1
|
Racki LR, Freddolino L. Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure. Mol Microbiol 2025; 123:279-293. [PMID: 39967274 PMCID: PMC11894788 DOI: 10.1111/mmi.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Polyphosphate (polyP), broadly defined, consists of a chain of orthophosphate units connected by phosphoanhydride bonds. PolyP is the only universal inorganic biopolymer known to date and is present in all three domains of life. At a first approximation polyP appears to be a simple, featureless, and flexible polyanion. A growing body of evidence suggests that polyP is not as featureless as originally thought: it can form a wide variety of complexes and condensates through association with proteins, nucleic acids, and inorganic ions. It is becoming apparent that the emergent properties of the condensate superstructures it forms are both complex and dynamic. Importantly, growing evidence suggests that polyP can affect bacterial chromatin, both directly and by mediating interactions between DNA and proteins. In an increasing number of contexts, it is becoming apparent that polyP profoundly impacts both chromosomal structure and gene regulation in bacteria, thus serving as a rarely considered, but highly important, component in bacterial nucleoid biology.
Collapse
Affiliation(s)
- Lisa R. Racki
- Department of Integrative Structural and Computational BiologyScripps ResearchLa JollaCaliforniaUSA
| | - Lydia Freddolino
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
2
|
Chawla R, Tom JKA, Boyd T, Tu NH, Bai T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. Nat Commun 2024; 15:9258. [PMID: 39462120 PMCID: PMC11513989 DOI: 10.1038/s41467-024-53469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The inorganic biopolymer polyphosphate (polyP) occurs in all domains of life and affects myriad cellular processes. A longstanding observation is polyP's frequent proximity to chromatin, and, in many bacteria, its occurrence as magnesium (Mg2+)-enriched condensates embedded in the nucleoid region, particularly in response to stress. The physical basis of the interaction between polyP, DNA and Mg2+, and the resulting effects on the organization of the nucleoid and polyP condensates, remain poorly understood. Here, using a minimal system of polyP, Mg2+, and DNA, we find that DNA can form shells around polyP-Mg2+ condensates. These shells show reentrant behavior, that is, they form within a window of Mg2+ concentrations, representing a tunable architecture with potential relevance in other multicomponent condensates. This surface association tunes condensate size and DNA morphology in a manner dependent on DNA length and concentration, even at DNA concentrations orders of magnitude lower than found in the cell. Our work also highlights the remarkable capacity of two primordial inorganic species to organize DNA.
Collapse
Affiliation(s)
- Ravi Chawla
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Chakra Techworks Inc., San Diego, CA, USA
| | - Jenna K A Tom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas H Tu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanxi Bai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Lisa R Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Parrell D, Olson J, Lemke RA, Donohue TJ, Wright ER. Quantitative Analysis of Rhodobacter sphaeroides Storage Organelles via Cryo-Electron Tomography and Light Microscopy. Biomolecules 2024; 14:1006. [PMID: 39199393 PMCID: PMC11352279 DOI: 10.3390/biom14081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Joseph Olson
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
| | - Rachelle A. Lemke
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
4
|
Sasazawa M, Tomares DT, Childers WS, Saurabh S. Biomolecular condensates as stress sensors and modulators of bacterial signaling. PLoS Pathog 2024; 20:e1012413. [PMID: 39146259 PMCID: PMC11326607 DOI: 10.1371/journal.ppat.1012413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Microbes exhibit remarkable adaptability to environmental fluctuations. Signaling mechanisms, such as two-component systems and secondary messengers, have long been recognized as critical for sensing and responding to environmental cues. However, recent research has illuminated the potential of a physical adaptation mechanism in signaling-phase separation, which may represent a ubiquitous mechanism for compartmentalizing biochemistry within the cytoplasm in the context of bacteria that frequently lack membrane-bound organelles. This review considers the broader prospect that phase separation may play critical roles as rapid stress sensing and response mechanisms within pathogens. It is well established that weak multivalent interactions between disordered regions, coiled-coils, and other structured domains can form condensates via phase separation and be regulated by specific environmental parameters in some cases. The process of phase separation itself acts as a responsive sensor, influenced by changes in protein concentration, posttranslational modifications, temperature, salts, pH, and oxidative stresses. This environmentally triggered phase separation can, in turn, regulate the functions of recruited biomolecules, providing a rapid response to stressful conditions. As examples, we describe biochemical pathways organized by condensates that are essential for cell physiology and exhibit signaling features. These include proteins that organize and modify the chromosome (Dps, Hu, SSB), regulate the decay, and modification of RNA (RNase E, Hfq, Rho, RNA polymerase), those involved in signal transduction (PopZ, PodJ, and SpmX) and stress response (aggresomes and polyphosphate granules). We also summarize the potential of proteins within pathogens to function as condensates and the potential and challenges in targeting biomolecular condensates for next-generation antimicrobial therapeutics. Together, this review illuminates the emerging significance of biomolecular condensates in microbial signaling, stress responses, and regulation of cell physiology and provides a framework for microbiologists to consider the function of biomolecular condensates in microbial adaptation and response to diverse environmental conditions.
Collapse
Affiliation(s)
- Moeka Sasazawa
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saumya Saurabh
- Department of Chemistry, New York University, New York, New York, United States of America
| |
Collapse
|
5
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 PMCID: PMC11921889 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Billini M, Hoffmann T, Kühn J, Bremer E, Thanbichler M. The cytoplasmic phosphate level has a central regulatory role in the phosphate starvation response of Caulobacter crescentus. Commun Biol 2024; 7:772. [PMID: 38926609 PMCID: PMC11208175 DOI: 10.1038/s42003-024-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.
Collapse
Affiliation(s)
- Maria Billini
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Juliane Kühn
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
7
|
Corrales D, Alcántara C, Zúñiga M, Monedero V. Ppx1 putative exopolyphosphatase is essential for polyphosphate accumulation in Lacticaseibacillus paracasei. Appl Environ Microbiol 2024; 90:e0229023. [PMID: 38619267 PMCID: PMC11107151 DOI: 10.1128/aem.02290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.
Collapse
Affiliation(s)
- Daniela Corrales
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Cristina Alcántara
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| |
Collapse
|
8
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy M, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Murat Eren A, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540287. [PMID: 37214927 PMCID: PMC10197588 DOI: 10.1101/2023.05.11.540287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteroides fragilis comprises 1-5% of the gut microbiota in healthy humans but can expand to >50% of the population in ulcerative colitis (UC) patients experiencing inflammation. The mechanisms underlying such microbial blooms are poorly understood, but the gut of UC patients has physicochemical features that differ from healthy patients and likely impact microbial physiology. For example, levels of the secondary bile acid deoxycholate (DC) are highly reduced in the ileoanal J-pouch of UC colectomy patients. We isolated a B. fragilis strain from a UC patient with pouch inflammation (i.e. pouchitis) and developed it as a genetic model system to identify genes and pathways that are regulated by DC and that impact B. fragilis fitness in DC and crude bile. Treatment of B. fragilis with a physiologically relevant concentration of DC reduced cell growth and remodeled transcription of one-quarter of the genome. DC strongly induced expression of chaperones and select transcriptional regulators and efflux systems and downregulated protein synthesis genes. Using a barcoded collection of ≈50,000 unique insertional mutants, we further defined B. fragilis genes that contribute to fitness in media containing DC or crude bile. Genes impacting cell envelope functions including cardiolipin synthesis, cell surface glycosylation, and systems implicated in sodium-dependent bioenergetics were major bile acid fitness factors. As expected, there was limited overlap between transcriptionally regulated genes and genes that impacted fitness in bile when disrupted. Our study provides a genome-scale view of a B. fragilis bile response and genetic determinants of its fitness in DC and crude bile.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Miette Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Chawla R, Tom JKA, Boyd T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557044. [PMID: 37745474 PMCID: PMC10515899 DOI: 10.1101/2023.09.13.557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.
Collapse
Affiliation(s)
| | | | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lisa R. Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
10
|
Wang J, Tao Y, Juan Y, Zhou H, Zhao X, Cheng X, Wang X, Quan X, Li J, Huang K, Wei W, Zhao J. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203200. [PMID: 36084167 DOI: 10.1002/smll.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Yucheng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yewen Juan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hang Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiaomei Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Junyan Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
11
|
Bacterial Membrane Vesicles as a Novel Strategy for Extrusion of Antimicrobial Bismuth Drug in Helicobacter pylori. mBio 2022; 13:e0163322. [PMID: 36154274 PMCID: PMC9601102 DOI: 10.1128/mbio.01633-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial antibiotic resistance is a major threat to human health. A combination of antibiotics with metals is among the proposed alternative treatments. Only one such combination is successfully used in clinics; it associates antibiotics with the metal bismuth to treat infections by Helicobacter pylori. This bacterial pathogen colonizes the human stomach and is associated with gastric cancer, killing 800,000 individuals yearly. The effect of bismuth in H. pylori treatment is not well understood in particular for sublethal doses such as those measured in the plasma of treated patients. We addressed this question and observed that bismuth induces the formation of homogeneously sized membrane vesicles (MVs) with unique protein cargo content enriched in bismuth-binding proteins, as shown by quantitative proteomics. Purified MVs of bismuth-exposed bacteria were strongly enriched in bismuth as measured by inductively coupled plasma optical emission spectrometry (ICP-OES), unlike bacterial cells from which they originate. Thus, our results revealed a novel function of MVs in bismuth detoxification, where secreted MVs act as tool to discard bismuth from the bacteria. Bismuth also induces the formation of intracellular polyphosphate granules that are associated with changes in nucleoid structure. Nucleoid compaction in response to bismuth was established by immunogold electron microscopy and refined by the first chromosome conformation capture (Hi-C) analysis of H. pylori. Our results reveal that even low doses of bismuth induce profound changes in H. pylori physiology and highlight a novel defense mechanism that involves MV-mediated bismuth extrusion from the bacteria and a probable local DNA protective response where polyphosphate granules are associated with nucleoid compaction.
Collapse
|
12
|
The Histone H1-Like Protein AlgP Facilitates Even Spacing of Polyphosphate Granules in Pseudomonas aeruginosa. mBio 2022; 13:e0246321. [PMID: 35435704 PMCID: PMC9239181 DOI: 10.1128/mbio.02463-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthesis of polyphosphate (polyP) is an ancient and universal stress and starvation response in bacteria. In many bacteria, polyP chains come together to form granular superstructures within cells. Some species appear to regulate polyP granule subcellular organization. Despite the critical role of polyP in starvation fitness, the composition of these structures, mechanism(s) underpinning their organization, and functional significance of such organization are poorly understood. We previously determined that granules become transiently evenly spaced on the cell’s long axis during nitrogen starvation in the opportunistic human pathogen Pseudomonas aeruginosa. Here, we developed a granule-enrichment protocol to screen for polyP granule-localizing proteins. We identified AlgP as a protein that associates with polyP granules. We further discovered that AlgP is required for the even spacing of polyP granules. AlgP is a DNA-binding protein with a 154 amino acid C-terminal domain enriched in “KPAA” repeats and variants of this repeat, with an overall sequence composition similar to the C-terminal tail of eukaryotic histone H1. Granule size, number, and spacing are significantly perturbed in the absence of AlgP, or when AlgP is truncated to remove the C-terminus. The ΔalgP and algPΔCTD mutants have fewer, larger granules. We speculate that AlgP may contribute to spacing by tethering polyP granules to the chromosome, thereby inhibiting fusion with neighboring granules. Our discovery that AlgP facilitates granule spacing allows us for the first time to directly uncouple granule biogenesis from even spacing, and will inform future efforts to explore the functional significance of granule organization on fitness during starvation.
Collapse
|
13
|
Frank C, Pfeiffer D, Aktas M, Jendrossek D. Migration of Polyphosphate Granules in Agrobacterium tumefaciens. Microb Physiol 2022; 32:71-82. [PMID: 35168233 DOI: 10.1159/000521970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 01/29/2023]
Abstract
Agrobacterium tumefaciens has two polyphosphate (polyP) kinases, one of which (PPK1AT) is responsible for the formation of polyP granules, while the other (PPK2AT) is used for replenishing the NTP pools by using polyP as a phosphate donor to phosphorylate nucleoside diphosphates. Fusions of eYFP with PPK2AT or of the polyP granule-associated phosin PptA from Ralstonia eutropha always co-localized with polyP granules in A. tumefaciens and allowed the tracking of polyP granules in time-lapse microscopy experiments without the necessity to label the cells with the toxic dye DAPI. Fusions of PPK1AT with mCherry formed fluorescent signals often attached to, but not completely co-localizing with, polyP granules in wild-type cells. Time-lapse microscopy revealed that polyP granules in about one-third of a cell population migrated from the old pole to the new cell pole shortly before or during cell division. Many cells de novo formed a second (nonmigrating) polyP granule at the opposite cell pole before cell division was completed, resulting in two daughter cells each having a polyP granule at the old pole after septum formation. Migration of polyP granules was disordered in mitomycin C-treated or in PopZ-depleted cells, suggesting that polyP granules can associate with DNA or with other molecules that are segregated during the cell cycle.
Collapse
Affiliation(s)
- Celina Frank
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Daniel Pfeiffer
- Department of Microbiology, University Bayreuth, Bayreuth, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
15
|
Stasic AJ, Dykes EJ, Cordeiro CD, Vella SA, Fazli MS, Quinn S, Docampo R, Moreno SNJ. Ca 2+ entry at the plasma membrane and uptake by acidic stores is regulated by the activity of the V-H + -ATPase in Toxoplasma gondii. Mol Microbiol 2021; 115:1054-1068. [PMID: 33793004 DOI: 10.1111/mmi.14722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ is a universal intracellular signal that regulates many cellular functions. In Toxoplasma gondii, the controlled influx of extracellular and intracellular Ca2+ into the cytosol initiates a signaling cascade that promotes pathogenic processes like tissue destruction and dissemination. In this work, we studied the role of proton transport in cytosolic Ca2+ homeostasis and the initiation of Ca2+ signaling. We used a T. gondii mutant of the V-H+ -ATPase, a pump previously shown to transport protons to the extracellular medium, and to control intracellular pH and membrane potential and we show that proton gradients are important for maintaining resting cytosolic Ca2+ at physiological levels and for Ca2+ influx. Proton transport was also important for Ca2+ storage by acidic stores and, unexpectedly, the endoplasmic reticulum. Proton transport impacted the amount of polyphosphate (polyP), a phosphate polymer that binds Ca2+ and concentrates in acidocalcisomes. This was supported by the co-localization of the vacuolar transporter chaperone 4 (VTC4), the catalytic subunit of the VTC complex that synthesizes polyP, with the V-ATPase in acidocalcisomes. Our work shows that proton transport regulates plasma membrane Ca2+ transport and control acidocalcisome polyP and Ca2+ content, impacting Ca2+ signaling and downstream stimulation of motility and egress in T. gondii.
Collapse
Affiliation(s)
- Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA
| | - Eric J Dykes
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Ciro D Cordeiro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA
| | - Mojtaba S Fazli
- Department of Computer Sciences, University of Georgia, Athens, GA, USA
| | - Shannon Quinn
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Computer Sciences, University of Georgia, Athens, GA, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Georgia, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Frank C, Jendrossek D. Acidocalcisomes and Polyphosphate Granules Are Different Subcellular Structures in Agrobacterium tumefaciens. Appl Environ Microbiol 2020; 86:e02759-19. [PMID: 32060025 PMCID: PMC7117937 DOI: 10.1128/aem.02759-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acidocalcisomes are membrane-enclosed, polyphosphate-containing acidic organelles in lower Eukaryota but have also been described for Agrobacterium tumefaciens (M. Seufferheld, M. Vieira, A. Ruiz, C. O. Rodrigues, S. Moreno, and R. Docampo, J Biol Chem 278:29971-29978, 2003, https://doi.org/10.1074/jbc.M304548200). This study aimed at the characterization of polyphosphate-containing acidocalcisomes in this alphaproteobacterium. Unexpectedly, fluorescence microscopic investigation of A. tumefaciens cells using fluorescent dyes and localization of constructed fusions of polyphosphate kinases (PPKs) and of vacuolar H+-translocating pyrophosphatase (HppA) with enhanced yellow fluorescent protein (eYFP) suggested that acidocalcisomes and polyphosphate are different subcellular structures. Acidocalcisomes and polyphosphate granules were frequently located close together, near the cell poles. However, they never shared the same position. Mutant strains of A. tumefaciens with deletions of both ppk genes (Δppk1 Δppk2) were unable to form polyphosphate but still showed cell pole-located eYFP-HppA foci and could be stained with MitoTracker. In conclusion, A. tumefaciens forms polyP granules that are free of a surrounding membrane and thus resemble polyP granules of Ralstonia eutropha and other bacteria. The composition, contents, and function of the subcellular structures that are stainable with MitoTracker and harbor eYFP-HppA remain unclear.IMPORTANCE The uptake of alphaproteobacterium-like cells by ancestors of eukaryotic cells and subsequent conversion of these alphaproteobacterium-like cells to mitochondria are thought to be key steps in the evolution of the first eukaryotic cells. The identification of acidocalcisomes in two alphaproteobacterial species some years ago and the presence of homologs of the vacuolar proton-translocating pyrophosphatase HppA, a marker protein of the acidocalcisome membrane in eukaryotes, in virtually all species within the alphaproteobacteria suggest that eukaryotic acidocalcisomes might also originate from related structures in ancestors of alphaproteobacterial species. Accordingly, alphaproteobacterial acidocalcisomes and eukaryotic acidocalcisomes should have similar features. Since hardly any information is available on bacterial acidocalcisomes, this study aimed at the characterization of organelle-like structures in alphaproteobacterial cells, with A. tumefaciens as an example.
Collapse
Affiliation(s)
- Celina Frank
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
Varesio LM, Willett JW, Fiebig A, Crosson S. A Carbonic Anhydrase Pseudogene Sensitizes Select Brucella Lineages to Low CO 2 Tension. J Bacteriol 2019; 201:e00509-19. [PMID: 31481543 PMCID: PMC6805109 DOI: 10.1128/jb.00509-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Brucella spp. are intracellular pathogens that cause a disease known as brucellosis. Though the genus is highly monomorphic at the genetic level, species have animal host preferences and some defining physiologic characteristics. Of note is the requirement for CO2 supplementation to cultivate particular species, which confounded early efforts to isolate B. abortus from diseased cattle. Differences in the capacity of Brucella species to assimilate CO2 are determined by mutations in the carbonic anhydrase gene, bcaA Ancestral single-nucleotide insertions in bcaA have resulted in frameshifted pseudogenes in B. abortus and B. ovis lineages, which underlie their inability to grow under the low CO2 tension of a standard atmosphere. Incubation of wild-type B. ovis in air selects for mutations that "rescue" a functional bcaA reading frame, which enables growth under low CO2 and enhances the growth rate under high CO2 Accordingly, we show that heterologous expression of functional Escherichia coli carbonic anhydrases enables B. ovis growth in air. Growth of B. ovis is acutely sensitive to a reduction in CO2 tension, while frame-rescued B. ovis mutants are insensitive to CO2 shifts. B. ovis initiates a gene expression program upon CO2 downshift that resembles the stringent response and results in transcriptional activation of its type IV secretion system. Our study provides evidence that loss-of-function insertion mutations in bcaA sensitize the response of B. ovis and B. abortus to reduced CO2 tension relative to that of other Brucella lineages. CO2-dependent starvation and virulence gene expression programs in these species may influence persistence or transmission in natural hosts.IMPORTANCEBrucella spp. are highly related, but they exhibit differences in animal host preference that must be determined by genome sequence differences. B. ovis and the majority of B. abortus strains require high CO2 tension to be cultivated in vitro and harbor conserved insertional mutations in the carbonic anhydrase gene, bcaA, which underlie this trait. Mutants that grow in a standard atmosphere, first reported nearly a century ago, are easily selected in the laboratory. These mutants harbor varied indel polymorphisms in bcaA that restore its consensus reading frame and rescue its function. Loss of bcaA function has evolved independently in the B. ovis and B. abortus lineages and results in a dramatically increased sensitivity to CO2 limitation.
Collapse
Affiliation(s)
- Lydia M Varesio
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Werten S, Rustmeier NH, Gemmer M, Virolle MJ, Hinrichs W. Structural and biochemical analysis of a phosin from Streptomyces chartreusis reveals a combined polyphosphate- and metal-binding fold. FEBS Lett 2019; 593:2019-2029. [PMID: 31183865 PMCID: PMC6771595 DOI: 10.1002/1873-3468.13476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
X‐ray crystallographic analysis of a phosin (PptA) from Steptomyces chartreusis reveals a metal‐associated, lozenge‐shaped fold featuring a 5–10 Å wide, positively charged tunnel that traverses the protein core. Two distinct metal‐binding sites were identified in which the predominant metal ion was Cu2+. In solution, PptA forms stable homodimers that bind with nanomolar affinity to polyphosphate, a stress‐related biopolymer acting as a phosphate and energy reserve in conditions of nutrient depletion. A single protein dimer interacts with 14–15 consecutive phosphate moieties within the polymer. Our observations suggest that PptA plays a role in polyphosphate metabolism, mobilisation or sensing, possibly by acting in concert with polyphosphate kinase (Ppk). Like Ppk, phosins may influence antibiotic synthesis by streptomycetes.
Collapse
Affiliation(s)
- Sebastiaan Werten
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Nils Hinnerk Rustmeier
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Germany
| | - Maximilian Gemmer
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Germany
| | - Marie-Joëlle Virolle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
| | - Winfried Hinrichs
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Germany
| |
Collapse
|
19
|
Schramm FD, Schroeder K, Alvelid J, Testa I, Jonas K. Growth-driven displacement of protein aggregates along the cell length ensures partitioning to both daughter cells in Caulobacter crescentus. Mol Microbiol 2019; 111:1430-1448. [PMID: 30779464 PMCID: PMC6850343 DOI: 10.1111/mmi.14228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein is collected at the cell poles and is retained throughout consecutive cell divisions only in old pole-inheriting daughter cells, resulting in aggregation-free progeny within a few generations. In this study, we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium, protein aggregates form as multiple distributed foci located throughout the cell volume. Time-lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short-lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long-lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.
Collapse
Affiliation(s)
- Frederic D. Schramm
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| | - Jonatan Alvelid
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Ilaria Testa
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| |
Collapse
|
20
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
21
|
Abstract
The structures responsible for photosynthesis in bacteria use the nucleoid and two unique proteins as a scaffold to position themselves.
Collapse
Affiliation(s)
- Emilia Mauriello
- Laboratoire de Chemie Bactérienne, Centre National de la Recherché Scientifique, Marseille, France
| |
Collapse
|
22
|
Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins). Appl Environ Microbiol 2017; 83:AEM.03399-16. [PMID: 28130300 DOI: 10.1128/aem.03399-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 01/13/2023] Open
Abstract
On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively.IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular compounds on the surface of polyP granules has not yet been investigated. In this study, we identified a novel class of proteins that are attached to the surface of polyP granules in three model species of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria These proteins are characterized by the presence of a CHAD (conserved histidine α-helical domain) motif that functions as a polyP granule-targeting signal. We suggest designating CHAD motif-containing proteins as phosins [analogous to phasins for poly(3-hydroxybutyrate)-associated proteins and to oleosins for oil droplet-associated proteins in oil seed plants]. The expression of phosins in different species confirmed their polyP-targeting function in a transspecies-specific manner. We postulate that polyP granules in prokaryotic species generally have a complex surface structure that consists of one to several polyP kinases and phosin proteins. We suggest differentiating polyP granules from acidocalcisomes by designating them as polyphosphatosomes.
Collapse
|
23
|
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:E2440-E2449. [PMID: 28265086 DOI: 10.1073/pnas.1615575114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.
Collapse
|
24
|
Subramanian K, Tyson JJ. Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus. Results Probl Cell Differ 2017; 61:23-48. [PMID: 28409299 DOI: 10.1007/978-3-319-53150-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spatial localization of proteins within the cytoplasm of bacteria is an underappreciated but critical aspect of cell cycle regulation for many prokaryotes. In Caulobacter crescentus-a model organism for the study of asymmetric cell reproduction in prokaryotes-heterogeneous localization of proteins has been identified as the underlying cause of asymmetry in cell morphology, DNA replication, and cell division. However, significant questions remain. Firstly, the mechanisms by which proteins localize in the organelle-free prokaryotic cytoplasm remain obscure. Furthermore, how variations in the spatial and temporal dynamics of cell fate determinants regulate signaling pathways and orchestrate the complex programs of asymmetric cell division and differentiation are subjects of ongoing research. In this chapter, we review current efforts in investigating these two questions. We describe how mathematical models of spatiotemporal protein dynamics are being used to generate and test competing hypotheses and provide complementary insight about the control mechanisms that regulate asymmetry in protein localization and cell division.
Collapse
Affiliation(s)
- Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
Yoshida N, Yano T, Kedo K, Fujiyoshi T, Nagai R, Iwano M, Taguchi E, Nishida T, Takagi H. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 2016; 101:331-340. [PMID: 27717963 DOI: 10.1007/s00253-016-7883-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/17/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Rhodococcus erythropolis N9T-4, isolated from stored crude oil, shows extremely oligotrophic features and can grow on a basal medium without any additional carbon, nitrogen, sulfur, and energy sources, but requires CO2 for its oligotrophic growth. Transmission electron microscopic observation showed that a relatively large and spherical compartment was observed in a N9T-4 cell grown under oligotrophic conditions. In most cases, only one compartment was observed per cell, but in some cases, it was localized at each pole of the cell, suggesting that it divides at cell division. We termed this unique bacterial compartment an oligobody. The oligobody was not observed or very rarely observed in small sizes under nutrient rich conditions, whereas additional carbon sources did not affect oligobody formation. Energy dispersive X-ray spectroscopy analysis revealed remarkable peaks corresponding to phosphorus and potassium in the oligobody. The oligobodies in N9T-4 cells could be stained by Toluidine blue, suggesting that the oligobody is composed of inorganic polyphosphate and is a type of acidocalcisome. Two genes-encoding polyphosphate kinases, ppk1 and ppk2, were found in the N9T-4 genome: ppk1 disruption caused a negative effect on the formation of the oligobody. Although it was suggested that the oligobody plays an important role for the oligotrophic growth, both ppk-deleted mutants showed the same level of oligotrophic growth as the wild-type strain.
Collapse
Affiliation(s)
- Nobuyuki Yoshida
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan. .,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan.
| | - Takanori Yano
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan.,The Institute of Enology and Viticulture, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1-13-1 Kitashin, Kofu, Yamanashi, 400-0005, Japan
| | - Kaori Kedo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujiyoshi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Rina Nagai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Taguchi
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
26
|
Bru S, Martínez-Laínez JM, Hernández-Ortega S, Quandt E, Torres-Torronteras J, Martí R, Canadell D, Ariño J, Sharma S, Jiménez J, Clotet J. Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae. Mol Microbiol 2016; 101:367-380. [PMID: 27072996 DOI: 10.1111/mmi.13396] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4Δ) or hydrolyse polyP (ppn1Δ, ppx1Δ) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA.
Collapse
Affiliation(s)
- Samuel Bru
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Sara Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Canadell
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Ariño
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
27
|
Jiménez J, Bru S, Ribeiro MPC, Clotet J. Polyphosphate: popping up from oblivion. Curr Genet 2016; 63:15-18. [DOI: 10.1007/s00294-016-0611-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022]
|
28
|
Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus. J Bacteriol 2015; 198:187-200. [PMID: 26483520 DOI: 10.1128/jb.00658-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/09/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED An ability to sense and respond to changes in extracellular phosphate is critical for the survival of most bacteria. For Caulobacter crescentus, which typically lives in phosphate-limited environments, this process is especially crucial. Like many bacteria, Caulobacter responds to phosphate limitation through a conserved two-component signaling pathway called PhoR-PhoB, but the direct regulon of PhoB in this organism is unknown. Here we used chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) to map the global binding patterns of the phosphate-responsive transcriptional regulator PhoB under phosphate-limited and -replete conditions. Combined with genome-wide expression profiling, our work demonstrates that PhoB is induced to regulate nearly 50 genes under phosphate-starved conditions. The PhoB regulon is comprised primarily of genes known or predicted to help Caulobacter scavenge for and import inorganic phosphate, including 15 different membrane transporters. We also investigated the regulatory role of PhoU, a widely conserved protein proposed to coordinate phosphate import with expression of the PhoB regulon by directly modulating the histidine kinase PhoR. However, our studies show that it likely does not play such a role in Caulobacter, as PhoU depletion has no significant effect on PhoB-dependent gene expression. Instead, cells lacking PhoU exhibit striking accumulation of large polyphosphate granules, suggesting that PhoU participates in controlling intracellular phosphate metabolism. IMPORTANCE The transcription factor PhoB is widely conserved throughout the bacterial kingdom, where it helps organisms respond to phosphate limitation by driving the expression of a battery of genes. Most of what is known about PhoB and its target genes is derived from studies of Escherichia coli. Our work documents the PhoB regulon in Caulobacter crescentus, and comparison to the regulon in E. coli reveals significant differences, highlighting the evolutionary plasticity of transcriptional responses driven by highly conserved transcription factors. We also demonstrated that the conserved protein PhoU, which is implicated in bacterial persistence, does not regulate PhoB activity, as previously suggested. Instead, our results favor a model in which PhoU affects intracellular phosphate accumulation, possibly through the high-affinity phosphate transporter.
Collapse
|
29
|
Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Appl Environ Microbiol 2015; 81:8277-93. [PMID: 26407880 DOI: 10.1128/aem.02279-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/16/2015] [Indexed: 12/25/2022] Open
Abstract
A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of phaX resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the Ralstonia eutropha ppk (ppkReu) genes in an Escherichia coli Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds.
Collapse
|
30
|
Subramanian K, Paul MR, Tyson JJ. Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models. PLoS Comput Biol 2015; 11:e1004348. [PMID: 26186202 PMCID: PMC4505887 DOI: 10.1371/journal.pcbi.1004348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Cell-fate asymmetry in the predivisional cell of Caulobacter crescentus requires that the regulatory protein DivL localizes to the new pole of the cell where it up-regulates CckA kinase, resulting in a gradient of CtrA~P across the cell. In the preceding stage of the cell cycle (the "stalked" cell), DivL is localized uniformly along the cell membrane and maintained in an inactive form by DivK~P. It is unclear how DivL overcomes inhibition by DivK~P in the predivisional cell simply by changing its location to the new pole. It has been suggested that co-localization of DivL with PleC phosphatase at the new pole is essential to DivL's activity there. However, there are contrasting views on whether the bifunctional enzyme, PleC, acts as a kinase or phosphatase at the new pole. To explore these ambiguities, we formulated a mathematical model of the spatiotemporal distributions of DivL, PleC and associated proteins (DivJ, DivK, CckA, and CtrA) during the asymmetric division cycle of a Caulobacter cell. By varying localization profiles of DivL and PleC in our model, we show how the physiologically observed spatial distributions of these proteins are essential for the transition from a stalked cell to a predivisional cell. Our simulations suggest that PleC is a kinase in predivisional cells, and that, by sequestering DivK~P, the kinase form of PleC enables DivL to be reactivated at the new pole. Hence, co-localization of PleC kinase and DivL is essential to establishing cellular asymmetry. Our simulations reproduce the experimentally observed spatial distribution and phosphorylation status of CtrA in wild-type and mutant cells. Based on the model, we explore novel combinations of mutant alleles, making predictions that can be tested experimentally.
Collapse
Affiliation(s)
- Kartik Subramanian
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mark R. Paul
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J. Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Leslie DJ, Heinen C, Schramm FD, Thüring M, Aakre CD, Murray SM, Laub MT, Jonas K. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA. PLoS Genet 2015; 11:e1005342. [PMID: 26134530 PMCID: PMC4489657 DOI: 10.1371/journal.pgen.1005342] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022] Open
Abstract
Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs. The duplication of genetic material is a prerequisite for cellular growth and proliferation. Under optimal growth conditions, when cells strive to grow and divide, DNA replication must be initiated with high frequency. However, under nutrient limiting conditions cells stop initiating DNA replication to ensure cellular integrity. Here, we identify mechanisms responsible for blocking DNA replication initiation under nutrient limitation in Caulobacter crescentus. In this bacterium nutrient limitation results in a strong downregulation of DnaA, the conserved replication initiator protein, which is required for DNA replication in nearly all bacteria. Our data demonstrate that the downregulation of DnaA depends on a reduction in DnaA synthesis in combination with fast degradation by the protease Lon. The changes in DnaA synthesis are mediated by a post-transcriptional mechanism, which adjusts DnaA translation in response to nutrient availability. The constitutively high rate of DnaA degradation then ensures the rapid clearance of the protein following the changes in translation. Our work exemplifies how regulated protein synthesis and fast degradation of key regulatory proteins allow for the precise and dynamic control of important cellular processes in response to environmental changes.
Collapse
Affiliation(s)
- David J. Leslie
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christian Heinen
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Frederic D. Schramm
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Marietta Thüring
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christopher D. Aakre
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sean M. Murray
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kristina Jonas
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Department of Biology, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
32
|
Jahn M, Günther S, Müller S. Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol 2015; 25:49-55. [DOI: 10.1016/j.mib.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
|
33
|
Abstract
Bacteria are polarized cells with many asymmetrically localized proteins that are regulated temporally and spatially. This spatiotemporal dynamics is critical for several fundamental cellular processes including growth, division, cell cycle regulation, chromosome segregation, differentiation, and motility. Therefore, understanding how proteins find their correct location at the right time is crucial for elucidating bacterial cell function. Despite the diversity of proteins displaying spatiotemporal dynamics, general principles for the dynamic regulation of protein localization to the cell poles and the midcell are emerging. These principles include diffusion-capture, self-assembling polymer-forming landmark proteins, nonpolymer forming landmark proteins, matrix-dependent self-organizing ParA/MinD ATPases, and small Ras-like GTPases.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|