1
|
Yang J, Kim SY, Hwang CS. Delineation of the substrate recognition domain of MARCHF6 E3 ubiquitin ligase in the Ac/N-degron pathway and its regulatory role in ferroptosis. J Biol Chem 2024; 300:107731. [PMID: 39216628 PMCID: PMC11460463 DOI: 10.1016/j.jbc.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Nα-terminal acetylation in eukaryotic proteins creates specific degradation signals (Ac/N-degrons) targeted for ubiquitin-mediated proteolysis via the Ac/N-degron pathway. Despite the identification of key components of the Ac/N-degron pathway over the past 15 years, the precise recognition domain (Ac/N domain) remains unclear. Here, we defined the Ac/N domain of the endoplasmic reticulum MARCHF6 E3 ubiquitin ligase through a systematic analysis of its cytosol-facing regions using alanine-stretch mutagenesis, chemical crosslinking-based co-immunoprecipitation-immunoblotting, and split-ubiquitin assays in human and yeast cells. The Ac/N domain of MARCHF6 exhibits preferential binding specificity to Nα-terminally acetylated proteins and peptides over their unacetylated counterparts, mediating the degradation of Ac/N-degron-bearing proteins, such as the G-protein regulator RGS2 and the lipid droplet protein PLIN2. Furthermore, abolishing the recognition of Ac/N-degrons by MARCHF6 stabilized RGS2 and PLIN2, thereby increasing the resistance to ferroptosis, an iron-dependent lipid peroxidation-mediated cell death. These findings provide mechanistic and functional insights into how MARCHF6 serves as a rheostatic modulator of ferroptosis by recognizing Ac/N-degron substrates via its Ac/N domain and non-Ac/N-degron substrates via distinct recognition sites.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
3
|
Guzman UH, Aksnes H, Ree R, Krogh N, Jakobsson ME, Jensen LJ, Arnesen T, Olsen JV. Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae. Nat Commun 2023; 14:4517. [PMID: 37500638 PMCID: PMC10374663 DOI: 10.1038/s41467-023-40224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.
Collapse
Affiliation(s)
- Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Biosciences, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Mehrtash AB, Hochstrasser M. Ectopic RING activity at the ER membrane differentially impacts ERAD protein quality control pathways. J Biol Chem 2023; 299:102927. [PMID: 36682496 PMCID: PMC9950527 DOI: 10.1016/j.jbc.2023.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway that ensures misfolded proteins are removed from the ER and destroyed. In ERAD, membrane and luminal substrates are ubiquitylated by ER-resident RING-type E3 ubiquitin ligases, retrotranslocated into the cytosol, and degraded by the proteasome. Overexpression of ERAD factors is frequently used in yeast and mammalian cells to study this process. Here, we analyze the impact of ERAD E3 overexpression on substrate turnover in yeast, where there are three ERAD E3 complexes (Doa10, Hrd1, and Asi1-3). Elevated Doa10 or Hrd1 (but not Asi1) RING activity at the ER membrane resulting from protein overexpression inhibits the degradation of specific Doa10 substrates. The ERAD E2 ubiquitin-conjugating enzyme Ubc6 becomes limiting under these conditions, and UBC6 overexpression restores Ubc6-mediated ERAD. Using a subset of the dominant-negative mutants, which contain the Doa10 RING domain but lack the E2-binding region, we show that they induce degradation of membrane tail-anchored Ubc6 independently of endogenous Doa10 and the other ERAD E3 complexes. This remains true even if the cells lack the Dfm1 rhomboid pseudoprotease, which is also a proposed retrotranslocon. Hence, rogue RING activity at the ER membrane elicits a highly specific off-pathway defect in the Doa10 pathway, and the data point to an additional ERAD E3-independent retrotranslocation mechanism.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Mark Hochstrasser
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Yao C, Yan M, Li K, Gao W, Li X, Zhang J, Liu H, Zhong Y. The ERAD Pathway Participates in Fungal Growth and Cellulase Secretion in Trichoderma reesei. J Fungi (Basel) 2023; 9:74. [PMID: 36675895 PMCID: PMC9862206 DOI: 10.3390/jof9010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Trichoderma reesei is a powerful fungal cell factory for the production of cellulolytic enzymes due to its outstanding protein secretion capacity. Endoplasmic reticulum-associated degradation (ERAD) plays an integral role in protein secretion that responds to secretion pressure and removes misfolded proteins. However, the role of ERAD in fungal growth and endogenous protein secretion, particularly cellulase secretion, remains poorly understood in T. reesei. Here, we investigated the ability of T. reesei to grow under different stresses and to secrete cellulases by disrupting three major genes (hrd1, hrd3 and der1) involved in the critical parts of the ERAD pathway. Under the ER stress induced by high concentrations of DTT, knockout of hrd1, hrd3 and der1 resulted in severely impaired growth, and the mutants Δhrd1 and Δhrd3 exhibited high sensitivity to the cell wall-disturbing agents, CFW and CR. In addition, the absence of either hrd3 or der1 led to the decreased heat tolerance of this fungus. These mutants showed significant differences in the secretion of cellulases compared to the parental strain QM9414. During fermentation, the secretion of endoglucanase in the mutants was essentially consistent with that of the parental strain, while cellobiohydrolase and β-glucosidase were declined. It was further discovered that the transcription levels of the endoglucanase-encoding genes (eg1 and eg2) and the cellobiohydrolase-encoding gene (cbh1) were not remarkedly changed. However, the β-glucosidase-encoding gene (bgl1) was significantly downregulated in the ERAD-deficient mutants, which was presumably due to the activation of a proposed feedback mechanism, repression under secretion stress (RESS). Taken together, our results indicate that a defective ERAD pathway negatively affects fungal growth and cellulase secretion, which provides a novel insight into the cellulase secretion mechanism in T. reesei.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Huber M, Armbruster L, Etherington RD, De La Torre C, Hawkesford MJ, Sticht C, Gibbs DJ, Hell R, Wirtz M. Disruption of the N α-Acetyltransferase NatB Causes Sensitivity to Reductive Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:799954. [PMID: 35046984 PMCID: PMC8761761 DOI: 10.3389/fpls.2021.799954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
In Arabidopsis thaliana, the evolutionary conserved N-terminal acetyltransferase (Nat) complexes NatA and NatB co-translationally acetylate 60% of the proteome. Both have recently been implicated in the regulation of plant stress responses. While NatA mediates drought tolerance, NatB is required for pathogen resistance and the adaptation to high salinity and high osmolarity. Salt and osmotic stress impair protein folding and result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER). The ER-membrane resident E3 ubiquitin ligase DOA10 targets misfolded proteins for degradation during ER stress and is conserved among eukaryotes. In yeast, DOA10 recognizes conditional degradation signals (Ac/N-degrons) created by NatA and NatB. Assuming that this mechanism is preserved in plants, the lack of Ac/N-degrons required for efficient removal of misfolded proteins might explain the sensitivity of NatB mutants to protein harming conditions. In this study, we investigate the response of NatB mutants to dithiothreitol (DTT) and tunicamycin (TM)-induced ER stress. We report that NatB mutants are hypersensitive to DTT but not TM, suggesting that the DTT hypersensitivity is caused by an over-reduction of the cytosol rather than an accumulation of unfolded proteins in the ER. In line with this hypothesis, the cytosol of NatB depleted plants is constitutively over-reduced and a global transcriptome analysis reveals that their reductive stress response is permanently activated. Moreover, we demonstrate that doa10 mutants are susceptible to neither DTT nor TM, ruling out a substantial role of DOA10 in ER-associated protein degradation (ERAD) in plants. Contrary to previous findings in yeast, our data indicate that N-terminal acetylation (NTA) does not inhibit ER targeting of a substantial amount of proteins in plants. In summary, we provide further evidence that NatB-mediated imprinting of the proteome is vital for the response to protein harming stress and rule out DOA10 as the sole recognin for substrates in the plant ERAD pathway, leaving the role of DOA10 in plants ambiguous.
Collapse
Affiliation(s)
- Monika Huber
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | | | - Carolina De La Torre
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | | | - Carsten Sticht
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | - Daniel J. Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Rüdiger Hell
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Shen T, Jiang L, Wang X, Xu Q, Han L, Liu S, Huang T, Li H, Dai L, Li H, Lu K. Function and molecular mechanism of N-terminal acetylation in autophagy. Cell Rep 2021; 37:109937. [PMID: 34788606 DOI: 10.1016/j.celrep.2021.109937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
Collapse
Affiliation(s)
- Tianyun Shen
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lan Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xinyuan Wang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qingjia Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lu Han
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Huihui Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China; West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Kats I, Reinbold C, Kschonsak M, Khmelinskii A, Armbruster L, Ruppert T, Knop M. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation. Life Sci Alliance 2021; 5:5/2/e202000730. [PMID: 34764209 PMCID: PMC8605321 DOI: 10.26508/lsa.202000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Inactivation of N-terminal acetyltransferase A is found to alter Rpn4 as well as E3 ligase abundance, causing up-regulation of Ubiquitin–proteasome activity. In this context, Tom1 is also identified as a novel chain-elongating enzyme of the UFD-pathway. N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
Collapse
Affiliation(s)
- Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Reinbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Kschonsak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Laura Armbruster
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
N α-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae. Cell Rep 2021; 34:108711. [PMID: 33535049 DOI: 10.1016/j.celrep.2021.108711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/10/2020] [Accepted: 01/09/2021] [Indexed: 11/22/2022] Open
Abstract
N-terminal (Nt) acetylation is a highly prevalent co-translational protein modification in eukaryotes, catalyzed by at least five Nt acetyltransferases (Nats) with differing specificities. Nt acetylation has been implicated in protein quality control, but its broad biological significance remains elusive. We investigate the roles of the two major Nats of S. cerevisiae, NatA and NatB, by performing transcriptome, translatome, and proteome profiling of natAΔ and natBΔ mutants. Our results reveal a range of NatA- and NatB-specific phenotypes. NatA is implicated in systemic adaptation control, because natAΔ mutants display altered expression of transposons, sub-telomeric genes, pheromone response genes, and nuclear genes encoding mitochondrial ribosomal proteins. NatB predominantly affects protein folding, because natBΔ mutants, to a greater extent than natA mutants, accumulate protein aggregates, induce stress responses, and display reduced fitness in the absence of the ribosome-associated chaperone Ssb. These phenotypic differences indicate that controlling Nat activities may serve to elicit distinct cellular responses.
Collapse
|
10
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Cheung TP, Choe JY, Richmond JE, Kim H. BK channel density is regulated by endoplasmic reticulum associated degradation and influenced by the SKN-1A/NRF1 transcription factor. PLoS Genet 2020; 16:e1008829. [PMID: 32502151 PMCID: PMC7299407 DOI: 10.1371/journal.pgen.1008829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Ion channels are present at specific levels within subcellular compartments of excitable cells. The regulation of ion channel trafficking and targeting is an effective way to control cell excitability. The BK channel is a calcium-activated potassium channel that serves as a negative feedback mechanism at presynaptic axon terminals and sites of muscle excitation. The C. elegans BK channel ortholog, SLO-1, requires an endoplasmic reticulum (ER) membrane protein for efficient anterograde transport to these locations. Here, we found that, in the absence of this ER membrane protein, SLO-1 channels that are seemingly normally folded and expressed at physiological levels undergo SEL-11/HRD1-mediated ER-associated degradation (ERAD). This SLO-1 degradation is also indirectly regulated by a SKN-1A/NRF1-mediated transcriptional mechanism that controls proteasome levels. Therefore, our data indicate that SLO-1 channel density is regulated by the competitive balance between the efficiency of ER trafficking machinery and the capacity of ERAD. Excitable cells, such as neurons and muscles, are essential for the movement and behavior of animals. These cells express a set of specific types of ion channels that allow the selective passage of ions across the plasma membrane. The alteration in the levels of these ion channels influences cell excitability and the function of excitable cells. The regulation of ion channel trafficking and targeting is an effective way to control the function of excitable cells. The BK SLO-1 channel is a calcium-activated potassium channel that reduces excitability at presynaptic axon terminals and sites of muscle excitation. In a C. elegans genetic study, authors found that the delayed exit of SLO-1 channels from the ER causes their degradation by a mechanism called ER-associated degradation (ERAD). Interestingly, the same components that directly mediate SLO-1 ERAD also process a key transcriptional factor that maintains proteasome levels, thus indirectly influencing SLO-1 degradation. These data show that the levels of SLO-1 channels are regulated by the competitive balance between the efficiency of ER trafficking machinery and the capacity of ERAD.
Collapse
Affiliation(s)
- Timothy P. Cheung
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
| | - Jun-Yong Choe
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois United States of America
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hongkyun Kim
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
13
|
Budenholzer L, Breckel C, Hickey CM, Hochstrasser M. The Sts1 nuclear import adapter uses a non-canonical bipartite nuclear localization signal and is directly degraded by the proteasome. J Cell Sci 2020; 133:jcs.236158. [PMID: 32041904 DOI: 10.1242/jcs.236158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The proteasome is an essential regulator of protein homeostasis. In yeast and many mammalian cells, proteasomes strongly concentrate in the nucleus. Sts1 from the yeast Saccharomyces cerevisiae is an essential protein linked to proteasome nuclear localization. Here, we show that Sts1 contains a non-canonical bipartite nuclear localization signal (NLS) important for both nuclear localization of Sts1 itself and the proteasome. Sts1 binds the karyopherin-α import receptor (Srp1) stoichiometrically, and this requires the NLS. The NLS is essential for viability, and over-expressed Sts1 with an inactive NLS interferes with 26S proteasome import. The Sts1-Srp1 complex binds preferentially to fully assembled 26S proteasomes in vitro Sts1 is itself a rapidly degraded 26S proteasome substrate; notably, this degradation is ubiquitin independent in cells and in vitro and is inhibited by Srp1 binding. Mutants of Sts1 are stabilized, suggesting that its degradation is tightly linked to its role in localizing proteasomes to the nucleus. We propose that Sts1 normally promotes nuclear import of fully assembled proteasomes and is directly degraded by proteasomes without prior ubiquitylation following karyopherin-α release in the nucleus.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA .,Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Valosin-containing protein mediates the ERAD of squalene monooxygenase and its cholesterol-responsive degron. Biochem J 2019; 476:2545-2560. [DOI: 10.1042/bcj20190418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
AbstractSqualene monooxygenase (SM) is an essential rate-limiting enzyme in cholesterol synthesis. SM degradation is accelerated by excess cholesterol, and this requires the first 100 amino acids of SM (SM N100). This process is part of a protein quality control pathway called endoplasmic reticulum-associated degradation (ERAD). In ERAD, SM is ubiquitinated by MARCH6, an E3 ubiquitin ligase located in the endoplasmic reticulum (ER). However, several details of the ERAD process for SM remain elusive, such as the extraction mechanism from the ER membrane. Here, we used SM N100 fused to GFP (SM N100-GFP) as a model degron to investigate the extraction process of SM in ERAD. We showed that valosin-containing protein (VCP) is important for the cholesterol-accelerated degradation of SM N100-GFP and SM. In addition, we revealed that VCP acts following ubiquitination of SM N100-GFP by MARCH6. We demonstrated that the amphipathic helix (Gln62–Leu73) of SM N100-GFP is critical for regulation by VCP and MARCH6. Replacing this amphipathic helix with hydrophobic re-entrant loops promoted degradation in a VCP-dependent manner. Finally, we showed that inhibiting VCP increases cellular squalene and cholesterol levels, indicating a functional consequence for VCP in regulating the cholesterol synthesis pathway. Collectively, we established VCP plays a key role in ERAD that contributes to the cholesterol-mediated regulation of SM.
Collapse
|
15
|
Aksnes H, Ree R, Arnesen T. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases. Mol Cell 2019; 73:1097-1114. [PMID: 30878283 DOI: 10.1016/j.molcel.2019.02.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co-translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific; for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie-restriction-induced longevity and pathological α-synuclein aggregation in Parkinson's disease. Combined, the NATs rise as multifunctional proteins, and N-terminal acetylation is gaining recognition as a major cellular regulator.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Rasmus Ree
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
16
|
Nguyen KT, Kim JM, Park SE, Hwang CS. N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway. J Biol Chem 2019; 294:4464-4476. [PMID: 30674553 DOI: 10.1074/jbc.ra118.006913] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
All organisms begin protein synthesis with methionine (Met). The resulting initiator Met of nascent proteins is irreversibly processed by Met aminopeptidases (MetAPs). N-terminal (Nt) Met excision (NME) is an evolutionarily conserved and essential process operating on up to two-thirds of proteins. However, the universal function of NME remains largely unknown. MetAPs have a well-known processing preference for Nt-Met with Ala, Ser, Gly, Thr, Cys, Pro, or Val at position 2, but using CHX-chase assays to assess protein degradation in yeast cells, as well as protein-binding and RT-qPCR assays, we demonstrate here that NME also occurs on nascent proteins bearing Met-Asn or Met-Gln at their N termini. We found that the NME at these termini exposes the tertiary destabilizing Nt residues (Asn or Gln) of the Arg/N-end rule pathway, which degrades proteins according to the composition of their Nt residues. We also identified a yeast DNA repair protein, MQ-Rad16, bearing a Met-Gln N terminus, as well as a human tropomyosin-receptor kinase-fused gene (TFG) protein, MN-TFG, bearing a Met-Asn N terminus as physiological, MetAP-processed Arg/N-end rule substrates. Furthermore, we show that the loss of the components of the Arg/N-end rule pathway substantially suppresses the growth defects of naa20Δ yeast cells lacking the catalytic subunit of NatB Nt acetylase at 37 °C. Collectively, the results of our study reveal that NME is a key upstream step for the creation of the Arg/N-end rule substrates bearing tertiary destabilizing residues in vivo.
Collapse
Affiliation(s)
- Kha The Nguyen
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong-Mok Kim
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sang-Eun Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Cheol-Sang Hwang
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
17
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
18
|
Cao J, Wang Q, Liu T, Peng N, Huang L. Insights into the post-translational modifications of archaeal Sis10b (Alba): lysine-16 is methylated, not acetylated, and this does not regulate transcription or growth. Mol Microbiol 2018; 109:192-208. [PMID: 29679495 DOI: 10.1111/mmi.13973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
Nucleic acid-binding proteins of the Sac10b family, also referred to as Alba (for acetylation lowers binding affinity), are highly conserved in Archaea. It was reported that Sso10b, a Sac10b homologue from Sulfolobus solfataricus, was acetylated at the ɛ-amino group of K16 and the α-amino group of the N-terminal residue. Notably, acetylation of K16 reduced the affinity of Sso10b for DNA and de-repressed transcription in vitro. Here, we show that Sis10b, a Sac10b homologue from Sulfolobus islandicus, underwent a range of post-translational modifications (PTMs). K16 in Sis10b as well as Sso10b was not acetylated. Substitution of K16 for R16, which resulted in the loss of the PTMs at the site, showed little effect on the growth of the cell and resulted in only a slight change in the expression of a very small fraction of the genes. The N-terminus of Sis10b was nearly completely Nα -acetylated. The reduction or loss of the terminal acetylation led to a significant increase in the cellular concentration of Sis10b, suggesting the involvement of the modification in the control of the turnover of the protein. These results have clarified the PTMs of Sac10b homologues and shed light on the proposed roles of acetylation of the protein.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qian Wang
- Core Facility of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Yakhine-Diop SMS, Rodríguez-Arribas M, Martínez-Chacón G, Uribe-Carretero E, Gómez-Sánchez R, Aiastui A, López de Munain A, Bravo-San Pedro JM, Niso-Santano M, González-Polo RA, Fuentes JM. Acetylome in Human Fibroblasts From Parkinson's Disease Patients. Front Cell Neurosci 2018; 12:97. [PMID: 29719501 PMCID: PMC5913320 DOI: 10.3389/fncel.2018.00097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder. The pathogenesis of this disease is associated with gene and environmental factors. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent genetic cause of familial and sporadic PD. Moreover, posttranslational modifications, including protein acetylation, are involved in the molecular mechanism of PD. Acetylation of lysine proteins is a dynamic process that is modulated in PD. In this descriptive study, we characterized the acetylated proteins and peptides in primary fibroblasts from idiopathic PD (IPD) and genetic PD harboring G2019S or R1441G LRRK2 mutations. Identified acetylated peptides are modulated between individuals' groups. Although acetylated nuclear proteins are the most represented in cells, they are hypoacetylated in IPD. Results display that the level of hyperacetylated and hypoacetylated peptides are, respectively, enhanced in genetic PD and in IPD cells.
Collapse
Affiliation(s)
- Sokhna M S Yakhine-Diop
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Guadalupe Martínez-Chacón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Rubén Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ana Aiastui
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Cell Culture Plataform, Donostia University Hospital, San Sebastián, Spain.,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Ilundain Fundazioa, San Sebastian, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
| | - José M Bravo-San Pedro
- Equipe 11 labellisèe Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Mireia Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Rosa A González-Polo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - José M Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
20
|
Zhu B, Jiang L, Huang T, Zhao Y, Liu T, Zhong Y, Li X, Campos A, Pomeroy K, Masliah E, Zhang D, Xu H. ER-associated degradation regulates Alzheimer's amyloid pathology and memory function by modulating γ-secretase activity. Nat Commun 2017; 8:1472. [PMID: 29133892 PMCID: PMC5684335 DOI: 10.1038/s41467-017-01799-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic-reticulum-associated degradation (ERAD) is an important protein quality control system which maintains protein homeostasis. Constituents of the ERAD complex and its role in neurodegeneration are not yet fully understood. Here, using proteomic and FRET analyses, we demonstrate that the ER protein membralin is an ERAD component, which mediates degradation of ER luminal and membrane substrates. Interestingly, we identify nicastrin, a key component of the γ-secretase complex, as a membralin binding protein and membralin-associated ERAD substrate. We demonstrate a reduction of membralin mRNA and protein levels in Alzheimer's disease (AD) brain, the latter of which inversely correlates with nicastrin abundance. Furthermore, membralin deficiency enhances γ-secretase activity and neuronal degeneration. In a mouse AD model, downregulating membralin results in β-amyloid pathology, neuronal death, and exacerbates synaptic/memory deficits. Our results identify membralin as an ERAD component and demonstrate a critical role for ERAD in AD pathogenesis.
Collapse
Affiliation(s)
- Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongfei Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Alexandre Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Kenneth Pomeroy
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dongxian Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
21
|
Engle SM, Crowder JJ, Watts SG, Indovina CJ, Coffey SZ, Rubenstein EM. Acetylation of N-terminus and two internal amino acids is dispensable for degradation of a protein that aberrantly engages the endoplasmic reticulum translocon. PeerJ 2017; 5:e3728. [PMID: 28848693 PMCID: PMC5571791 DOI: 10.7717/peerj.3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Conserved homologues of the Hrd1 ubiquitin ligase target for degradation proteins that persistently or aberrantly engage the endoplasmic reticulum translocon, including mammalian apolipoprotein B (apoB; the major protein component of low-density lipoproteins) and the artificial yeast protein Deg1-Sec62. A complete understanding of the molecular mechanism by which translocon-associated proteins are recognized and degraded may inform the development of therapeutic strategies for cholesterol-related pathologies. Both apoB and Deg1-Sec62 are extensively post-translationally modified. Mass spectrometry of a variant of Deg1-Sec62 revealed that the protein is acetylated at the N-terminal methionine and two internal lysine residues. N-terminal and internal acetylation regulates the degradation of a variety of unstable proteins. However, preventing N-terminal and internal acetylation had no detectable consequence for Hrd1-mediated proteolysis of Deg1-Sec62. Our data highlight the importance of empirically validating the role of post-translational modifications and sequence motifs on protein degradation, even when such elements have previously been demonstrated sufficient to destine other proteins for destruction.
Collapse
Affiliation(s)
- Sarah M Engle
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Immunology-Translational Science, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Justin J Crowder
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Center for Medical Education, Indiana University School of Medicine, Muncie, IN, United States of America
| | - Sheldon G Watts
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Marian University College of Osteopathic Medicine, Indianapolis, IN, United States of America
| | | | - Samuel Z Coffey
- Department of Biology, Ball State University, Muncie, IN, United States of America.,Medpace Reference Laboratories, Cincinnati, OH, United States of America
| | - Eric M Rubenstein
- Department of Biology, Ball State University, Muncie, IN, United States of America
| |
Collapse
|
22
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
23
|
He Z, Huang T, Ao K, Yan X, Huang Y. Sumoylation, Phosphorylation, and Acetylation Fine-Tune the Turnover of Plant Immunity Components Mediated by Ubiquitination. FRONTIERS IN PLANT SCIENCE 2017; 8:1682. [PMID: 29067028 PMCID: PMC5641357 DOI: 10.3389/fpls.2017.01682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitination-mediated protein degradation plays a crucial role in the turnover of immune proteins through rapid alteration of protein levels. Specifically, the over-accumulation of immune proteins and consequent activation of immune responses in uninfected cells is prevented through degradation. Protein post-translational modifications can influence and affect ubiquitination. There is accumulating evidence that suggests sumoylation, phosphorylation, and acetylation differentially affect the stability of immune-related proteins, so that control over the accumulation or degradation of proteins is fine-tuned. In this paper, we review the function and mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant disease resistance responses, focusing on how ubiquitination reacts with sumoylation, phosphorylation, and acetylation to regulate plant disease resistance signaling pathways. Future research directions are suggested in order to provide ideas for signaling pathway studies, and to advance the implementation of disease resistance proteins in economically important crops.
Collapse
Affiliation(s)
- Zhouqing He
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tingting Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofang Yan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Yan Huang,
| |
Collapse
|
24
|
Römisch K. A Case for Sec61 Channel Involvement in ERAD. Trends Biochem Sci 2016; 42:171-179. [PMID: 27932072 DOI: 10.1016/j.tibs.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
Proteins that misfold in the endoplasmic reticulum (ER) need to be transported back to the cytosol for degradation by proteasomes, a process known as ER-associated degradation (ERAD). The first candidate discussed as a retrograde protein transport conduit was the Sec61 channel which is responsible for secretory protein transport into the ER during biogenesis. The Sec61 channel binds the proteasome 19S regulatory particle which can extract an ERAD substrate from the ER. Nevertheless its role as a general export channel has been dismissed, and Hrd1 and Der1 have been proposed as alternatives. The discovery of export-specific sec61 mutants and of mammalian ERAD substrates whose export is dependent on the 19S regulatory particle suggest that dismissal of a role of Sec61 in export may have been premature.
Collapse
Affiliation(s)
- Karin Römisch
- Department of Biology, Naturwissenschaftlich-technische Fakultät 8, Saarland University, 66123 Saarbruecken, Germany.
| |
Collapse
|
25
|
Aksnes H, Drazic A, Marie M, Arnesen T. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases. Trends Biochem Sci 2016; 41:746-760. [PMID: 27498224 DOI: 10.1016/j.tibs.2016.07.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/28/2022]
Abstract
N-terminal (Nt) acetylation is known to be a highly abundant co-translational protein modification, but the recent discovery of Golgi- and chloroplast-resident N-terminal acetyltransferases (NATs) revealed that it can also be added post-translationally. Nt-acetylation may act as a degradation signal in a novel branch of the N-end rule pathway, whose functions include the regulation of human blood pressure. Nt-acetylation also modulates protein interactions, targeting, and folding. In plants, Nt-acetylation plays a role in the control of resistance to drought and in regulation of immune responses. Mutations of specific human NATs that decrease their activity can cause either the lethal Ogden syndrome or severe intellectual disability and cardiovascular defects. In sum, recent advances highlight Nt-acetylation as a key factor in many biological pathways.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Adrian Drazic
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Michaël Marie
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
26
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
27
|
Zattas D, Berk JM, Kreft SG, Hochstrasser M. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation. J Biol Chem 2016; 291:12105-18. [PMID: 27068744 PMCID: PMC4933261 DOI: 10.1074/jbc.m116.726877] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates.
Collapse
Affiliation(s)
- Dimitrios Zattas
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Jason M Berk
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Stefan G Kreft
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and the Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78457 Konstanz, Germany
| | - Mark Hochstrasser
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
28
|
Lee KE, Heo JE, Kim JM, Hwang CS. N-Terminal Acetylation-Targeted N-End Rule Proteolytic System: The Ac/N-End Rule Pathway. Mol Cells 2016; 39:169-78. [PMID: 26883906 PMCID: PMC4794598 DOI: 10.14348/molcells.2016.2329] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Although Nα-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).
Collapse
Affiliation(s)
- Kang-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Ji-Eun Heo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790–784,
Korea
| |
Collapse
|
29
|
Rathore OS, Faustino A, Prudêncio P, Van Damme P, Cox CJ, Martinho RG. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms. Sci Rep 2016; 6:21304. [PMID: 26861501 PMCID: PMC4748286 DOI: 10.1038/srep21304] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes.
Collapse
Affiliation(s)
- Om Singh Rathore
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Faro, Portugal
| | - Alexandra Faustino
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal
| | - Pedro Prudêncio
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Petra Van Damme
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Cymon J Cox
- Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Rui Gonçalo Martinho
- Department of Biomedical Sciences and Medicine, Faro, Portugal.,Center for Biomedical Research (CBMR), Faro, Portugal.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| |
Collapse
|
30
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
31
|
Silva RD, Martinho RG. Developmental roles of protein N-terminal acetylation. Proteomics 2015; 15:2402-9. [PMID: 25920796 DOI: 10.1002/pmic.201400631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 12/30/2022]
Abstract
Discovered more than 50 years ago, N-terminal acetylation (N-Ac) is one of the most common protein modifications. Catalyzed by different N-terminal acetyltransferases (NATs), N-Ac was originally believed to mostly promote protein stability. However, several functional consequences at substrate level were recently described that yielded important new insights about the distinct molecular functions for this modification. The ubiquitous and apparent irreversible nature of this protein modification leads to the assumption that N-Ac mostly executes constitutive functions. In spite of the large number of substrates for each NAT, recent studies in multicellular organisms have nevertheless indicated very specific phenotypes after NAT loss. This raises the hypothesis that in vivo N-Ac is only functionally rate limiting for a small subset of substrates. In this review, we will discuss the function of N-Ac in the context of a developing organism. We will propose that some rate limiting NAT substrates may be tissue-specific leading to differential functions of N-Ac during development of multicellular organisms. Moreover, we will also propose the existence of tissue and developmental-specific mechanisms that differentially regulate N-Ac.
Collapse
Affiliation(s)
- Rui D Silva
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
32
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
33
|
Watts SG, Crowder JJ, Coffey SZ, Rubenstein EM. Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae. J Vis Exp 2015:e52428. [PMID: 25742191 DOI: 10.3791/52428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated protein degradation is crucial for virtually every cellular function. Much of what is known about the molecular mechanisms and genetic requirements for eukaryotic protein degradation was initially established in Saccharomyces cerevisiae. Classical analyses of protein degradation have relied on biochemical pulse-chase and cycloheximide-chase methodologies. While these techniques provide sensitive means for observing protein degradation, they are laborious, time-consuming, and low-throughput. These approaches are not amenable to rapid or large-scale screening for mutations that prevent protein degradation. Here, a yeast growth-based assay for the facile identification of genetic requirements for protein degradation is described. In this assay, a reporter enzyme required for growth under specific selective conditions is fused to an unstable protein. Cells lacking the endogenous reporter enzyme but expressing the fusion protein can grow under selective conditions only when the fusion protein is stabilized (i.e. when protein degradation is compromised). In the growth assay described here, serial dilutions of wild-type and mutant yeast cells harboring a plasmid encoding a fusion protein are spotted onto selective and non-selective medium. Growth under selective conditions is consistent with degradation impairment by a given mutation. Increased protein abundance should be biochemically confirmed. A method for the rapid extraction of yeast proteins in a form suitable for electrophoresis and western blotting is also demonstrated. A growth-based readout for protein stability, combined with a simple protocol for protein extraction for biochemical analysis, facilitates rapid identification of genetic requirements for protein degradation. These techniques can be adapted to monitor degradation of a variety of short-lived proteins. In the example presented, the His3 enzyme, which is required for histidine biosynthesis, was fused to Deg1-Sec62. Deg1-Sec62 is targeted for degradation after it aberrantly engages the endoplasmic reticulum translocon. Cells harboring Deg1-Sec62-His3 were able to grow under selective conditions when the protein was stabilized.
Collapse
Affiliation(s)
| | | | - Samuel Z Coffey
- Department of Biology, Ball State University; Division of Nephrology, Cincinnati Children's Hospital
| | | |
Collapse
|
34
|
Molecular, Cellular, and Physiological Significance of N-Terminal Acetylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:267-305. [DOI: 10.1016/bs.ircmb.2015.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Protein quality control at the inner nuclear membrane. Nature 2014; 516:410-3. [PMID: 25519137 DOI: 10.1038/nature14096] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/20/2014] [Indexed: 02/05/2023]
Abstract
The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.
Collapse
|
36
|
Zattas D, Hochstrasser M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit Rev Biochem Mol Biol 2014; 50:1-17. [PMID: 25231236 DOI: 10.3109/10409238.2014.959889] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here, we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane.
Collapse
Affiliation(s)
- Dimitrios Zattas
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, CT , USA
| | | |
Collapse
|
37
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
38
|
Kim I, Miller CR, Young DL, Fields S. High-throughput analysis of in vivo protein stability. Mol Cell Proteomics 2013; 12:3370-8. [PMID: 23897579 DOI: 10.1074/mcp.o113.031708] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Determining the half-life of proteins is critical for an understanding of virtually all cellular processes. Current methods for measuring in vivo protein stability, including large-scale approaches, are limited in their throughput or in their ability to discriminate among small differences in stability. We developed a new method, Stable-seq, which uses a simple genetic selection combined with high-throughput DNA sequencing to assess the in vivo stability of a large number of variants of a protein. The variants are fused to a metabolic enzyme, which here is the yeast Leu2 protein. Plasmids encoding these Leu2 fusion proteins are transformed into yeast, with the resultant fusion proteins accumulating to different levels based on their stability and leading to different doubling times when the yeast are grown in the absence of leucine. Sequencing of an input population of variants of a protein and the population of variants after leucine selection allows the stability of tens of thousands of variants to be scored in parallel. By applying the Stable-seq method to variants of the protein degradation signal Deg1 from the yeast Matα2 protein, we generated a high-resolution map that reveals the effect of ∼30,000 mutations on protein stability. We identified mutations that likely affect stability by changing the activity of the degron, by leading to translation from new start codons, or by affecting N-terminal processing. Stable-seq should be applicable to other organisms via the use of suitable reporter proteins, as well as to the analysis of complex mixtures of fusion proteins.
Collapse
Affiliation(s)
- Ikjin Kim
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, Washington 98195
| | | | | | | |
Collapse
|