1
|
Xu W, Alpha KM, Zehrbach NM, Turner CE. Paxillin Promotes Breast Tumor Collective Cell Invasion through Maintenance of Adherens Junction Integrity. Mol Biol Cell 2021; 33:ar14. [PMID: 34851720 PMCID: PMC9236150 DOI: 10.1091/mbc.e21-09-0432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Distant organ metastasis is linked to poor prognosis during cancer progression. The expression level of the focal adhesion adapter protein paxillin varies among different human cancers, but its role in tumor progression is unclear. Herein, we utilize a newly generated PyMT mammary tumor mouse model with conditional paxillin ablation in breast tumor epithelial cells, combined with in vitro 3D tumor organoids invasion analysis and 2D calcium switch assays, to assess the roles for paxillin in breast tumor cell invasion. Paxillin had little effect on primary tumor initiation and growth but is critical for the formation of distant lung metastasis. In paxillin-depleted 3D tumor organoids, collective cell invasion was substantially perturbed. Two-dimensional cell culture revealed paxillin-dependent stabilization of adherens junctions (AJ). Mechanistically, paxillin is required for AJ assembly through facilitating E-cadherin endocytosis and recycling and HDAC6-mediated microtubule acetylation. Furthermore, Rho GTPase activity analysis and rescue experiments with a RhoA activator or Rac1 inhibitor suggest paxillin is potentially regulating the E-cadherin-dependent junction integrity and contractility through control of the balance of RhoA and Rac1 activities. Together, these data highlight new roles for paxillin in the regulation of cell-cell adhesion and collective tumor cell migration to promote the formation of distance organ metastases. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Kyle M Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Nicholas M Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
2
|
Li Z, Yang A, Yin X, Dong S, Luo F, Dou C, Lan X, Xie Z, Hou T, Xu J, Xing J. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue‐engineered constructs
via
activating CXCR2‐Src‐PKL/Vav2‐Rac1. FASEB J 2018; 32:2197-2211. [DOI: 10.1096/fj.201700895r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhilin Li
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Aijun Yang
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xiaolong Yin
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Shiwu Dong
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Department of Biomedical Materials ScienceCollege of Biomedical Engineering, Third Military Medical UniversityChongqingChina
| | - Fei Luo
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Ce Dou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xu Lan
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Zhao Xie
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Tianyong Hou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Jianzhong Xu
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Junchao Xing
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| |
Collapse
|
3
|
Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE, Hodgson L. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol 2017; 216:4331-4349. [PMID: 29061650 PMCID: PMC5716284 DOI: 10.1083/jcb.201704048] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
The initial step of metastasis is the local invasion of tumor cells into the surrounding tissue. Invadopodia are actin-based protrusions that mediate the matrix degradation necessary for invasion and metastasis of tumor cells. We demonstrate that Rac3 GTPase is critical for integrating the adhesion of invadopodia to the extracellular matrix (ECM) with their ability to degrade the ECM in breast tumor cells. We identify two pathways at invadopodia important for integrin activation and delivery of matrix metalloproteinases: through the upstream recruiter CIB1 as well as the downstream effector GIT1. Rac3 activity, at and surrounding invadopodia, is controlled by Vav2 and βPIX. These guanine nucleotide exchange factors regulate the spatiotemporal dynamics of Rac3 activity, impacting GIT1 localization. Moreover, the GTPase-activating function of GIT1 toward the vesicular trafficking regulator Arf6 GTPase is required for matrix degradation. Importantly, Rac3 regulates the ability of tumor cells to metastasize in vivo. The Rac3-dependent mechanisms we show in this study are critical for balancing proteolytic activity and adhesive activity to achieve a maximally invasive phenotype.
Collapse
Affiliation(s)
- Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Ramon Cabrera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Serena P H Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - John R Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Bin Wu
- Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Wenjun Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Duan B, Cui J, Sun S, Zheng J, Zhang Y, Ye B, Chen Y, Deng W, Du J, Zhu Y, Chen Y, Gu L. EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration. Cancer Lett 2016; 379:70-83. [PMID: 27238570 DOI: 10.1016/j.canlet.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis.
Collapse
Affiliation(s)
- Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yujie Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
5
|
Fusté NP, Fernández-Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, Torres-Rosell J, Colomina N, Ferrezuelo F, Dolcet X, Garí E. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun 2016; 7:11581. [PMID: 27181366 PMCID: PMC4873647 DOI: 10.1038/ncomms11581] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis.
Collapse
Affiliation(s)
- Noel P Fusté
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Tània Cemeli
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Cristina Mirantes
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Pedraza
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Marta Rafel
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Jordi Torres-Rosell
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Colomina
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Francisco Ferrezuelo
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Xavier Dolcet
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Eloi Garí
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
6
|
|
7
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
8
|
Wilson E, Leszczynska K, Poulter NS, Edelmann F, Salisbury VA, Noy PJ, Bacon A, Rappoport JZ, Heath JK, Bicknell R, Heath VL. RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly. J Cell Sci 2014; 127:3039-51. [PMID: 24928894 PMCID: PMC4106786 DOI: 10.1242/jcs.140434] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RhoJ is a Rho GTPase expressed in endothelial cells and tumour cells, which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; small interfering RNA (siRNA)-mediated knockdown of RhoJ increased focal adhesion disassembly time, whereas expression of an active mutant (daRhoJ) decreased it. Furthermore, daRhoJ co-precipitated with the GIT–PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast two-hybrid experiments, and this depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX (also known as ARHGEF7) and RhoJ all colocalised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT–PIX complex regulated endothelial tube formation, with knockdown of both GIT1 and GIT2, or β-PIX phenocopying RhoJ knockdown. RhoJ-knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give new insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation.
Collapse
Affiliation(s)
- Eleanor Wilson
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Katarzyna Leszczynska
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Natalie S Poulter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Francesca Edelmann
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Victoria A Salisbury
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter J Noy
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Bacon
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | | - John K Heath
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Roy Bicknell
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Victoria L Heath
- School of Immunity and Infection, Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Ménard L, Parker PJ, Kermorgant S. Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat Commun 2014; 5:3907. [PMID: 24835487 DOI: 10.1038/ncomms4907] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/17/2014] [Indexed: 01/16/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are increasingly recognized as having the capacity to signal post-internalization. Signalling outputs and/or duration, and subsequent cellular outcome, are thought to be distinct when emanating from endosomes compared with those from the plasma membrane. Here we show, in invasive, basal-like human breast cell models, that different mechanisms are engaged by the RTK c-Met in two different endosomes to control the actin cytoskeleton via the key migratory signal output Rac1. Despite an acute activation of Rac1 from peripheral endosomes (PEs), c-Met needs to traffic to a perinuclear endosome (PNE) to sustain Rac1 signalling, trigger optimal membrane ruffling, cell migration and invasion. Unexpectedly, in the PNE but not in the PE, PI3K and the Rac-GEF Vav2 are required. Thus we describe a novel endosomal signalling mechanism whereby one signal output, Rac1, is stimulated through distinct pathways by the same RTK depending on which endosome it is localized to in the cell.
Collapse
Affiliation(s)
- Ludovic Ménard
- 1] Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK [2] Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Peter J Parker
- 1] Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK [2] Division of Cancer Studies, King's College School of Medicine, Guy's Hospital, Thomas Street, London SE1 9RT, UK
| | - Stéphanie Kermorgant
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
10
|
He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, Sun J. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:871-6. [PMID: 24656238 DOI: 10.1016/j.phymed.2014.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/11/2013] [Accepted: 02/16/2014] [Indexed: 05/07/2023]
Abstract
Diosgenin, a naturally occurring steroidal saponin, possess tumor therapeutic potential. However, the effect of diosgenin on cancer metastasis remains poorly understood. In this study, we performed in vitro experiments to investigate the inhibitory activity of diosgenin on human breast cancer MDA-MB-231 cell migration, and reveal the possible mechanism. Diosgenin caused a marked inhibition of cell migration in MDA-MB-231 cell by transwell assay. In addition, diosgenin significantly impacted MDA-MB-231 cell migratory behavior under real-time observation. We also found diosgenin significantly inhibited actin polymerization, Vav2 phosphorylation and Cdc42 activation, which might be, at least in part, attributed to the anti-metastatic potential of diosgenin. These findings reveal a new therapeutic potential of diosgenin for human breast cancer metastasis therapy.
Collapse
Affiliation(s)
- Zhongmei He
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Chen
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
| | - Guofeng Li
- The First Affiliated Hospital of Changchun University of Traditional Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Hongyan Zhu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yugang Gao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lianxue Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Jiaming Sun
- Development Center of Traditional Chinese Medicine and Bioengineering, Changchun University of Traditional Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
11
|
Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 2014; 5:e27958. [PMID: 24607953 DOI: 10.4161/sgtp.27958] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rho GTPases play an essential role in regulating cell spreading, adhesion, and migration downstream of integrin engagement with the extracellular matrix. In this review, we focus on RhoA and Rac1--2 Rho GTPases that are required for efficient adhesion and migration--and describe how specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the extensive crosstalk that exists between them. In particular, we assess the role of GEFs and GAPs in light of recent, unexpected evidence concerning the spatiotemporal relationship between RhoA and Rac1 at the leading edge of migrating cells. Force is increasingly recognized as a key regulator of cell adhesion and we highlight the role of GEFs and GAPs in mechanotransduction, before debating the controversial role of tension in focal adhesion maturation.
Collapse
Affiliation(s)
- Campbell D Lawson
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Keith Burridge
- Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|