1
|
Qian B, Yin B, Yu H, Wang C, Lu S, Ke S, Li Z, Li X, Hua Y, Li Z, Zhou Y, Meng Z, Fu Y, Tang W, Ma Y. Axin formation inhibitor 1 aggravates hepatic ischemia‒reperfusion injury by promoting the ubiquitination and degradation of PPARβ. Nat Commun 2025; 16:1776. [PMID: 39971912 PMCID: PMC11840116 DOI: 10.1038/s41467-025-56967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Hepatic ischemia‒reperfusion injury (HIRI) is a common pathological phenomenon after hepatectomy and liver transplantation. Here, we aim to explore the role of Axin formation inhibitor 1 (Axin1) in HIRI. In this work, we find that the expression of Axin1 is upregulated after HIRI. Cellular experiments confirme that Axin1 knockdown alleviated hypoxia/reoxygenation (H/R)-induced inflammation and apoptosis. Subsequently, we construct a HIRI model based on transgenic hepatocellular-specific Axin1 knockout and overexpression male mice and find that Axin1 deletion alleviated inflammation and apoptosis. Transcriptome sequencing reveal that the genes whose expression differed after Axin1 overexpression are significantly enriched in the PPAR signaling pathway. Furthermore, we demonstrate that Axin1 negatively regulates the expression of PPARβ, thereby activating the NF-κB pathway. Mechanistically, Axin1 binds to PPARβ to enhance the ubiquitination-mediated degradation of PPARβ by the E3 ubiquitin ligase RBBP6. Notably, adenovirus-mediated Axin1 knockdown block I/R damage in mice. Our study results demonstrate that Axin1 exacerbates HIRI by promoting the ubiquitination and degradation of PPARβ, which in turn activates the NF-κB signaling pathway. These results suggest that Axin1 may be a potential therapeutic target for HIRI.
Collapse
Affiliation(s)
- Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Ma R, Xu X. Deciphering the role of post-translational modifications in fanconi anemia proteins and their influence on tumorigenesis. Cancer Gene Ther 2024; 31:1113-1123. [PMID: 38879655 DOI: 10.1038/s41417-024-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinlin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
3
|
Beesetti S, Sirasanagandla S, Sakurada SM, Pruett-Miller SM, Sumpter R, Levine B, Potts MB. FANCL supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166453. [PMID: 35644338 PMCID: PMC9844820 DOI: 10.1016/j.bbadis.2022.166453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/19/2023]
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Shyam Sirasanagandla
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rhea Sumpter
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Malia B Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
4
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
5
|
Sun S, He H, Ma Y, Xu J, Chen G, Sun Y, Xiong X. Inactivation of ribosomal protein S27-like impairs DNA interstrand cross-link repair by destabilization of FANCD2 and FANCI. Cell Death Dis 2020; 11:852. [PMID: 33051438 PMCID: PMC7555897 DOI: 10.1038/s41419-020-03082-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ribosomal protein S27-like (RPS27L), an evolutionarily conserved ribosomal protein and a direct p53 target, plays an important role in maintenance of genome integrity. We have previously reported that RPS27L regulates radiation sensitivity via the MDM2-p53 and MDM2-MRN-ATM axes. Whether and how RPS27L modulates DNA interstrand cross-link (ICL) repair is unknown. Here we identified that RPS27L binds to FANCD2 and FANCI, two Fanconi anemia (FA) proteins functioning in ICL repair pathway. Upon RPS27L knockdown, the levels of FANCD2 and FANCI are reduced due to accelerated degradation via p62-mediated autophagy-lysosome pathway, which is abrogated by chloroquine (CQ) treatment or Beclin 1 knockdown. Biologically, RPS27L knockdown suppresses FANCD2 foci formation and impairs ICL repair upon exposure to ICL-inducing agent mitomycin C (MMC) in lung cancer cells. This effect of MMC sensitization can be partially reversed by CQ treatment. Together, our study shows that RPS27L positively regulates ICL repair by binding with FANCD2 and FANCI to prevent their degradation via autophagy-lysosome system.
Collapse
Affiliation(s)
- Siyuan Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hengqian He
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Urology, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
6
|
Quan Q, Wang X, Lu C, Ma W, Han J, Xia G, Yang G, Wang C. Association of extracellular matrix microarchitecture and three-dimensional collective invasion of cancer cells. Biotech Histochem 2020; 95:605-612. [PMID: 32292080 DOI: 10.1080/10520295.2020.1744187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
As much as 90% of cancer associated mortality follows metastasis of a primary tumor. Circulating tumor cells (CTCs) and CTC clusters are important for metastasis. Compared to CTCs, CTC clusters formed by collective invasion exhibit a 23-50 fold increase in metastatic potential, but the factors that influence collective invasion are largely unknown. Using well defined three-dimensional matrices and different extracellular matrix (ECM) concentrations, we found that cancer cells were more prone to collective invasion at low ECM concentration. Moreover, despite variation of biological factors, changes in ECM microarchitecture, especially the pore size of the matrix, was correlated with the probability of collective invasion, which indicates that the physical microarchitecture of ECM plays an important role in collective invasion of cancer cells.
Collapse
Affiliation(s)
- Qianghua Quan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing, P. R. China.,State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Xudong Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Chunyang Lu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Wenzong Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Jintao Han
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing, P. R. China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University , Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing, P. R. China
| |
Collapse
|
7
|
Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 2019; 7:1612661. [PMID: 31161924 DOI: 10.1080/21688370.2019.1608759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occludin, a tight junction protein, has been reported to regulate barrier function - particularly the leak pathway for larger solutes - in epithelia. Therefore, we aimed to precisely define its role in macromolecule passage at single cell-cell junctions. A combination of varying occludin expression by transient and stable knockdown including systematic seeding strategies was employed to achieve a broad and defined pattern of variance in occludin expression over epithelia. This variance model enabled us to examine occludin function in the leak pathway using global and local analysis, i.e. to analyze macromolecule flux across epithelia and macromolecule passage at single-cell level. Macromolecular flux was found not to correlate with occludin expression in intestinal epithelial cells. In fact, by spatially resolving macromolecular permeation sites using a recently developed method we uncovered leaky cell junctions at the edge of Transwells resulting in increased passage. This demonstrates that rare leaks can determine net flux of macromolecules across epithelia while the vast majority of cellular junctions do not contribute significantly. Hence, concomitant local analysis of macromolecule passage across epithelial barriers is indispensable for interpretation of global flux data. By combining this new approach with cell culture models of the leak pathway, we can present evidence that lack of occludin is not sufficient to stimulate the epithelial leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Markus Hildner
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Ralf Schmauder
- b Institute of Physiology II , Jena University Hospital , Jena , Germany
| | - Jerrold R Turner
- c Department of Pathology , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Michael Schumann
- d Dept. of Gastroenterology, Infectious Diseases and Rheumatology , Campus Benjamin Franklin, Charité - University medicine Berlin , Berlin , Germany
| | - Juliane Reiche
- e Institute of Biochemistry II , Jena University Hospital , Jena , Germany
| |
Collapse
|
8
|
Jiang J, Bellani M, Li L, Wang P, Seidman MM, Wang Y. Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chem Biol 2017; 12:1858-1866. [PMID: 28535027 DOI: 10.1021/acschembio.6b01135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to arsenic in drinking water is known to be associated with the development of bladder, lung, kidney, and skin cancers. The molecular mechanisms underlying the carcinogenic effects of arsenic species remain incompletely understood. DNA interstrand cross-links (ICLs) are among the most cytotoxic type of DNA lesions that block DNA replication and transcription, and these lesions can be induced by endogenous metabolism and by exposure to exogenous agents. Fanconi anemia (FA) is a congenital disorder manifested with elevated sensitivity toward DNA interstrand cross-linking agents, and monoubiquitination of FANCD2 by FANCL is a crucial step in FA-mediated DNA repair. Here, we demonstrated that As3+ could bind to the PHD/RING finger domain of FANCL in vitro and in cells. This binding led to compromised ubiquitination of FANCD2 in cells and diminished recruitment of FANCD2 to chromatin and DNA damage sites induced by 4,5',8-trimethylpsoralen plus UVA irradiation. Furthermore, clonogenic survival assay results showed that arsenite coexposure rendered cells more sensitive toward DNA interstrand cross-linking agents. Together, our study suggested that arsenite may compromise genomic stability via perturbation of the Fanconi anemia pathway, thereby conferring its carcinogenic effect.
Collapse
Affiliation(s)
| | - Marina Bellani
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | | | | - Michael M. Seidman
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | |
Collapse
|
9
|
Abstract
Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies.
Collapse
|