1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Middelkoop TC, Neipel J, Cornell CE, Naumann R, Pimpale LG, Jülicher F, Grill SW. A cytokinetic ring-driven cell rotation achieves Hertwig's rule in early development. Proc Natl Acad Sci U S A 2024; 121:e2318838121. [PMID: 38870057 PMCID: PMC11194556 DOI: 10.1073/pnas.2318838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.
Collapse
Affiliation(s)
- Teije C. Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Laboratory of Developmental Mechanobiology, Division Biocev, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220Prague, Czech Republic
| | - Jonas Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
| | - Caitlin E. Cornell
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Lokesh G. Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, 01062Dresden, Germany
| |
Collapse
|
3
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
4
|
Chan FY, Silva AM, Carvalho AX. Using the Four-Cell C. elegans Embryo to Study Contractile Ring Dynamics During Cytokinesis. Methods Mol Biol 2020; 2101:297-325. [PMID: 31879911 DOI: 10.1007/978-1-0716-0219-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytokinesis is the process that completes cell division by partitioning the contents of the mother cell between the two daughter cells. It involves the highly regulated assembly and constriction of an actomyosin contractile ring, whose function is to pinch the mother cell in two. Research on the contractile ring has particularly focused on the signaling mechanisms that dictate when and where the ring is formed. In vivo studies of ring constriction are however scarce and its mechanistic understanding is therefore limited. Here we present several experimental approaches for monitoring ring constriction in vivo, using the four-cell C. elegans embryo as model. These approaches allow for the ring to be perturbed only after it forms and include the combination of live imaging with acute drug treatments, temperature-sensitive mutants and rapid temperature shifts, as well as laser microsurgery. In addition, we explain how to combine these with RNAi-mediated depletion of specific components of the cytokinetic machinery.
Collapse
Affiliation(s)
- Fung Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Marta Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Cravo J, van den Heuvel S. Tissue polarity and PCP protein function: C. elegans as an emerging model. Curr Opin Cell Biol 2019; 62:159-167. [PMID: 31884395 DOI: 10.1016/j.ceb.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.
Collapse
Affiliation(s)
- Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Greenberg SR, Tan W, Lee WL. Num1 versus NuMA: insights from two functionally homologous proteins. Biophys Rev 2018; 10:1631-1636. [PMID: 30402673 PMCID: PMC6297085 DOI: 10.1007/s12551-018-0472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/19/2022] Open
Abstract
In both animals and fungi, spindle positioning is dependent upon pulling forces generated by cortically anchored dynein. In animals, cortical anchoring is accomplished by a ternary complex containing the dynein-binding protein NuMA and its cortical attachment machinery. The same function is accomplished by Num1 in budding yeast. While not homologous in primary sequence, NuMA and Num1 appear to share striking similarities in their mechanism of function. Here, we discuss evidence supporting that Num1 in fungi is a functional homolog of NuMA due to their similarity in domain organization and role in the generation of cortical pulling forces.
Collapse
Affiliation(s)
- Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Weimin Tan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Sugioka K, Fielmich LE, Mizumoto K, Bowerman B, van den Heuvel S, Kimura A, Sawa H. Tumor suppressor APC is an attenuator of spindle-pulling forces during C. elegans asymmetric cell division. Proc Natl Acad Sci U S A 2018; 115:E954-E963. [PMID: 29348204 PMCID: PMC5798331 DOI: 10.1073/pnas.1712052115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/β-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.
Collapse
Affiliation(s)
- Kenji Sugioka
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Lars-Eric Fielmich
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Kota Mizumoto
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sander van den Heuvel
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| |
Collapse
|
8
|
Schmidt R, Fielmich LE, Grigoriev I, Katrukha EA, Akhmanova A, van den Heuvel S. Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos. J Cell Biol 2017; 216:2777-2793. [PMID: 28739679 PMCID: PMC5584144 DOI: 10.1083/jcb.201607038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
The position of the mitotic spindle is tightly controlled in animal cells as it determines the plane and orientation of cell division. Contacts between cytoplasmic dynein and astral microtubules (MTs) at the cell cortex generate pulling forces that position the spindle. An evolutionarily conserved Gα-GPR-1/2Pins/LGN-LIN-5Mud/NuMA cortical complex interacts with dynein and is required for pulling force generation, but the dynamics of this process remain unclear. In this study, by fluorescently labeling endogenous proteins in Caenorhabditis elegans embryos, we show that dynein exists in two distinct cortical populations. One population directly depends on LIN-5, whereas the other is concentrated at MT plus ends and depends on end-binding (EB) proteins. Knockout mutants lacking all EBs are viable and fertile and display normal pulling forces and spindle positioning. However, EB protein-dependent dynein plus end tracking was found to contribute to force generation in embryos with a partially perturbed dynein function, indicating the existence of two mechanisms that together create a highly robust force-generating system.
Collapse
Affiliation(s)
- Ruben Schmidt
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Lars-Eric Fielmich
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Kimura K, Mamane A, Sasaki T, Sato K, Takagi J, Niwayama R, Hufnagel L, Shimamoto Y, Joanny JF, Uchida S, Kimura A. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming. Nat Cell Biol 2017; 19:399-406. [PMID: 28288129 DOI: 10.1038/ncb3490] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023]
Abstract
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.
Collapse
Affiliation(s)
- Kenji Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Alexandre Mamane
- Physicochimie Curie (Centre National de la Recherche Scientifique-UMR168, UPMC), Institut Curie, PSL Research University, Section de Recherche, Paris 75248, France
| | - Tohru Sasaki
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Kohta Sato
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Jun Takagi
- Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan
| | - Ritsuya Niwayama
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Yuta Shimamoto
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.,Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan
| | - Jean-François Joanny
- Physicochimie Curie (Centre National de la Recherche Scientifique-UMR168, UPMC), Institut Curie, PSL Research University, Section de Recherche, Paris 75248, France
| | - Seiichi Uchida
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
10
|
Pacquelet A. Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry. Results Probl Cell Differ 2017; 61:115-140. [PMID: 28409302 DOI: 10.1007/978-3-319-53150-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first division of the one-cell C. elegans embryo has been a fundamental model in deciphering the mechanisms underlying asymmetric cell division. Polarization of the one-cell zygote is induced by a signal from the sperm centrosome and results in the asymmetric distribution of PAR proteins. Multiple mechanisms then maintain PAR polarity until the end of the first division. Once asymmetrically localized, PAR proteins control several essential aspects of asymmetric division, including the position of the mitotic spindle along the polarity axis. Coordination of the spindle and cytokinetic furrow positions is the next essential step to ensure proper asymmetric division. In this chapter, I review the different mechanisms underlying these successive steps of asymmetric division. Work from the last 30 years has revealed the existence of multiple and redundant regulatory pathways which ensure division robustness. Besides the essential role of PAR proteins, this work also emphasizes the importance of both microtubules and actomyosin throughout the different steps of asymmetric division.
Collapse
Affiliation(s)
- Anne Pacquelet
- CNRS, UMR6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France. .,CNRS UMR6290-IGDR, 2 avenue du Professeur Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
11
|
Spiró Z, Thyagarajan K, De Simone A, Träger S, Afshar K, Gönczy P. Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos. Development 2014; 141:2712-23. [PMID: 24961801 DOI: 10.1242/dev.107508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of centrosome and spindle positioning is crucial for spatial cell division control. The one-cell Caenorhabditis elegans embryo has proven attractive for dissecting the mechanisms underlying centrosome and spindle positioning in a metazoan organism. Previous work revealed that these processes rely on an evolutionarily conserved force generator complex located at the cell cortex. This complex anchors the motor protein dynein, thus allowing cortical pulling forces to be exerted on astral microtubules emanating from microtubule organizing centers (MTOCs). Here, we report that the clathrin heavy chain CHC-1 negatively regulates pulling forces acting on centrosomes during interphase and on spindle poles during mitosis in one-cell C. elegans embryos. We establish a similar role for the cytokinesis/apoptosis/RNA-binding protein CAR-1 and uncover that CAR-1 is needed to maintain proper levels of CHC-1. We demonstrate that CHC-1 is necessary for normal organization of the cortical acto-myosin network and for full cortical tension. Furthermore, we establish that the centrosome positioning phenotype of embryos depleted of CHC-1 is alleviated by stabilizing the acto-myosin network. Conversely, we demonstrate that slight perturbations of the acto-myosin network in otherwise wild-type embryos results in excess centrosome movements resembling those in chc-1(RNAi) embryos. We developed a 2D computational model to simulate cortical rigidity-dependent pulling forces, which recapitulates the experimental data and further demonstrates that excess centrosome movements are produced at medium cortical rigidity values. Overall, our findings lead us to propose that clathrin plays a critical role in centrosome positioning by promoting acto-myosin cortical tension.
Collapse
Affiliation(s)
- Zoltán Spiró
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Kalyani Thyagarajan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Sylvain Träger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Katayoun Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
12
|
Kotak S, Gönczy P. Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 2013; 25:741-8. [PMID: 23958212 DOI: 10.1016/j.ceb.2013.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
Correct positioning of the spindle governs placement of the cytokinesis furrow and thus plays a crucial role in the partitioning of fate determinants and the disposition of daughter cells in a tissue. Converging evidence indicates that spindle positioning is often dictated by interactions between the plus-end of astral microtubules that emanate from the spindle poles and an evolutionary conserved cortical machinery that serves to pull on them. At the heart of this machinery lies a ternary complex (LIN-5/GPR-1/2/Gα in Caenorhabditis elegans and NuMA/LGN/Gαi in Homo sapiens) that promotes the presence of the motor protein dynein at the cell cortex. In this review, we discuss how the above components contribute to spindle positioning and how the underlying mechanisms are precisely regulated to ensure the proper execution of this crucial process in metazoan organisms.
Collapse
Affiliation(s)
- Sachin Kotak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1005, Switzerland
| | | |
Collapse
|