1
|
Kokot T, Zimmermann JP, Schwäble AN, Reimann L, Herr AL, Höfflin N, Köhn M, Warscheid B. Protein phosphatase-1 regulates the binding of filamin C to FILIP1 in cultured skeletal muscle cells under mechanical stress. Sci Rep 2024; 14:27348. [PMID: 39521905 PMCID: PMC11550807 DOI: 10.1038/s41598-024-78953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The actin-binding protein filamin c (FLNc) is a key mediator in the response of skeletal muscle cells to mechanical stress. In addition to its function as a structural scaffold, FLNc acts as a signaling adaptor which is phosphorylated at S2234 in its mechanosensitive domain 20 (d20) through AKT. Here, we discovered a strong dephosphorylation of FLNc-pS2234 in cultured skeletal myotubes under acute mechanical stress, despite high AKT activity. We found that all three protein phosphatase 1 (PP1) isoforms are part of the FLNc d18-21 interactome. Enzymatic assays demonstrate that PP1 efficiently dephosphorylates FLNc-pS2234 and in vitro and in cells upon PP1 activation using specific modulators. FLNc-pS2234 dephosphorylation promotes the interaction with FILIP1, a mediator for filamin degradation. Altogether, we present a model in which dephosphorylation of FLNc d20 by the dominant action of PP1c prevails over AKT activity to promote the binding of the filamin degradation-inducing factor FILIP1 during acute mechanical stress.
Collapse
Affiliation(s)
- Thomas Kokot
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Anja N Schwäble
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Lena Reimann
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Anna L Herr
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Sartorius CellGenix GmbH, Freiburg, Germany
| | - Nico Höfflin
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany.
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Çınaroğlu S, Biggin PC. Computed Protein-Protein Enthalpy Signatures as a Tool for Identifying Conformation Sampling Problems. J Chem Inf Model 2023; 63:6095-6108. [PMID: 37759363 PMCID: PMC10565830 DOI: 10.1021/acs.jcim.3c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/29/2023]
Abstract
Understanding the thermodynamic signature of protein-peptide binding events is a major challenge in computational chemistry. The complexity generated by both components possessing many degrees of freedom poses a significant issue for methods that attempt to directly compute the enthalpic contribution to binding. Indeed, the prevailing assumption has been that the errors associated with such approaches would be too large for them to be meaningful. Nevertheless, we currently have no indication of how well the present methods would perform in terms of predicting the enthalpy of binding for protein-peptide complexes. To that end, we carefully assembled and curated a set of 11 protein-peptide complexes where there is structural and isothermal titration calorimetry data available and then computed the absolute enthalpy of binding. The initial "out of the box" calculations were, as expected, very modest in terms of agreement with the experiment. However, careful inspection of the outliers allows for the identification of key sampling problems such as distinct conformations of peptide termini not being sampled or suboptimal cofactor parameters. Additional simulations guided by these aspects can lead to a respectable correlation with isothermal titration calorimetry (ITC) experiments (R2 of 0.88 and an RMSE of 1.48 kcal/mol overall). Although one cannot know prospectively whether computed ITC values will be correct or not, this work shows that if experimental ITC data are available, then this in conjunction with computed ITC, can be used as a tool to know if the ensemble being simulated is representative of the true ensemble or not. That is important for allowing the correct interpretation of the detailed dynamics of the system with respect to the measured enthalpy. The results also suggest that computational calorimetry is becoming increasingly feasible. We provide the data set as a resource for the community, which could be used as a benchmark to help further progress in this area.
Collapse
Affiliation(s)
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
3
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Liu J, Zhou J, Zhao S, Xu X, Li CJ, Li L, Shen T, Hunt PW, Zhang R. Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitol Int 2022; 87:102539. [PMID: 35007764 DOI: 10.1016/j.parint.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiachang Zhou
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Si Zhao
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China; International Medical School, Hebei Foreign Studies University, Shijiazhuang, Hebei 050096, China
| | - Xiangdong Xu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | - Li Li
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Tingbo Shen
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China.
| |
Collapse
|
5
|
Lohanadan K, Molt S, Dierck F, van der Ven PFM, Frey N, Höhfeld J, Fürst DO. Isoform-specific functions of synaptopodin-2 variants in cytoskeleton stabilization and autophagy regulation in muscle under mechanical stress. Exp Cell Res 2021; 408:112865. [PMID: 34637763 DOI: 10.1016/j.yexcr.2021.112865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton. By its association with autophagy mediating proteins, i.e. BAG3 and VPS18, SYNPO2 is also engaged in protein quality control and helps to target mechanical unfolded and damaged FLNc for degradation. Here we show that deficiency of all SYNPO2-isoforms in myotubes leads to decreased myofibrillar stability and deregulated autophagy under mechanical stress. In addition, isoform-specific proteostasis functions were revealed. The PDZ-domain containing variant SYNPO2b and the shorter, PDZ-less isoform SYNPO2e both localize to Z-discs. Yet, SYNPO2e is less stably associated with the Z-disc than SYNPO2b, and is dynamically transferred into FLNc-containing myofibrillar lesions under mechanical stress. SYNPO2e also recruits BAG3 into these lesions via interaction with the WW domain of BAG3. Our data provide evidence for a role of myofibrillar lesions as a transient quality control compartment essential to prevent and repair contraction-induced myofibril damage in muscle and indicate an important coordinating activity for SYNPO2 therein.
Collapse
Affiliation(s)
- Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Sibylle Molt
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Franziska Dierck
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Höhfeld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
6
|
Li B, Guo Y, Zhan Y, Zhou X, Li Y, Zhao C, Sun N, Xu C, Liang Q. Cardiac Overexpression of XIN Prevents Dilated Cardiomyopathy Caused by TNNT2 ΔK210 Mutation. Front Cell Dev Biol 2021; 9:691749. [PMID: 34222259 PMCID: PMC8247596 DOI: 10.3389/fcell.2021.691749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
TNNT2 mutation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). However, the mechanisms underlying the development of DCM and heart failure remain incompletely understood. In the present study, we found the expression of cardiac XIN protein was reduced in TNNT2-ΔK210 hESCs-derived cardiomyocytes and mouse heart tissues. We further investigated whether XIN protects against TNNT2 mutation-induced DCM. Overexpression of the repeat-containing isoform XINB decreased the percentage of myofilaments disorganization and increased cell contractility of TNNT2-ΔK210 cardiomyocytes. Moreover, overexpression of XINB by heart-specific delivery via AAV9 ameliorates DCM remodeling caused by TNNT2-ΔK210 mutation in mice, revealed by partially reversed cardiac dilation, systolic dysfunction and heart fibrosis. These results suggest that deficiency of XIN may play a critical role in the development of DCM. Consequently, our findings may provide a new mechanistic insight and represent a therapeutic target for the treatment of idiopathic DCM.
Collapse
Affiliation(s)
- Bin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongkun Zhan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongbo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Accurate contact-based modelling of repeat proteins predicts the structure of new repeats protein families. PLoS Comput Biol 2021; 17:e1008798. [PMID: 33857128 PMCID: PMC8078820 DOI: 10.1371/journal.pcbi.1008798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/27/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Repeat proteins are abundant in eukaryotic proteomes. They are involved in many eukaryotic specific functions, including signalling. For many of these proteins, the structure is not known, as they are difficult to crystallise. Today, using direct coupling analysis and deep learning it is often possible to predict a protein’s structure. However, the unique sequence features present in repeat proteins have been a challenge to use direct coupling analysis for predicting contacts. Here, we show that deep learning-based methods (trRosetta, DeepMetaPsicov (DMP) and PconsC4) overcomes this problem and can predict intra- and inter-unit contacts in repeat proteins. In a benchmark dataset of 815 repeat proteins, about 90% can be correctly modelled. Further, among 48 PFAM families lacking a protein structure, we produce models of forty-one families with estimated high accuracy. Repeat proteins are widespread among organisms and particularly abundant in eukaryotic proteomes. Their primary sequence presents repetition in the amino acid sequences that origin structures with repeated folds/domains. Although the repeated units often can be recognised from the sequence alone, often structural information is missing. Here, we used contact prediction for predicting the structure of repeats protein directly from their primary sequences. We benchmark the methods on a dataset comprehensive of all the known repeated structures. We evaluate the contact predictions and the obtained models for different classes of repeat proteins. Further, we develop and benchmark a quality assessment (QA) method specific for repeat proteins. Finally, we used the prediction pipeline for all PFAM repeat families without resolved structures and found that forty-one of them could be modelled with high accuracy.
Collapse
|
8
|
Schänzer A, Schumann E, Zengeler D, Gulatz L, Maroli G, Ahting U, Sprengel A, Gräf S, Hahn A, Jux C, Acker T, Fürst DO, Rupp S, Schuld J, van der Ven PFM. The p.Ala2430Val mutation in filamin C causes a "hypertrophic myofibrillar cardiomyopathy". J Muscle Res Cell Motil 2021; 42:381-397. [PMID: 33710525 DOI: 10.1007/s10974-021-09601-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.
Collapse
Affiliation(s)
- Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany.
| | - Elisabeth Schumann
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Diana Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, Tübingen, Germany
| | - Lisann Gulatz
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technical University of Munich (TUM), Munich, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Sabine Gräf
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Stefan Rupp
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, van der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 2020; 8:154. [PMID: 32887649 PMCID: PMC7650280 DOI: 10.1186/s40478-020-01001-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Filamin C (FLNc) is mainly expressed in striated muscle cells where it localizes to Z-discs, myotendinous junctions and intercalated discs. Recent studies have revealed numerous mutations in the FLNC gene causing familial and sporadic myopathies and cardiomyopathies with marked clinical variability. The most frequent myopathic mutation, p.W2710X, which is associated with myofibrillar myopathy, deletes the carboxy-terminal 16 amino acids from FLNc and abolishes the dimerization property of Ig-like domain 24. We previously characterized "knock-in" mice heterozygous for this mutation (p.W2711X), and have now investigated homozygous mice using protein and mRNA expression analyses, mass spectrometry, and extensive immunolocalization and ultrastructural studies. Although the latter mice display a relatively mild myopathy under normal conditions, our analyses identified major mechanisms causing the pathophysiology of this disease: in comparison to wildtype animals (i) the expression level of FLNc protein is drastically reduced; (ii) mutant FLNc is relocalized from Z-discs to particularly mechanically strained parts of muscle cells, i.e. myotendinous junctions and myofibrillar lesions; (iii) the number of lesions is greatly increased and these lesions lack Bcl2-associated athanogene 3 (BAG3) protein; (iv) the expression of heat shock protein beta-7 (HSPB7) is almost completely abolished. These findings indicate grave disturbances of BAG3-dependent and -independent autophagy pathways that are required for efficient lesion repair. In addition, our studies reveal general mechanisms of lesion formation and demonstrate that defective FLNc dimerization via its carboxy-terminal domain does not disturb assembly and basic function of myofibrils. An alternative, more amino-terminally located dimerization site might compensate for that loss. Since filamins function as stress sensors, our data further substantiate that FLNc is important for mechanosensing in the context of Z-disc stabilization and maintenance.
Collapse
|
10
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
12
|
Li F, Barton ER, Granzier H. Deleting nebulin's C-terminus reveals its importance to sarcomeric structure and function and is sufficient to invoke nemaline myopathy. Hum Mol Genet 2020; 28:1709-1725. [PMID: 30689900 DOI: 10.1093/hmg/ddz016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Nebulin is a large skeletal muscle protein wound around the thin filaments, with its C-terminus embedded within the Z-disk and its N-terminus extending out toward the thin filament pointed end. While nebulin's C-terminus has been implicated in both sarcomeric structure and function as well as the development of nemaline myopathy, the contributions of this region remain largely unknown. Additionally, the C-terminus is reported to contribute to muscle hypertrophy via the IGF-1 growth pathway. To study the functions of nebulin's C-terminus, we generated a mouse model deleting the final two unique C-terminal domains, the serine-rich region (SRR) and the SH3 domain (NebΔ163-165). Homozygous NebΔ163-165 mice that survive past the neonatal stage exhibit a mild weight deficit. Characterization of these mice revealed that the truncation caused a moderate myopathy phenotype reminiscent of nemaline myopathy despite the majority of nebulin being localized properly in the thin filaments. This phenotype included muscle weight loss, changes in sarcomere structure, as well as a decrease in force production. Glutathione S-transferase (GST) pull-down experiments found novel binding partners with the SRR, several of which are associated with myopathies. While the C-terminus does not appear to be a limiting step in muscle growth, the IGF-1 growth pathway remained functional despite the deleted domains being proposed to be essential for IGF-1 mediated hypertrophy. The NebΔ163-165 mouse model emphasizes that nebulin's C-terminus is necessary for proper sarcomeric development and shows that its loss is sufficient to induce myopathy.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
14
|
Farrell E, Armstrong AE, Grimes AC, Naya FJ, de Lange WJ, Ralphe JC. Transcriptome Analysis of Cardiac Hypertrophic Growth in MYBPC3-Null Mice Suggests Early Responders in Hypertrophic Remodeling. Front Physiol 2018; 9:1442. [PMID: 30410445 PMCID: PMC6210548 DOI: 10.3389/fphys.2018.01442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Rationale: With a prevalence of 1 in 200 individuals, hypertrophic cardiomyopathy (HCM) is thought to be the most common genetic cardiac disease, with potential outcomes that include severe hypertrophy, heart failure, and sudden cardiac death (SCD). Though much research has furthered our understanding of how HCM-causing mutations in genes such as cardiac myosin-binding protein C (MYBPC3) impair contractile function, it remains unclear how such dysfunction leads to hypertrophy and/or arrhythmias, which comprise the HCM phenotype. Identification of early response mediators could provide rational therapeutic targets to reduce disease severity. Our goal was to differentiate physiologic and pathophysiologic hypertrophic growth responses and identify early genetic mediators in the development of cardiomegaly in the cardiac myosin-binding protein C-null (cMyBP-C-/-) mouse model of HCM. Methods and Results: We performed microarray analysis on left ventricles of wild-type (WT) and cMyBPC-/- mice (n = 7 each) at postnatal day (PND) 1 and PND 9, before and after the appearance of an overt HCM phenotype. Applying the criteria of ≥2-fold change, we identified genes whose change was exclusive to pathophysiologic growth (n = 61), physiologic growth (n = 30), and genes whose expression changed ≥2-fold in both WT and cMyBP-C-/- hearts (n = 130). Furthermore, we identified genes that were dysregulated in PND1 cMyBP-C-/- hearts prior to hypertrophy, including genes in mechanosensing pathways and potassium channels linked to arrhythmias. One gene of interest, Xirp2, and its protein product, are regulated during growth but also show early, robust prehypertrophic upregulation in cMyBP-C-/- hearts. Additionally, the transcription factor Zbtb16 also shows prehypertrophic upregulation at both gene and protein levels. Conclusion: Our transcriptome analysis generated a comprehensive data set comparing physiologic vs. hypertrophic growth in mice lacking cMyBP-C. It highlights the importance of extracellular matrix pathways in hypertrophic growth and early dysregulation of potassium channels. Prehypertrophic upregulation of Xirp2 in cMyBP-C-/- hearts supports a growing body of evidence suggesting Xirp2 has the capacity to elicit both hypertrophy and arrhythmias in HCM. Dysregulation of Xirp2, as well as Zbtb16, along with other genes associated with mechanosensing regions of the cardiomyocyte implicate stress-sensing in these regions as a potentially important early response in HCM.
Collapse
Affiliation(s)
- Emily Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Annie E Armstrong
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Adrian C Grimes
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Francisco J Naya
- Department of Biology, Boston University, Boston, MA, United States
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
15
|
Li Y, Fang C, Fu Y, Hu A, Li C, Zou C, Li X, Zhao S, Zhang C, Li C. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Res 2018; 25:421-437. [PMID: 29850846 PMCID: PMC6105124 DOI: 10.1093/dnares/dsy014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing (AS) and fusion transcripts produce a vast expansion of transcriptomes and proteomes diversity. However, the reliability of these events and the extend of epigenetic mechanisms have not been adequately addressed due to its limitation of uncertainties about the complete structure of mRNA. Here we combined single-molecule real-time sequencing, Illumina RNA-seq and DNA methylation data to characterize the landscapes of DNA methylation on AS, fusion isoforms formation and lncRNA feature and further to unveil the transcriptome complexity of pig. Our analysis identified an unprecedented scale of high-quality full-length isoforms with over 28,127 novel isoforms from 26,881 novel genes. More than 92,000 novel AS events were detected and intron retention predominated in AS model, followed by exon skipping. Interestingly, we found that DNA methylation played an important role in generating various AS isoforms by regulating splicing sites, promoter regions and first exons. Furthermore, we identified a large of fusion transcripts and novel lncRNAs, and found that DNA methylation of the promoter and gene body could regulate lncRNA expression. Our results significantly improved existed gene models of pig and unveiled that pig AS and epigenetic modify were more complex than previously thought.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - An Hu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Xin X, Wang T, Liu X, Sui G, Jin C, Yue Y, Yang S, Guo H. A yeast two-hybrid assay reveals CMYA1 interacting proteins. C R Biol 2017; 340:314-323. [DOI: 10.1016/j.crvi.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
17
|
Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet 2017; 49:953-958. [DOI: 10.1038/ng.3842] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
|
18
|
Reimann L, Wiese H, Leber Y, Schwäble AN, Fricke AL, Rohland A, Knapp B, Peikert CD, Drepper F, van der Ven PFM, Radziwill G, Fürst DO, Warscheid B. Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics. Mol Cell Proteomics 2016; 16:346-367. [PMID: 28028127 DOI: 10.1074/mcp.m116.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.
Collapse
Affiliation(s)
- Lena Reimann
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Wiese
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Leber
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Anja N Schwäble
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L Fricke
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Rohland
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Knapp
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter F M van der Ven
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Gerald Radziwill
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| | - Dieter O Fürst
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Warscheid
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; .,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| |
Collapse
|
19
|
Hernandez DA, Bennett CM, Dunina-Barkovskaya L, Wedig T, Capetanaki Y, Herrmann H, Conover GM. Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell 2016; 27:3869-3882. [PMID: 27733623 PMCID: PMC5170609 DOI: 10.1091/mbc.e16-04-0237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/31/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Nebulette physically links desmin to sarcomeric actin in hearts. An intact desmin network is required for nebulette to function as major actin-binding protein in sarcomeres. This study provides biochemical evidence that the desmin–nebulette complex is involved in filament-forming desminopathy. In the hearts of patients bearing nebulette mutations, a severe general disorganization in cardiomyocytes of the extrasarcomeric desmin intermediate filament system is frequently observed. However, the molecular and functional relationship between the desmin cytoskeleton and nebulette-containing sarcomeres is still unclear. Here we report a high-affinity in vitro interaction between nebulette and desmin filaments. A major interaction site has been mapped to the desmin α-helical rod domain, indicating that the filament core is directly involved in the binding of nebulette. The disease-mutant desmin variants E245D and T453I exhibited increased binding affinity for nebulette, delayed filament assembly kinetics, and caused significant weakening of networks. In isolated chick cardiomyocytes and sections from canine heart, we revealed by ground-state depletion and confocal microscopies that module 5 of nebulette extends outward from Z-disk–associated desmin filaments toward the center of the sarcomere. Accordingly, in the myocardium of Des−/− mice, elevated levels of cardiac actin correlated with alterations in the distribution of nebulette. Our data suggest that a well-organized desmin network is required to accommodate an optimal conformation of nebulette on sarcomeres to bind and recruit cardiac α-actin. Hence we propose that nebulette acts in synergy with nebulin to reinforce and temporally fine-tune striated muscle relaxation–contraction cycles.
Collapse
Affiliation(s)
- Daniel A Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| | - Christina M Bennett
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| | | | - Tatjana Wedig
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Gloria M Conover
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
20
|
Kebir S, Orfanos Z, Schuld J, Linhart M, Lamberz C, van der Ven PFM, Schrickel J, Kirfel G, Fürst DO, Meyer R. Sarcomeric lesions and remodeling proximal to intercalated disks in overload-induced cardiac hypertrophy. Exp Cell Res 2016; 348:95-105. [PMID: 27639425 DOI: 10.1016/j.yexcr.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Pressure overload induces cardiac remodeling involving both the contractile machinery and intercalated disks (IDs). Filamin C (FlnC) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adapters localizing in IDs of higher vertebrates. Knockout of the gene encoding Xin (Xirp1) in mice leads to a mild cardiac phenotype with ID mislocalization. In order to amplify this phenotype, we performed transverse aortic constriction (TAC) on control and Xirp1-deficient mice. TAC induced similar left ventricular hypertrophy in both genotypes, suggesting that the lack of Xin does not lead to higher susceptibility to cardiac overload. However, in both genotypes, FlnC appeared in "streaming" localizations across multiple sarcomeres proximal to the IDs, suggesting a remodeling response. Furthermore, FlnC-positive areas of remodeling, reminiscent of sarcomeric lesions previously described for skeletal muscles (but so far unreported in the heart), were also observed. These adaptations reflect a similarly strong effect of the pressure induced by TAC in both genotypes. However, 2 weeks post-operation TAC-treated knockout hearts had reduced levels of connexin43 and slightly increased incidents of ventricular tachycardia compared to their wild-type (WT) counterparts. Our findings highlight the FlnC-positive sarcomeric lesions and ID-proximal streaming as general remodeling responses in cardiac overload-induced hypertrophy.
Collapse
Affiliation(s)
- Sied Kebir
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Zacharias Orfanos
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Julia Schuld
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Markus Linhart
- Department of Medicine-Cardiology, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Christian Lamberz
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Peter F M van der Ven
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Jan Schrickel
- Department of Medicine-Cardiology, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Gregor Kirfel
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Dieter O Fürst
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Rainer Meyer
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
21
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
22
|
Leber Y, Ruparelia AA, Kirfel G, van der Ven PFM, Hoffmann B, Merkel R, Bryson-Richardson RJ, Fürst DO. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum Mol Genet 2016; 25:2776-2788. [PMID: 27206985 DOI: 10.1093/hmg/ddw135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Filamin c (FLNc) is a large dimeric actin-binding protein located at premyofibrils, myofibrillar Z-discs and myofibrillar attachment sites of striated muscle cells, where it is involved in mechanical stabilization, mechanosensation and intracellular signaling. Mutations in the gene encoding FLNc give rise to skeletal muscle diseases and cardiomyopathies. Here, we demonstrate by fluorescence recovery after photobleaching that a large fraction of FLNc is highly mobile in cultured neonatal mouse cardiomyocytes and in cardiac and skeletal muscles of live transgenic zebrafish embryos. Analysis of cardiomyocytes from Xirp1 and Xirp2 deficient animals indicates that both Xin actin-binding repeat-containing proteins stabilize FLNc selectively in premyofibrils. Using a novel assay to analyze myofibrillar microdamage and subsequent repair in cultured contracting cardiomyocytes by live cell imaging, we demonstrate that repair of damaged myofibrils is achieved within only 4 h, even in the absence of de novo protein synthesis. FLNc is immediately recruited to these sarcomeric lesions together with its binding partner aciculin and precedes detectable assembly of filamentous actin and recruitment of other myofibrillar proteins. These data disclose an unprecedented degree of flexibility of the almost crystalline contractile machinery and imply FLNc as a dynamic signaling hub, rather than a primarily structural protein. Our myofibrillar damage/repair model illustrates how (cardio)myocytes are kept functional in their mechanically and metabolically strained environment. Our results help to better understand the pathomechanisms and pathophysiology of early stages of FLNc-related myofibrillar myopathy and skeletal and cardiac diseases preceding pathological protein aggregation.
Collapse
Affiliation(s)
- Yvonne Leber
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Gregor Kirfel
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| | - Bernd Hoffmann
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and
| | - Rudolf Merkel
- Department of Biomechanics (ICS-7), Institute of Complex Systems, Forschungszentrum Jülich, D52428 Jülich, Germany and.,Department of Biomechanics, Institute for Physical and Theoretical Chemistry, University of Bonn, D53115 Bonn, Germany
| | | | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, D53121 Bonn, Germany
| |
Collapse
|
23
|
Cai P, Liu S, Piao X, Hou N, Gobert GN, McManus DP, Chen Q. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004684. [PMID: 27128440 PMCID: PMC4851400 DOI: 10.1371/journal.pntd.0004684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, P.R. China
| |
Collapse
|
24
|
New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 2016; 4:8. [PMID: 26842778 PMCID: PMC4739336 DOI: 10.1186/s40478-016-0280-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Myofibrillar myopathies are characterized by progressive muscle weakness and impressive abnormal protein aggregation in muscle fibers. In about 10 % of patients, the disease is caused by mutations in the MYOT gene encoding myotilin. The aim of our study was to decipher the composition of protein deposits in myotilinopathy to get new information about aggregate pathology. Results Skeletal muscle samples from 15 myotilinopathy patients were included in the study. Aggregate and control samples were collected from muscle sections by laser microdissection and subsequently analyzed by a highly sensitive proteomic approach that enables a relative protein quantification. In total 1002 different proteins were detected. Seventy-six proteins showed a significant over-representation in aggregate samples including 66 newly identified aggregate proteins. Z-disc-associated proteins were the most abundant aggregate components, followed by sarcolemmal and extracellular matrix proteins, proteins involved in protein quality control and degradation, and proteins with a function in actin dynamics or cytoskeletal transport. Forty over-represented proteins were evaluated by immunolocalization studies. These analyses validated our mass spectrometric data and revealed different regions of protein accumulation in abnormal muscle fibers. Comparison of data from our proteomic analysis in myotilinopathy with findings in other myofibrillar myopathy subtypes indicates a characteristic basic pattern of aggregate composition and resulted in identification of a highly sensitive and specific diagnostic marker for myotilinopathy. Conclusions Our findings i) indicate that main protein components of aggregates belong to a network of interacting proteins, ii) provide new insights into the complex regulation of protein degradation in myotilinopathy that may be relevant for new treatment strategies, iii) imply a combination of a toxic gain-of-function leading to myotilin-positive protein aggregates and a loss-of-function caused by a shift in subcellular distribution with a deficiency of myotilin at Z-discs that impairs the integrity of myofibrils, and iv) demonstrate that proteomic analysis can be helpful in differential diagnosis of protein aggregate myopathies. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0280-0) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
Efficient muscle contraction in skeletal muscle is predicated on the regulation of actin filament lengths. In one long-standing model that was prominent for decades, the giant protein nebulin was proposed to function as a 'molecular ruler' to specify the lengths of the thin filaments. This theory was questioned by many observations, including experiments in which the length of nebulin was manipulated in skeletal myocytes; this approach revealed that nebulin functions to stabilize filamentous actin, allowing thin filaments to reach mature lengths. In addition, more recent data, mostly from in vivo models and identification of new interacting partners, have provided evidence that nebulin is not merely a structural protein. Nebulin plays a role in numerous cellular processes including regulation of muscle contraction, Z-disc formation, and myofibril organization and assembly.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Long PA, Larsen BT, Evans JM, Olson TM. Exome Sequencing Identifies Pathogenic and Modifier Mutations in a Child With Sporadic Dilated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002443. [PMID: 26656454 PMCID: PMC4845292 DOI: 10.1161/jaha.115.002443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Idiopathic dilated cardiomyopathy (DCM) is typically diagnosed in adulthood, yet familial cases exhibit variable age‐dependent penetrance and a subset of patients develop sporadic DCM in childhood. We sought to discover the molecular basis of sporadic DCM in an 11‐year‐old female with severe heart failure necessitating cardiac transplantation. Methods and Results Parental echocardiograms excluded asymptomatic DCM. Whole exome sequencing was performed on the family trio and filtered for rare, deleterious, recessive, and de novo variants. Of the 8 candidate genes identified, only 2 had a role in cardiac physiology. A de novo missense mutation in TNNT2 was identified, previously reported and functionally validated in familial DCM with markedly variable penetrance. Additionally, recessive compound heterozygous truncating mutations were identified in XIRP2, a member of the ancient Xin gene family, which governs intercalated disc (ICD) maturation. Histomorphological analysis of explanted heart tissue revealed misregistration, mislocalization, and shortening of ICDs, findings similar to Xirp2−/− mice. Conclusions The synergistic effects of TNNT2 and XIRP2 mutations, resulting in perturbed sarcomeric force generation and transmission, respectively, would account for an early‐onset heart failure phenotype. Whereas the importance of Xin proteins in cardiac development has been well established in animal models, this study implicates XIRP2 as a novel modifier gene in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pamela A Long
- Mayo Graduate School, Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic, Rochester, MN (P.A.L.) Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN (P.A.L., T.M.O.)
| | - Brandon T Larsen
- Department of Pathology, University of Arizona Medical Center, Tucson, AZ (B.T.L.)
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN (J.M.E.)
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN (P.A.L., T.M.O.) Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN (T.M.O.) Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN (T.M.O.)
| |
Collapse
|
27
|
Chevessier F, Schuld J, Orfanos Z, Plank AC, Wolf L, Maerkens A, Unger A, Schlötzer-Schrehardt U, Kley RA, Von Hörsten S, Marcus K, Linke WA, Vorgerd M, van der Ven PFM, Fürst DO, Schröder R. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015; 24:7207-20. [PMID: 26472074 DOI: 10.1093/hmg/ddv421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates.
Collapse
Affiliation(s)
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Zacharias Orfanos
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Anne-C Plank
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | | | - Alexandra Maerkens
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Stephan Von Hörsten
- Department for Experimental Therapy, Preclinical Experimental Animal Center and
| | - Katrin Marcus
- Department of Functional Proteomics, Medizinisches Proteom-Center and
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
28
|
Abstract
The members of the nebulin protein family, including nebulin, nebulette, LASP-1, LASP-2, and N-RAP, contain various numbers of nebulin repeats and bind to actin, but are otherwise heterogeneous with regard to size, expression pattern, and function. This review focuses on the roles of nebulin family members in the heart. Nebulin is the largest member predominantly expressed in skeletal muscle, where it stretches along the thin filament. In heart, nebulin is detectable only at low levels and its absence has no apparent effects. Nebulette is similar in structure to the nebulin C-terminal Z-line region and specifically expressed in heart. Nebulette gene mutations have been identified in dilated cardiomyopathy patients and transgenic mice overexpressing nebulette mutants partially recapitulate the human pathology. In contrast, nebulette knockout mice show no functional phenotype, but exhibit Z-line widening. LASP-2 is an isoform of nebulette expressed in multiple tissues, including the heart. It is present in the Z-line and intercalated disc and able to bind and cross-link filamentous actin. LASP-1 is similar in structure to LASP-2, but expressed only in non-muscle tissue. N-RAP is present in myofibril precursors during myofibrillogenesis and thought to be involved in myofibril assembly, while it is localized at the intercalated disc in adult heart. Additional in vivo models are required to provide further insights into the functions of nebulin family members in the heart.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council
| | | |
Collapse
|
29
|
Al-Sajee D, Nissar AA, Coleman SK, Rebalka IA, Chiang A, Wathra R, van der Ven PFM, Orfanos Z, Hawke TJ. Xin-deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality. Acta Physiol (Oxf) 2015; 214:248-60. [PMID: 25582411 DOI: 10.1111/apha.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
AIM Xin is an F-actin-binding protein expressed during development of cardiac and skeletal muscle. We used Xin-/- mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration. METHODS Xin-/- skeletal muscles and their satellite cell (SC) population were investigated for the presence of myopathic changes by a series of histological and immunofluorescent stains on resting uninjured muscles. To further understand the effect of Xin loss on muscle health and its SCs, we studied SCs responses following cardiotoxin-induced muscle injury. Functional data were determined using in situ muscle stimulation protocol. RESULTS Compared to age-matched wild-type (WT), Xin-/- muscles exhibited generalized myopathy and increased fatigability with a significantly decreased force recovery post-fatiguing contractions. Muscle regeneration was attenuated in Xin-/- mice. This impaired regeneration prompted an investigation into SC content and functionality. Although SC content was not different, significantly more activated SCs were present in Xin-/- vs. WT muscles. Primary Xin-/- myoblasts displayed significant reductions (approx. 50%) in proliferative capacity vs. WT; a finding corroborated by significantly decreased MyoD-positive nuclei in 3 days post-injury Xin-/- muscle vs. WT. As more activated SCs did not translate to more proliferating myoblasts, we investigated whether Xin-/- SCs displayed an exaggerated loss by apoptosis. More apoptotic SCs (TUNEL+/Pax7+) were present in Xin-/- muscle vs. WT. Furthermore, more Xin-/- myoblasts were expressing nuclear caspase-3 compared to WT at 3 days post-injury. CONCLUSION Xin deficiency leads to a myopathic condition characterized by increased muscle fatigability, impaired regeneration and SC dysfunction.
Collapse
Affiliation(s)
- D. Al-Sajee
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. A. Nissar
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - S. K. Coleman
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - I. A. Rebalka
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. Chiang
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Wathra
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | | | - Z. Orfanos
- Institute for Cell Biology; University of Bonn; Bonn Germany
| | - T. J. Hawke
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
30
|
A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35:1999-2014. [PMID: 25653358 DOI: 10.1523/jneurosci.3449-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse.
Collapse
|
31
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
32
|
Abstract
Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level.
Collapse
Affiliation(s)
- Logan C Meyer
- Department of Chemistry and Biochemistry, James Madison University Harrisonburg, VA, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University Harrisonburg, VA, USA
| |
Collapse
|