that XAV939 treatment, a tankyrase inhibitor, improves insulin-stimulated glucose uptake in insulin-sensitive as well as in insulin-resistant neuronal cells via AMP-activated protein kinase (AMPK) - AKT Substrate of 160 kDa (AS160) mediated pathway without affecting the phosphorylation/activation of AKT. AMPK inhibition by Compound C repressed XAV939 treatment mediated increase in glucose uptake, confirming the role of tankyrase in glucose uptake via AMPK. We show for the first time that inhibition of tankyrase significantly improves glucose uptake and insulin sensitivity of insulin-resistant neuronal cells via AMPK-AS160 mediated pathway. Our study demonstrates new mechanistic insights of tankyrase mediated regulation of insulin sensitivity as well as glucose uptake in neuronal cells.
Collapse
Affiliation(s)
- Kapil Manglani
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
35
|
Li YZ, Di Cristofano A, Woo M. Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harb Perspect Med 2020; 10:a036137. [PMID: 31964643 PMCID: PMC7397839 DOI: 10.1101/cshperspect.a036137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is most prominently known for its function in tumorigenesis. However, a metabolic role of PTEN is emerging as a result of its altered expression in type 2 diabetes (T2D), which results in impaired insulin signaling and promotion of insulin resistance during the pathogenesis of T2D. PTEN functions in regulating insulin signaling across different organs have been identified. Through the use of a variety of models, such as tissue-specific knockout (KO) mice and in vitro cell cultures, PTEN's role in regulating insulin action has been elucidated across many cell types. Herein, we will review the recent advancements in the understanding of PTEN's metabolic functions in each of the tissues and cell types that contribute to regulating systemic insulin sensitivity and discuss how PTEN may represent a promising therapeutic strategy for treatment or prevention of T2D.
Collapse
Affiliation(s)
- Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine and Albert Einstein Cancer Center, Bronx, New York 10461, USA
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network/Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
36
|
Ye H, Liu XJ, Hui Y, Liang YH, Li CH, Wan Q. Downregulation of MicroRNA-222 Reduces Insulin Resistance in Rats with PCOS by Inhibiting Activation of the MAPK/ERK Pathway via Pten. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:733-741. [PMID: 33230470 PMCID: PMC7593506 DOI: 10.1016/j.omtn.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 01/27/2023]
Abstract
Polycystic ovary syndrome (PCOS), characterized by the dysfunction of endocrine metabolism, is a common disease among women. Insulin (INS) resistance (IR) is considered as an obstruction to effective PCOS treatment. Here, we aimed to explore the mechanism by which microRNA-222 (miR-222) affects IR in PCOS via Pten. Quantitative reverse transcription-polymerase chain reaction and western blot assays indicated that miR-222 expression was higher in the peripheral blood of PCOS patients with IR than in PCOS patients without IR, while Pten expression was lower. Further mechanistic analysis identified Pten as a target gene of miR-222. Moreover, PCOS rat models were established through the administration of dehydroepiandrosterone and were subsequently treated with miR-222 agomir, miR-222 antagomir, or Pten overexpression plasmid. The inhibition of miR-222 improved ovarian morphology, enhanced the production of serum sex hormones (follicle-stimulating hormone [FSH], luteotropic hormone [LH], estradiol 2 [E2], prolactin [PRL], and testosterone [T]), increased the levels of glucose metabolism indicators (homeostasis model of assessment for IR [HOMA-IR], blood glucose [BG]120min, and INS120min), and reduced the production of progesterone in the PCOS rats. Notably, miR-222 downregulation resulted in the inactivation of the mitogen-activated protein kinase (MAPK)/ERK pathway by upregulating Pten. Collectively, miR-222 inhibition might reduce IR in PCOS by inactivating the MAPK/ERK pathway and elevating Pten expression, which indicates miR-222 as a promising target for PCOS treatment.
Collapse
Affiliation(s)
- Hong Ye
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
- Corresponding author Hong Ye, Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, No. 183, Yiling Avenue, Yichang 443003, Hubei Province, China.
| | - Xiu-Juan Liu
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
| | - Yan Hui
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
| | - Yang-Huan Liang
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
| | - Cai-Hong Li
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
| | - Qiong Wan
- Department of Obstetrics and Gynecology, The First Clinical Medical College, China Three Gorges University, Yichang 443003, Hubei Province, China
| |
Collapse
|
37
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, Mendenhall MD, Reagan LP, Craven RJ, Thibault O. Elevating Insulin Signaling Using a Constitutively Active Insulin Receptor Increases Glucose Metabolism and Expression of GLUT3 in Hippocampal Neurons. Front Neurosci 2020; 14:668. [PMID: 32733189 PMCID: PMC7358706 DOI: 10.3389/fnins.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRβ show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRβ treatment. Quantification of Western immunoblots show that IRβ is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.
Collapse
Affiliation(s)
- Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gabriel J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
38
|
Wen F, Zhuge W, Wang J, Lu X, You R, Liu L, Zhuge Q, Ding S. Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy. J Cell Mol Med 2019; 24:61-78. [PMID: 31568638 PMCID: PMC6933371 DOI: 10.1111/jcmm.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin‐resistant PC12 cells and N2a cells, we found that Ori blocked IR‐induced synaptic deficits via the down‐regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.
Collapse
Affiliation(s)
- Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weishan Zhuge
- Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoai Lu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruimin You
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Neurosurgery Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Protein Kinase C Attenuates Insulin Signalling Cascade in Insulin-Sensitive and Insulin-Resistant Neuro-2a Cells. J Mol Neurosci 2019; 69:470-477. [DOI: 10.1007/s12031-019-01377-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
|
40
|
Lu H, Tan Y, Chen L. A clinical study on the expression of PTEN in renal cell carcinoma in children. Oncol Lett 2019; 17:69-72. [PMID: 30655739 PMCID: PMC6313102 DOI: 10.3892/ol.2018.9571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The expression pattern of tumor suppressor gene phosphatase and tensin homolog deleted on chromosome ten (PTEN) and phosphatase and tensin homolog deleted on chromosome ten/phosphatidylinositol3-kinase/protein kinase B (PTEN/PI3K/AKT) cell signaling pathway in renal cell carcinoma (RCC) were investigated in children. A total of 5 cases of RCC (observation group) in children and 10 cases of benign kidney tumor (control group) diagnosed by pathological examinations were included to obtain tumor samples. Expression of PTEN mRNA was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression of PTEN, PI3K and AKT was detected by western blotting; relationships between the expression level of PTEN mRNA and the clinical features of RCC were analyzed. It turned out that expression level of PTEN mRNA in the observation group was significantly lower than that in the control group. The protein expression levels of PTEN, PI3K and AKT were significantly lower in the observation group than in the control group (P<0.05). The expression level of PTEN mRNA decreased with the increased clinical stage of RCC (P<0.05), and was not related to sex, age and maximum tumor diameter (P>0.05). The results showed that downregulation of the tumor suppressor gene PTEN expression and the inhibition of PTEN/PI3K/AKT cell signaling pathway may be involved in the occurrence and development of RCC in children.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Yuxia Tan
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Liping Chen
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| |
Collapse
|
41
|
Mohamed WA, Salama RM, Schaalan MF. A pilot study on the effect of lactoferrin on Alzheimer's disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed Pharmacother 2019; 111:714-723. [PMID: 30611996 DOI: 10.1016/j.biopha.2018.12.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in which the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (PKB or Akt) pathway is deregulated in response to phosphatase and tensin homolog (PTEN) overexpression. Lactoferrin (LF), a multifunctional iron-binding glycoprotein, is involved in AD pathology; however, direct evidence of its impact upon AD remains unclear. To elucidate LF's role in AD, the possible protective mechanism post-LF administration for 3 months was investigated in AD patients by observing changes in the p-Akt/PTEN pathway. AD patients showed decreased serum acetylcholine (ACh), serotonin (5-HT), antioxidant and anti-inflammatory markers, and decreased expression of Akt in peripheral blood lymphocytes (PBL), as well as PI3K, and p-Akt levels in PBL lysate; all these parameters were significantly improved after daily LF administration for 3 months. Similarly, elevated serum amyloid β (Aβ) 42, cholesterol, oxidative stress markers, IL-6, heat shock protein (HSP) 90, caspase-3, and p-tau, as well as increased expression of tau, MAPK1 and PTEN in AD patients, were significantly reduced upon LF intake. Improvement in the aforementioned AD surrogate markers post-LF treatment was reflected in enhanced cognitive function assessed by the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale 11-item (ADAS-COG 11) questionnaires as clinical endpoints. These results provide a basis for a possible protective mechanism of LF in AD through its ability to alleviate the AD pathological cascade and cognitive decline via modulation of the p-Akt/PTEN pathway, which affects the key players of inflammation and oxidative stress that are involved in AD pathology.
Collapse
Affiliation(s)
| | - Rania M Salama
- Pharmacology and Toxicology Department, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Mona F Schaalan
- Pharmacy Practice and Clinical Pharmacy Department, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
42
|
Fanoudi S, Hosseini M, Alavi MS, Boroushaki MT, Hosseini A, Sadeghnia HR. Everolimus, a mammalian target of rapamycin inhibitor, ameliorated streptozotocin-induced learning and memory deficits via neurochemical alterations in male rats. EXCLI JOURNAL 2018; 17:999-1017. [PMID: 30564080 PMCID: PMC6295637 DOI: 10.17179/excli2018-1626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Everolimus (EVR), as a rapamycin analog, is a selective inhibitor of the mammalian target of rapamycin (mTOR) kinase and its associated signaling pathway. mTOR is a serine/threonine protein kinase and its hyperactivity is involved in the pathophysiology of Alzheimer's disease (AD) and associated cognitive deficits. The present study evaluated the impact of EVR, on cognitive functions, hippocampal cell loss, and neurochemical parameters in the intracerebroventricular streptozotocin (icv-STZ) model of AD rats. EVR (1 and 5 mg/kg) was administered for 21 days following the single administration of STZ (3 mg/kg, icv) or for 7 days on days 21-28 post-STZ injection after establishment of cognitive dysfunction. Cognitive deficits (passive avoidance and spatial memory), oxidative stress parameters, acetylcholinesterase (AChE) activity, and percentage of cell loss were evaluated in the hippocampus. Chronic administration (1 and 5 mg/kg for 21 days from the day of surgery and icv-STZ infusion) or acute injection (5 mg/kg for 7 days after establishment of cognitive impairment) of EVR significantly attenuated cognitive dysfunction, neuronal loss, oxidative stress and AChE activity in the hippocampus of STZ-AD rats. In conclusion, our study showed that EVR could prevent or improve deteriorations in behavioral, biochemical and histopathological features of the icv-STZ rat model of AD. Therefore, inhibition of the hyperactivated mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Liu Y, Le P, Lim SJ, Ma L, Sarkar S, Han Z, Murphy SJ, Kosari F, Vasmatzis G, Cheville JC, Smith AM. Enhanced mRNA FISH with compact quantum dots. Nat Commun 2018; 9:4461. [PMID: 30367061 PMCID: PMC6203793 DOI: 10.1038/s41467-018-06740-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts. Compared with dyes, compact QD probes provide exceptional photostability and more robust transcript quantification due to enhanced brightness. New spectrally engineered QDs also allow quantification of multiple distinct mRNA transcripts at the single-molecule level in individual cells. We expect that QD-FISH will particularly benefit high-resolution gene expression studies in three dimensional biological specimens for which quantification and multiplexing are major challenges. FISH-based techniques to image and count mRNA in single cells can be limited by the photophysical properties of organic dyes. Here the authors develop photostable quantum dot FISH probes for multiplexed imaging.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Phuong Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sung Jun Lim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Intelligent Devices and Systems Research Group, DGIST, Hyeonpung, Daegu, 42988, Republic of Korea
| | - Liang Ma
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suresh Sarkar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiyuan Han
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen J Murphy
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Vasmatzis
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - John C Cheville
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carle Illinois College of Medicine, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
Affiliation(s)
- Edgar Del Carpio
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Unidad de Química Medicinal, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Lino Hernández
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Venezuela
| | - Carlos Ciangherotti
- Laboratorio de Neuropéptidos, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
- Laboratorio de Bioquímica, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Valentina Villalobos Coa
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Lissette Jiménez
- Facultad de ingeniería Química, Universidad de Carabobo, Venezuela
| | - Vito Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| |
Collapse
|
45
|
Helaleh M, Diboun I, Al-Tamimi N, Al-Sulaiti H, Al-Emadi M, Madani A, Mazloum NA, Latiff A, Elrayess MA. Association of polybrominated diphenyl ethers in two fat compartments with increased risk of insulin resistance in obese individuals. CHEMOSPHERE 2018; 209:268-276. [PMID: 29933163 DOI: 10.1016/j.chemosphere.2018.06.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs), a widely utilized class of flame retardants in various commercial products, represent a prominent source of environmental contaminants. PBDEs tend to accumulate in adipose tissue, potentially altering the function of this endocrine organ and increasing risk of insulin resistance. The aim of this study was to compare levels of PBDEs in adipose tissues from two metabolically distinct obese groups; the insulin sensitive (IS) and the insulin resistant (IR). METHODS Levels of 28 PBDE congeners were assessed in subcutaneous and omental adipose tissues from 34 obese Qatari individuals (11 IS and 23 IR) using gas chromatography (Trace GC Ultra) coupled to a TSQ Quantum triple Quadrupole mass spectrometer. Correlations of identified PBDEs and mediators of metabolic disease were established and effects of PBDEs treatment on insulin signaling in primary omental preadipocytes were determined. RESULTS Out of 22 detectable PBDEs in subcutaneous and omental adipose tissues, PBDEs 28, 47, 99 and 153 were predominant in omental adipose tissues from obese Qatari subjects. PBDEs 99, 28, and 47 were significantly higher in IR individuals compared to their IS counterparts. Significant positive correlations were identified between PBDEs 28 and 99 in the omental tissues and with fasting insulin levels. When considering PBDEs congeners, penta congeners were also higher in IR compared to IS individuals, while no significant differences were detected in mono, tri, tertra, hexa, hepta and octa congeners between the two studied groups. Treatment of human omental preadipocytes from insulin sensitive individuals with PBDE28 caused inhibition of phosphorylation of GSK3 α/β (Ser21/Ser9), mTOR (Ser2448), p70 S6 kinase (Thr389) and S6 ribosomal protein (Ser235/Ser236) and activation of PTEN (Ser380) phosphorylation, suggesting inhibition of insulin signaling. CONCLUSION This pilot data suggests that accumulation of specific PBDEs in human adipose tissues is associated with insulin resistance in obese individuals. Further investigation of the functional role of PBDEs in the pathology of insulin resistance should help developing therapeutic strategies targeting obese individuals at higher risk.
Collapse
Affiliation(s)
- Murad Helaleh
- Anti Doping Laboratory Qatar, Sports City, Doha, Qatar.
| | - Ilhame Diboun
- Department of Economics, Mathematics and Statistics, Birkbeck, University of London, London WC1E 7HX, UK.
| | | | | | | | - Aishah Madani
- Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Nayef A Mazloum
- Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Aishah Latiff
- Anti Doping Laboratory Qatar, Sports City, Doha, Qatar.
| | - Mohamed A Elrayess
- Anti Doping Laboratory Qatar, Sports City, Doha, Qatar; Division of Medicine, University College London, London, UK.
| |
Collapse
|
46
|
Hyper-insulinemia increases the glutamate-excitotoxicity in cortical neurons: A mechanistic study. Eur J Pharmacol 2018; 833:524-530. [DOI: 10.1016/j.ejphar.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
|
47
|
Qi J, Wang W, Zhu Q, He Y, Lu Y, Wang Y, Li X, Chen ZJ, Sun Y. Local Cortisol Elevation Contributes to Endometrial Insulin Resistance in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2018; 103:2457-2467. [PMID: 29618067 DOI: 10.1210/jc.2017-02459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022]
Abstract
CONTEXT Endometrial insulin resistance (IR) may account for the endometrial dysfunction in polycystic ovary syndrome (PCOS). The underlying mechanism remains to be elucidated. OBJECTIVE To investigate whether the abundance of 11β-hydroxysteroid dehydrogenases (11β-HSDs) 1 and 2 and cortisol as well as the insulin signaling pathway are altered in PCOS endometrium and to clarify the relationship between endometrial IR and local cortisol. DESIGN We measured cortisol and cortisone concentrations, 11β-HSD1 and 11β-HSD2, and core insulin signaling molecules in endometrial biopsies collected from non-PCOS and PCOS with or without IR patients on the seventh day after human chorionic gonadotropin injection. We also studied the effects of cortisol on glucose uptake and the insulin signaling pathway in primary cultured endometrial epithelial cells (EECs). RESULTS The cortisol concentration was elevated, whereas 11β-HSD2 expression was diminished in endometrial biopsies obtained from PCOS with IR patients compared with those from non-PCOS and PCOS without IR patients. The implantation rate was relatively impaired and the endometrial insulin signaling pathway was defective in PCOS with IR patients. In addition, cortisol attenuated insulin-stimulated glucose uptake in EECs, which was mediated by inhibition of Akt phosphorylation and glucose transporter type 4 translocation via induction of phosphatase and tensin homolog deleted on chromosome ten (PTEN). CONCLUSIONS Decreased oxidation of cortisol and defects of insulin signaling in endometrium were observed in PCOS with IR patients. The excessive cortisol level, derived from the reduction of 11β-HSD2, might contribute to the development of endometrial IR by inhibiting the insulin signaling pathway via induction of PTEN expression in EECs.
Collapse
Affiliation(s)
- Jia Qi
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiaoxue Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
48
|
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T. Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease. Diseases 2018; 6:E28. [PMID: 29677102 PMCID: PMC6023281 DOI: 10.3390/diseases6020028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative sickness, where the speed of personal disease progression differs prominently due to genetic and environmental factors such as life style. Alzheimer’s disease is described by the construction of neuronal plaques and neurofibrillary tangles composed of phosphorylated tau protein. Mitochondrial dysfunction may be a noticeable feature of Alzheimer’s disease and increased production of reactive oxygen species has long been described. Superoxide dismutases (SODs) protect from excess reactive oxygen species to form less reactive hydrogen peroxide. It is suggested that SODs can play a protective role in neurodegeneration. In addition, PI3K/AKT pathway has been shown to play a critical role on the neuroprotection and inhibiting apoptosis via the enhancing expression of the SODs. This pathway appears to be crucial in Alzheimer’s disease because it is related to the tau protein hyper-phosphorylation. Dietary supplementation of several ordinary compounds may provide a novel therapeutic approach to brain disorders by modulating the function of the PI3K/AKT pathway. Understanding these systems may offer a better efficacy of new therapeutic approaches. In this review, we summarize recent progresses on the involvement of the SODs and PI3K/AKT pathway in neuroprotective signaling against Alzheimer’s disease.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Atsuko Nakanishi
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8501, Japan.
| | - Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
49
|
Liu R, Yang YN, Yi L, Qing J, Li QY, Wang WS, Wang J, Tang YX, Tan H. Diallyl disulfide effect on the invasion and migration ability of HL-60 cells with a high expression of DJ-1 in the nucleus through the suppression of the Src signaling pathway. Oncol Lett 2018; 15:6377-6385. [PMID: 29725397 PMCID: PMC5920463 DOI: 10.3892/ol.2018.8139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
The present study examined the effect of diallyl disulfide (DADS) on the invasion and migration ability of HL-60 cells with a high expression of parkinsonism associated deglycase (DJ-1) in the nucleus (HHDN), and its molecular mechanism. A western blot assay was used to measure the effects of DADS and an Src inhibitor on the expression of DJ-1 and the Src signal pathway in HHDN. The effects of DADS and Src inhibitors on the invasion and migration ability of HHDN was detected using Transwell migration and invasion chamber experiments. The experiments were divided into three groups: A control group (HL-60 cells), an empty vector group and a high expression group (HHDN cells). Western blot assays revealed that the expression of DJ-1 in HHDN was inhibited in a time-dependent manner following treatment with DADS for 24, 48 and 72 h. Following DADS treatment, the expression of phosphorylated Src (p-Src) and phosphorylated Fak (p-Fak) were significantly decreased in all groups compared with the untreated groups, however the expression level of Src, Fak and integrin did not change significantly. Western blot analysis results revealed that following treatment with DADS and Src inhibitor, the expression levels of p-Src and p-Fak significantly decreased in all three groups compared with untreated groups, whereas the expression levels of Src, Fak and integrin did not change significantly. The expression of DJ-1 in HHND was inhibited in time-dependent manner following treatment with DADS and Src inhibitor for 24, 48 and 72 h. Transwell migration and invasion assay results revealed that DADS and Src inhibitors may suppress migration and invasion in leukemic cells, and a combination of the two treatments may result in more efficient suppression. DADS may downregulate DJ-1-mediated invasion and migration in leukemic cells through suppressing the Src-Fak-Integrin signaling pathway, and the Src inhibitor may enhance the antitumor effect of DADS.
Collapse
Affiliation(s)
- Ran Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China.,Department of Pathology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ye-Ning Yang
- Department of Pathology, The First People's Hospital of Youxian, Youxian, Hunan 412300, P.R. China
| | - Lan Yi
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Jing Qing
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Qing-Ye Li
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Wen-Song Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Juan Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Yu-Xian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Hui Tan
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| |
Collapse
|
50
|
Tian D, Mo F, Cai X, Miao Z, Xiao F, Chang Y, Wu L, Tang Y, Wang X, Ye C, Qian X, Gu W, Li M. Acupuncture relieves motion sickness via the IRβ-ERK1/2-dependent insulin receptor signalling pathway. Acupunct Med 2018; 36:153-161. [PMID: 29436382 DOI: 10.1136/acupmed-2016-011202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Acupuncture has been widely used for the treatment of motion sickness (MS), but the underlying mechanisms are unclear. The aim of this research was to study the mechanism of acupuncture in the treatment of MS. METHODS To observe the effects of acupuncture in the treatment of MS, 80 rats were randomised into five groups that were subjected to acceleration and either remained untreated (CTRL), or received restraint (REST), scopolamine (SCOP) or acupuncture at SP4 (sham) or PC6+ST36 (verum) acupuncture points. To study the mechanism underlying the effects of acupuncture in the treatment of MS, 48 rats were randomised into three groups: acupuncture+extracellular regulated protein kinases (ERK) 1/2 inhibitor (ERKinh), acupuncture+insulin receptor (IR) antagonist (IRant), and acupuncture+vehicle (VEH). After acceleration, the MS index (MSI) and spontaneous activity (SA) of the rats were recorded. Serum stress hormones, Fos-positive cells, c-fos mRNA in the vestibular nucleus, and IRβ-, p-IRβ-, ERK1/2- and p-ERK1/2-positive cells in the dorsal motor nucleus of the vagus nerve (DMV) were detected. RESULTS After acceleration, MS symptoms in the PC6+ST36 and SCOP groups were reduced compared with the CTRL, REST, and SP4 groups. The number of p-IRβ- and p-ERK1/2-positive cells and insulin levels were higher in the PC6+ST36 group than in the CTRL, REST, and SP4 groups. After ERK1/2 inhibitor and IR antagonist treatment, MS symptoms in the VEH group were lower than in the ERKinh and IRant groups. CONCLUSIONS Our study demonstrates that acupuncture significantly alleviates MS through the IRβ-ERK1/2-dependent insulin receptor signalling pathway in the DMV.
Collapse
Affiliation(s)
- Dawei Tian
- Department of Aerospace Medicine Aerospace Biodynamics, Fourth Military Medical University, Xi'an, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Xingjian Cai
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Zhiyuan Miao
- Faculty of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Feng Xiao
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yifang Chang
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Xin Wang
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Chen Ye
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolu Qian
- Faculty of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|