1
|
Tümmler B, Pallenberg ST, Dittrich AM, Graeber SY, Naehrlich L, Sommerburg O, Mall MA. Progress of personalized medicine of cystic fibrosis in the times of efficient CFTR modulators. Mol Cell Pediatr 2025; 12:6. [PMID: 40320452 PMCID: PMC12050259 DOI: 10.1186/s40348-025-00194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a systemic disorder of exocrine glands that is caused by mutations in the CFTR gene. MAIN BODY The basic defect in people with CF (pwCF) leads to impaired epithelial transport of chloride and bicarbonate that can be assessed by CFTR biomarkers, i.e. the β-adrenergic sweat rate and sweat chloride concentration (SCC), chloride conductance of the nasal respiratory epithelium (NPD), urine secretion of bicarbonate, intestinal current measurements (ICM) of chloride secretory responses in rectal biopsies and in bioassays of chloride transport in organoids or cell cultures. CFTR modulators are a novel class of drugs that improve defective posttranslational processing, trafficking and function of mutant CFTR. By April 2025, triple combination therapy with the CFTR potentiator ivacaftor (IVA) and the CFTR correctors elexacaftor (ELX) and tezacaftor (TEZ) has been approved in Europe for the treatment of all pwCF who do not carry two minimal function CFTR mutations. Previous phase 3 and post-approval phase 4 studies in pwCF who harbour one or two alleles of the major mutation F508del consistently reported significant improvements of lung function and anthropometry upon initiation of ELX/TEZ/IVA compared to baseline. Normalization of SCC, NPD and ICM correlated with clinical outcomes on the population level, but the restoration of CFTR function was diverse and not predictive for clinical outcome in the individual patient. Theratyping of non-F508del CF genotypes in patient-derived organoids and cell cultures revealed for most cases clinically meaningful increases of CFTR activity upon exposure to ELX/TEZ/IVA. Likewise, every second CF patient with non-F508del genotypes improved in SCC and clinical outcome upon exposure to ELX/TEZ/IVA indicating that triple CFTR modulator therapy is potentially beneficial for all pwCF who do not carry two minimal function CFTR mutations. This group who is not eligible for CFTR modulators may opt for gene addition therapy in the future, as the first-in-human trial with a recombinant lentiviral vector is underway. FUTURE DIRECTIONS The upcoming generation of pwCF will probably experience a rather normal life in childhood and adolescence. To classify the upcoming personal signatures of CF disease in the times of efficient modulators, we need more sensitive CFTR biomarkers that address the long-term course of airway and gut microbiome, host defense, epithelial homeostasis and multiorgan metabolism.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany.
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pneumology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL),, University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| |
Collapse
|
2
|
Kireeva TN, Zhigalina DI, Skryabin NA. Cystic fibrosis therapy: from symptoms to the cause of the disease. Vavilovskii Zhurnal Genet Selektsii 2025; 29:279-289. [PMID: 40297296 PMCID: PMC12036567 DOI: 10.18699/vjgb-25-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 04/30/2025] Open
Abstract
Cystic fibrosis (CF) is a disease with a broad clinical and genetic spectrum of manifestations, significantly impacting the quality and duration of life of patients. At present, a diagnosis of CF enables the disease to be identified at the earliest stages of its development. The accelerated advancement of scientific knowledge and contemporary research techniques has transformed the methodology employed in the treatment of CF, encompassing a spectrum of approaches from symptomatic management to pathogenetic therapies. Pathogenetic therapy represents an approach to treatment that aims to identify methods of restoring the function of the CFTR gene. The objective of this review was to analyse and summarize the available scientific data on the pathogenetic therapy of CF. This paper considers various approaches to the pathogenetic therapy of CF that are based on the use of targeted drugs known as CFTR modulators. The article presents studies employing gene therapy techniques for CF, which are based on the targeted delivery of a normal copy of the CFTR gene cDNA to the respiratory tract via viral or non-viral vectors. Some studies have demonstrated the efficacy of RNA therapeutic interventions in restoring splicing, promoting the production of mature RNA, and increasing the functional expression of the CFTR protein. The review also analyzes literature data that consider methods of etiotropic therapy for CF, which consists of targeted correction of the CFTR gene using artificial restriction enzymes, the CRISPR/Cas9 system and a complex of peptide-nucleic acids. In a prospective plan, the use of cell therapy methods in the treatment of lung damage in CF is considered.
Collapse
Affiliation(s)
- T N Kireeva
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D I Zhigalina
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Romeo E, Saccoliti F, Ocello R, Andonaia A, Allegretta C, Pastorino C, Pedemonte N, Falchi F, Laselva O, Bandiera T, Bertozzi F. Target Identification with Live-Cell Photoaffinity Labeling and Mechanism of Action Elucidation of ARN23765, a Highly Potent CFTR Corrector. J Med Chem 2025; 68:4596-4618. [PMID: 39928576 PMCID: PMC11873939 DOI: 10.1021/acs.jmedchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/12/2025]
Abstract
Molecular-targeted therapies for the treatment of cystic fibrosis (CF) rely on small-molecule modulators that rescue the activity of the defective CF transmembrane conductance regulator (CFTR) anion channel. ARN23765 is a small molecule with subnanomolar potency in rescuing the function of mutant CFTR in bronchial epithelial cells from CF patients carrying the F508del-CFTR mutation. Considering the multifaceted interactions of CFTR with the plasma membrane and the complexity of the protein network within the cellular compartments, here we report the investigation of ARN23765's molecular mechanism in live cells. We used the photoaffinity labeling (PAL) approach to demonstrate the interaction of ARN23765-derived probes with CFTR in cells. We showed that ARN23765 contributes to F508del-CFTR rescue by stabilizing the membrane-spanning domain-1 and interacting with CFTR at the same site as other type I CFTR correctors. Our study characterizes ARN23765's mode of action and highlights the potential of studying the interactions between CFTR and its correctors in live cells.
Collapse
Affiliation(s)
- Elisa Romeo
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia (IIT), Genova 16163, Italy
| | - Francesco Saccoliti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Riccardo Ocello
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), Genova 16163, Italy
| | - Angela Andonaia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Caterina Allegretta
- Department
of Clinical and Experimental Medicine, University
of Foggia, Foggia 71122, Italy
| | - Cristina Pastorino
- U.O.C.
Genetica
Medica, Istituto Giannina Gaslini (IGG), Genova 16147, Italy
| | - Nicoletta Pedemonte
- U.O.C.
Genetica
Medica, Istituto Giannina Gaslini (IGG), Genova 16147, Italy
| | - Federico Falchi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), Genova 16163, Italy
| | - Onofrio Laselva
- Department
of Clinical and Experimental Medicine, University
of Foggia, Foggia 71122, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| |
Collapse
|
4
|
Baroni D. Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review. Curr Issues Mol Biol 2025; 47:119. [PMID: 39996840 PMCID: PMC11854517 DOI: 10.3390/cimb47020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride and bicarbonate channel localized on the plasma membrane of epithelial cells. Over the last three decades, high-throughput screening assays have been extensively employed in identifying drugs that target specific defects arising from CFTR mutations. The two main categories of such compounds are potentiators, which enhance CFTR gating by increasing the channel's open probability, and correctors, which improve CFTR protein folding and trafficking to the plasma membrane. In addition to these, other investigational molecules include amplifiers and stabilizers, which enhance the levels and the stability of CFTR on the cell surface, and read-through agents that promote the insertion of correct amino acids at premature termination codons. Currently, four CFTR modulators are clinically approved: the potentiator ivacaftor (VX-770), either as monotherapy or in combination with the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Among these, the triple combination VX-445/VX-661/VX-770 (marketed as Trikafta® in the US and Kaftrio® in Europe) has emerged as the most effective CFTR modulator therapy to date, demonstrating significant clinical benefits in phase III trials for patients with at least one F508del CFTR allele. Despite these advancements, the mechanisms of action and binding sites of these modulators on CFTR have only recently begun to be elucidated. A deeper understanding of these mechanisms could provide essential insights for developing more potent and effective modulators, particularly in combination therapies. This narrative review delves into the mechanism of action, binding sites, and combinatorial effects of approved and investigational CFTR modulators, highlighting ongoing efforts to broaden therapeutic options for individuals with CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
5
|
Otuya DO, Liu Z, Joseph R, Hanafy MA, Vijaykumar K, Stanford D, Raju SV, Baker EH, Rowe SM, Tearney GJ, Solomon GM. Toward in vivo bronchoscopic functional CFTR assessment using a short circuit current measurement probe. Am J Physiol Lung Cell Mol Physiol 2025; 328:L313-L320. [PMID: 39601216 DOI: 10.1152/ajplung.00137.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
The epithelial lining of luminal organs provides an immune barrier against external factors and regulates the transport of nutrients, ions, and water into the body. Several conditions are associated with the breakdown or dysfunction of the epithelial lining. Short circuit current (Isc) measurement using a bulky, expensive, and hard-to-deploy system known as the Ussing chamber is the gold standard for evaluation of epithelial transport function but requires tissue excision. We demonstrated the ability of the Isc probe to measure Isc in normal wild type (WT) versus reduced cystic fibrosis transmembrane conductance regulator (CFTR) function knockout (KO) rats as a relevant animal model for testing ion channel function.NEW & NOTEWORTHY We have conducted short circuit current measurements in animal models in vivo for studying cystic fibrosis transmembrane conductance regulator (CFTR) and ion channel restoration.
Collapse
Affiliation(s)
- David O Otuya
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reny Joseph
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammed A Hanafy
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kadambari Vijaykumar
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Denise Stanford
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Vamsee Raju
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elizabeth H Baker
- Department of Sociology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cystic Fibrosis Foundation, Bethesda, Maryland, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, United States
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Christopher JA, Breckels LM, Crook OM, Vazquez-Chantada M, Barratt D, Lilley KS. Global Proteomics Indicates Subcellular-Specific Anti-Ferroptotic Responses to Ionizing Radiation. Mol Cell Proteomics 2025; 24:100888. [PMID: 39617061 PMCID: PMC11780130 DOI: 10.1016/j.mcpro.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Cells have many protective mechanisms against background levels of ionizing radiation orchestrated by molecular changes in expression, post-translational modifications, and subcellular localization. Radiotherapeutic treatment in oncology attempts to overwhelm such mechanisms, but radioresistance is an ongoing challenge. Here, global subcellular proteomics combined with Bayesian modeling identified 544 differentially localized proteins in A549 cells upon 6 Gy X-ray exposure, revealing subcellular-specific changes of proteins involved in ferroptosis, an iron-dependent cell death, suggestive of potential radioresistance mechanisms. These observations were independent of expression changes, emphasizing the utility of global subcellular proteomics and the promising prospect of ferroptosis-inducing therapies for combating radioresistance.
Collapse
Affiliation(s)
- Josie A Christopher
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, UK
| | | | | | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Singh N, Cunnington RH, Bhagirath A, Vaishampayan A, Khan MW, Gupte T, Duan K, Gounni AS, Dakshisnamurti S, Hanrahan JW, Chelikani P. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024; 27:111286. [PMID: 39628561 PMCID: PMC11613190 DOI: 10.1016/j.isci.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease characterized by microbial infection and progressive decline in lung function, leading to significant morbidity and mortality. The bitter taste receptor T2R14 is a chemosensory receptor that is significantly expressed in airways. Using a combination of cell-based assays and T2R14 knockdown in bronchial epithelial cells from CF and non-CF individuals, we observed that T2R14 plays a crucial role in the detection of bacterial and fungal signals and enhances host innate immune responses. Expression of Gαi protein is enhanced in CF bronchial epithelial cells and T2R14-Gαi specific signaling leads to increased calcium mobilization. Knockdown of T2R14 leads to reduced innate immune activation by bacterial strains deficient in quorum sensing. The results demonstrate that T2R14 helps protect against microbial infection and thus may play an important role in the innate immune defense of the CF airway epithelium.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ryan H. Cunnington
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Bhagirath
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS, Canada
| | - Ankita Vaishampayan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tejas Gupte
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S. Gounni
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshisnamurti
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Venglovecz V, Grassalkovich A, Tóth E, Ébert A, Gál E, Korsós MM, Maléth J, Rakonczay Z, Galla Z, Monostori P, Hegyi P. Restoring CFTR function with Orkambi decreases the severity of alcohol-induced acute pancreatitis. J Physiol 2024; 602:6153-6170. [PMID: 39418107 DOI: 10.1113/jp287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Heavy alcohol intake is one of the most common causes of acute pancreatitis (AP). We have previously shown that ethanol (EtOH) decreases the expression and activity of the cystic fibrosis transmembrane conductance regulator (CFTR), which plays a key role in alcohol-induced AP development. The prescription drug, Orkambi (a combination of ivacaftor and lumacaftor) can correct impaired CFTR function and expression in cystic fibrosis (CF) patients. Thus, the present study aimed to investigate whether Orkambi can mitigate alcohol-induced AP. Intact guinea-pig pancreatic ducts were pre-treated with different concentrations of ethanol (EtOH; 30, 50 and 100 mm) for 12 h alone or in combination with ivacaftor (VX770) and/or lumacaftor (VX-809), and CFTR expression and activity were evaluated by immunostaining and by the patch clamp technique, respectively. Alcoholic AP was induced in Orkambi-treated guinea-pigs, and standard laboratory and histological parameters were measured. Ivacaftor and lumacaftor alone or in combination dose-dependently restored the apical expression and activity of CFTR after EtOH treatment in vitro. Oral administration of Orkambi reduced the severity of alcohol-induced AP and restored impaired CFTR activity and expression. Orkambi is able to restore the CFTR defect caused by EtOH and decreases the severity of alcohol-induced pancreatitis. This is the first in vivo pre-clinical evidence of Orkambi efficacy in the treatment of alcohol-induced AP. KEY POINTS: Acute pancreatitis is one of the leading causes of hospital admission among gastrointestinal diseases in which the lack of a specific drug therapy plays a crucial role. The cystic fibrosis transmembrane conductance regulator (CFTR) plays an essential role in pancreatic ductal HCO3 - secretion; inappropriate CFTR function, as seen in heavy alcohol consumption, increases the risk of pancreatitis development. CFTR modulators are able to prevent the inhibitory effect of ethanol and reduce pancreatic ductal injury and the severity of alcohol-induced pancreatitis. CFTR modulators present a novel option in the pharmacotherapy of alcohol-induced pancreatitis by enhancing pancreatic functions or preventing recurrence.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Grassalkovich
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Health Sciences, Department of Theoretical and Integrative Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
- ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
10
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
11
|
Gao X, Yeh HI, Yang Z, Fan C, Jiang F, Howard RJ, Lindahl E, Kappes JC, Hwang TC. Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore. Nat Commun 2024; 15:6668. [PMID: 39107303 PMCID: PMC11303713 DOI: 10.1038/s41467-024-50641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR's activity through binding to a site also comprising TM8.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Chen Fan
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Rebecca J Howard
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - John C Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
- Research Service, Birmingham Veterans Affairs Medical Center, Veterans Health Administration, Birmingham, AL, 35233, USA
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, College of Medicine, Taipei, Taiwan.
- Membrane Protein Structural Biology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Meng X, Ford RC. Investigation of F508del CFTR unfolding and a search for stabilizing small molecules. Arch Biochem Biophys 2024; 758:110050. [PMID: 38876247 DOI: 10.1016/j.abb.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
Mutation of phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (F508del CFTR) yields a protein unstable at physiological temperatures that is rapidly degraded in the cell. This mutation is present in about 90% of cystic fibrosis patients, hence there is great interest in compounds reversing its instability. We have previously reported the expression of the mutated protein at low temperature and its purification in detergent. Here we describe the use of the protein to screen compounds present in a library of Federal Drug Administration (FDA) - approved drugs and also in a small natural product library. The kinetics of unfolding of F508del CFTR at 37 °C were probed by the increase in solvent-exposed cysteine residues accessible to a fluorescent reporter molecule. This occurred in a bi-exponential manner with a major (≈60%) component of half-life around 5 min and a minor component of around 60 min. The faster kinetics match those observed for loss of channel activity of F508del CFTR in cells at 37 °C. Most compounds tested had no effect on the fluorescence increase, but some were identified that significantly slowed the kinetics. The general properties of these compounds, and any likely mechanisms for inducing stability in purified CFTR are discussed. These experimental data may be useful for artificial intelligence - aided design of CFTR-specific drugs and in the identification of stabilizing additives for membrane proteins (in general).
Collapse
Affiliation(s)
- Xin Meng
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK; The Francis Crick Institute, Cellular Degradation Systems Lab, 1 Midland Road, London, NW1 1AT, UK
| | - Robert C Ford
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Hong JS, Tindall JM, Tindall SR, Sorscher EJ. Mutation accumulation in H. sapiens F508del CFTR countermands dN/dS type genomic analysis. PLoS One 2024; 19:e0305832. [PMID: 39024311 PMCID: PMC11257350 DOI: 10.1371/journal.pone.0305832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Understanding the mechanisms that underlie de novo mutations (DNMs) can be essential for interpreting human evolution, including aspects such as rapidly diverging genes, conservation of non-coding regulatory elements, and somatic DNA adaptation, among others. DNM accumulation in Homo sapiens is often limited to evaluation of human trios or quads across a single generation. Moreover, human SNPs in exons, pseudogenes, or other non-coding elements can be ancient and difficult to date, including polymorphisms attributable to founder effects and identity by descent. In this report, we describe multigenerational evolution of a human coding locus devoid of natural selection, and delineate patterns and principles by which DNMs have accumulated over the past few thousand years. We apply a data set comprising cystic fibrosis transmembrane conductance regulator (CFTR) alleles from 2,393 individuals homozygous for the F508del defect. Additional polymorphism on the F508del background diversified subsequent to a single mutational event during recent human history. Because F508del CFTR is without function, SNPs observed on this haplotype are effectively attributable to factors that govern accumulating de novo mutations. We show profound enhancement of transition, synonymous, and positionally repetitive polymorphisms, indicating appearance of DNMs in a manner evolutionarily designed to protect protein coding DNA against mutational attrition while promoting diversity.
Collapse
Affiliation(s)
- Jeong S. Hong
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Janice M. Tindall
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel R. Tindall
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eric J. Sorscher
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
15
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
16
|
Pizzonero M, Akkari R, Bock X, Gosmini R, De Lemos E, Duthion B, Newsome G, Mai TTT, Roques V, Jary H, Lefrancois JM, Cherel L, Quenehen V, Babel M, Merayo N, Bienvenu N, Mammoliti O, Coti G, Palisse A, Cowart M, Shrestha A, Greszler S, Van Der Plas S, Jansen K, Claes P, Jans M, Gees M, Borgonovi M, De Wilde G, Conrath K. Discovery of GLPG2737, a Potent Type 2 Corrector of CFTR for the Treatment of Cystic Fibrosis in Combination with a Potentiator and a Type 1 Co-corrector. J Med Chem 2024; 67:5216-5232. [PMID: 38527911 PMCID: PMC11017246 DOI: 10.1021/acs.jmedchem.3c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.
Collapse
Affiliation(s)
- Mathieu Pizzonero
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Rhalid Akkari
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Xavier Bock
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Romain Gosmini
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Elsa De Lemos
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Béranger Duthion
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Gregory Newsome
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Thi-Thu-Trang Mai
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Virginie Roques
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Hélène Jary
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | - Laetitia Cherel
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Vanessa Quenehen
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Marielle Babel
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Nuria Merayo
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Natacha Bienvenu
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Oscar Mammoliti
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Ghjuvanni Coti
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Adeline Palisse
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Marlon Cowart
- AbbVie,
Inc., 1 North Waukegan
Road, North Chicago, Illinois 60064-1802, United
States
| | - Anurupa Shrestha
- AbbVie,
Inc., 1 North Waukegan
Road, North Chicago, Illinois 60064-1802, United
States
| | - Stephen Greszler
- AbbVie,
Inc., 1 North Waukegan
Road, North Chicago, Illinois 60064-1802, United
States
| | | | - Koen Jansen
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Pieter Claes
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Mia Jans
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Maarten Gees
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos
SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Gert De Wilde
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| | - Katja Conrath
- Galapagos
NV, Generaal De Wittelaan
L11, A3, 2800 Mechelen, Belgium
| |
Collapse
|
17
|
Ferreira FC, Amaral MD, Bacalhau M, Lopes-Pacheco M. PTI-801 (posenacaftor) shares a common mechanism with VX-445 (elexacaftor) to rescue p.Phe508del-CFTR. Eur J Pharmacol 2024; 967:176390. [PMID: 38336013 DOI: 10.1016/j.ejphar.2024.176390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.
Collapse
Affiliation(s)
- Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
18
|
Marchesin V, Monnier L, Blattmann P, Chevillard F, Kuntz C, Forny C, Kamper J, Studer R, Bossu A, Ertel EA, Nayler O, Brotschi C, Williams JT, Gatfield J. A uniquely efficacious type of CFTR corrector with complementary mode of action. SCIENCE ADVANCES 2024; 10:eadk1814. [PMID: 38427726 PMCID: PMC11801377 DOI: 10.1126/sciadv.adk1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Three distinct pharmacological corrector types (I, II, III) with different binding sites and additive behavior only partially rescue the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding and trafficking defect observed in cystic fibrosis. We describe uniquely effective, macrocyclic CFTR correctors that were additive to the known corrector types, exerting a complementary "type IV" corrector mechanism. Macrocycles achieved wild-type-like folding efficiency of F508del-CFTR at the endoplasmic reticulum and normalized CFTR currents in reconstituted patient-derived bronchial epithelium. Using photo-activatable macrocycles, docking studies and site-directed mutagenesis a highly probable binding site and pose for type IV correctors was identified in a cavity between lasso helix-1 (Lh1) and transmembrane helix-1 of membrane spanning domain (MSD)-1, distinct from the known corrector binding sites. Since only F508del-CFTR fragments spanning from Lh1 until MSD2 responded to type IV correctors, these likely promote cotranslational assembly of Lh1, MSD1, and MSD2. Previously corrector-resistant CFTR folding mutants were also robustly rescued, suggesting substantial therapeutic potential for type IV correctors.
Collapse
Affiliation(s)
| | - Lucile Monnier
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | | | - Camille Forny
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Judith Kamper
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Rolf Studer
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | - Eric A. Ertel
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| | | | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., 4123 Allschwil, Switzerland
| |
Collapse
|
19
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
20
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
21
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Baroni D, Scarano N, Ludovico A, Brandas C, Parodi A, Lunaccio D, Fossa P, Moran O, Cichero E, Millo E. In Silico and In Vitro Evaluation of the Mechanism of Action of Three VX809-Based Hybrid Derivatives as Correctors of the F508del CFTR Protein. Pharmaceuticals (Basel) 2023; 16:1702. [PMID: 38139828 PMCID: PMC10748060 DOI: 10.3390/ph16121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive fatal genetic disease in the Caucasian population, is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that regulates salt and water transport across a variety of secretory epithelia. Deletion of phenylalanine at position 508, F508del, the most common CF-causing mutation, destabilises the CFTR protein, causing folding and trafficking defects that lead to a dramatic reduction in its functional expression. Small molecules called correctors have been developed to rescue processing-defective F508del CFTR. We have combined in silico and in vitro approaches to investigate the mechanism of action and potential as CFTR correctors of three hybrid derivatives (2a, 7a, and 7m) obtained by merging the amino-arylthiazole core with the benzodioxole carboxamide moiety characterising the corrector lumacaftor. Molecular modelling analyses suggested that the three hybrids interact with a putative region located at the MSD1/NBD1 interface. Biochemical analyses confirmed these results, showing that the three molecules affect the expression and stability of the F508del NBD1. Finally, the YFP assay was used to evaluate the influence of the three hybrid derivatives on F508del CFTR function, assessing that their effect is additive to that of the correctors VX661 and VX445. Our study shows that the development and testing of optimised compounds targeting different structural and functional defects of mutant CFTR is the best strategy to provide more effective correctors that could be used alone or in combination as a valuable therapeutic option to treat an even larger cohort of people affected by CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Alessandra Ludovico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Dario Lunaccio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| |
Collapse
|
23
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedüs T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. Nat Commun 2023; 14:6868. [PMID: 37891162 PMCID: PMC10611759 DOI: 10.1038/s41467-023-42586-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.
Collapse
Affiliation(s)
- Naoto Soya
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Haijin Xu
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Ariel Roldan
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Haoxin Ye
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Aiswarya Premchandar
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - John Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Tamás Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
24
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedus T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563107. [PMID: 37905074 PMCID: PMC10614980 DOI: 10.1101/2023.10.19.563107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.
Collapse
|
25
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
26
|
Bongiorno R, Ludovico A, Moran O, Baroni D. Elexacaftor Mediates the Rescue of F508del CFTR Functional Expression Interacting with MSD2. Int J Mol Sci 2023; 24:12838. [PMID: 37629017 PMCID: PMC10454486 DOI: 10.3390/ijms241612838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most frequent lethal autosomal recessive diseases affecting the Caucasian population. It is caused by loss of function variants of the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane protein located on the apical side of epithelial cells. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), is characterized by folding and trafficking defects, resulting in the decreased functional expression of the protein on the plasma membrane. Two classes of small-molecule modulators, termed potentiators and correctors, respectively, have been developed to rescue either the gating or the cellular processing of defective F508del CFTR. Kaftrio, a next-generation triple-combination drug, consisting of the potentiator ivacaftor (VX770) and the two correctors tezacaftor (VX661) and elexacaftor (VX445), has been demonstrated to be a life-changing therapeutic modality for the majority of people with CF worldwide. While the mechanism of action of VX770 and VX661 is almost known, the precise mechanism of action and binding site of VX445 have not been conclusively determined. We investigated the activity of VX445 on mutant F508del to identify the protein domains whose expression is mostly affected by this corrector and to disclose its mechanisms of action. Our biochemical analyses revealed that VX445 specifically improves the expression and the maturation of MSD2, heterologously expressed in HEK 293 cells, and confirmed that its effect on the functional expression of defective F508del CFTR is additive either with type I or type II CFTR correctors. We are confident that our study will help to make a step forward in the comprehension of the etiopathology of the CF disease, as well as to give new information for the development and testing of combinations of even more effective correctors able to target mutation-specific defects of the CFTR protein.
Collapse
Affiliation(s)
| | | | | | - Debora Baroni
- Istituto di Biofisica, CNR, Via De Marini, 6, 16149 Genova, Italy; (R.B.); (A.L.); (O.M.)
| |
Collapse
|
27
|
Lester A, Sandman M, Herring C, Girard C, Dixon B, Ramsdell H, Reber C, Poulos J, Mitchell A, Spinney A, Henager ME, Evans CN, Turlington M, Johnson QR. Computational Exploration of Potential CFTR Binding Sites for Type I Corrector Drugs. Biochemistry 2023; 62:2503-2515. [PMID: 37437308 PMCID: PMC10433520 DOI: 10.1021/acs.biochem.3c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.
Collapse
Affiliation(s)
- Anna Lester
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Madeline Sandman
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Caitlin Herring
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Christian Girard
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Brandon Dixon
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Havanna Ramsdell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Callista Reber
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Jack Poulos
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Alexis Mitchell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Allison Spinney
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Marissa E. Henager
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Claudia N. Evans
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Quentin R. Johnson
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| |
Collapse
|
28
|
McKee AG, McDonald EF, Penn WD, Kuntz CP, Noguera K, Chamness LM, Roushar FJ, Meiler J, Oliver KE, Plate L, Schlebach JP. General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants. Cell Chem Biol 2023; 30:632-642.e5. [PMID: 37253358 PMCID: PMC10330547 DOI: 10.1016/j.chembiol.2023.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations that compromise the expression and/or function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Most people with CF harbor a common misfolded variant (ΔF508) that can be partially rescued by therapeutic "correctors" that restore its expression. Nevertheless, many other CF variants are insensitive to correctors. Using deep mutational scanning, we quantitatively compare the effects of two correctors on the plasma membrane expression of 129 CF variants. Though structural calculations suggest corrector binding provides similar stabilization to most variants, it's those with intermediate expression and mutations near corrector binding pockets that exhibit the greatest response. Deviations in sensitivity appear to depend on the degree of variant destabilization and the timing of misassembly. Combining correctors appears to rescue more variants by doubling the binding energy and stabilizing distinct cotranslational folding transitions. These results provide an overview of rare CF variant expression and establish new tools for precision pharmacology.
Collapse
Affiliation(s)
- Andrew G McKee
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Karen Noguera
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Francis J Roushar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Institute for Drug Development, Leipzig University, Leipzig, SAC 04109, Germany
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
29
|
Renda M, Barreca M, Borrelli A, Spanò V, Montalbano A, Raimondi MV, Bivacqua R, Musante I, Scudieri P, Guidone D, Buccirossi M, Genovese M, Venturini A, Bandiera T, Barraja P, Galietta LJV. Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel. Sci Rep 2023; 13:7604. [PMID: 37165082 PMCID: PMC10172366 DOI: 10.1038/s41598-023-34440-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.
Collapse
Affiliation(s)
- Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Anna Borrelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Musante
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Martina Buccirossi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
- Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
30
|
Taniguchi S, Fukuda R, Okiyoneda T. The multiple ubiquitination mechanisms in CFTR peripheral quality control. Biochem Soc Trans 2023:233016. [PMID: 37140364 DOI: 10.1042/bst20221468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated anion channel, which is expressed on the apical plasma membrane (PM) of epithelial cells. Mutations in the CFTR gene cause cystic fibrosis (CF), one of the most common genetic diseases among Caucasians. Most CF-associated mutations result in misfolded CFTR proteins that are degraded by the endoplasmic reticulum quality control (ERQC) mechanism. However, the mutant CFTR reaching the PM through therapeutic agents is still ubiquitinated and degraded by the peripheral protein quality control (PeriQC) mechanism, resulting in reduced therapeutic efficacy. Moreover, certain CFTR mutants that can reach the PM under physiological conditions are degraded by PeriQC. Thus, it may be beneficial to counteract the selective ubiquitination in PeriQC to enhance therapeutic outcomes for CF. Recently, the molecular mechanisms of CFTR PeriQC have been revealed, and several ubiquitination mechanisms, including both chaperone-dependent and -independent pathways, have been identified. In this review, we will discuss the latest findings related to CFTR PeriQC and propose potential novel therapeutic strategies for CF.
Collapse
Affiliation(s)
- Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
31
|
Mazio C, Scognamiglio LS, Passariello R, Panzetta V, Casale C, Urciuolo F, Galietta LJV, Imparato G, Netti PA. Easy-to-Build and Reusable Microfluidic Device for the Dynamic Culture of Human Bronchial Cystic Fibrosis Epithelia. ACS Biomater Sci Eng 2023; 9:2780-2792. [PMID: 37019688 PMCID: PMC10170479 DOI: 10.1021/acsbiomaterials.2c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Cystic fibrosis (CF) is one of the most frequent genetic diseases, caused by dysfunction of the CF transmembrane conductance regulator (CFTR) chloride channel. CF particularly affects the epithelium of the respiratory system. Therapies aim at rescuing CFTR defects in the epithelium, but CF genetic heterogeneity hinders the finding of a single and generally effective treatment. Therefore, in vitro models have been developed to study CF and guide patient therapy. Here, we show a CF model on-chip by coupling the feasibility of the human bronchial epithelium differentiated in vitro at the air-liquid interface and the innovation of microfluidics. We demonstrate that the dynamic flow enhanced cilia distribution and increased mucus quantity, thus promoting tissue differentiation in a short time. The microfluidic devices highlighted differences between CF and non-CF epithelia, as shown by electrophysiological measures, mucus quantity, viscosity, and the analysis of ciliary beat frequency. The described model on-chip may be a handy instrument for studying CF and setting up therapies. As a proof of principle, we administrated the corrector VX-809 on-chip and observed a decrease in mucus thickness and viscosity.
Collapse
Affiliation(s)
- Claudia Mazio
- Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Laura S Scognamiglio
- Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Roberta Passariello
- Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Giorgia Imparato
- Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Paolo A Netti
- Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
32
|
Kondratyeva E, Melyanovskaya Y, Bulatenko N, Davydenko K, Filatova A, Efremova A, Skoblov M, Bukharova T, Sherman V, Voronkova A, Zhekaite E, Krasovskiy S, Amelina E, Petrova N, Polyakov A, Adyan T, Starinova M, Krasnova M, Vasilyev A, Makhnach O, Zinchenko R, Kutsev S, Gokdemir Y, Karadag B, Goldshtein D. Clinical and Functional Characteristics of the E92K CFTR Gene Variant in the Russian and Turkish Population of People with Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076351. [PMID: 37047318 PMCID: PMC10093870 DOI: 10.3390/ijms24076351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The pathogenic variant E92K (c.274G > A) of the CFTR gene is rare in America and Europe, but it is common for people with cystic fibrosis from Russia and Turkey. We studied the effect of the E92K genetic variant on the CFTR function. The function of the CFTR channel was studied using the intestinal current measurements (ICM) method. The effects of CFTR modulators on the restoration of the CFTR function were studied in the model of intestinal organoids. To assess the effect of E92K on pre-mRNA splicing, the RT-PCR products obtained from patients’ intestinal organoid cultures were analyzed. Patients with the genetic variant E92K are characterized by an older age of diagnosis compared to homozygotes F508del and a high frequency of pancreatic sufficiency. The results of the sweat test and the ICM method showed partial preservation of the function of the CFTR channel. Functional analysis of CFTR gene expression revealed a weak effect of the E92K variant on mRNA-CFTR splicing. Lumacaftor (VX-809) has been shown to restore CFTR function in an intestinal organoid model, which allows us to consider the E92K variant as a promising target for therapy with CFTR correctors.
Collapse
|
33
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Hwang TC, Braakman I, van der Sluijs P, Callebaut I. Structure basis of CFTR folding, function and pharmacology. J Cyst Fibros 2023; 22 Suppl 1:S5-S11. [PMID: 36216744 DOI: 10.1016/j.jcf.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
The root cause of cystic fibrosis (CF), the most common life-shortening genetic disease in the Caucasian population, is the loss of function of the CFTR protein, which serves as a phosphorylation-activated, ATP-gated anion channel in numerous epithelia-lining tissues. In the past decade, high-throughput drug screening has made a significant stride in developing highly effective CFTR modulators for the treatment of CF. Meanwhile, structural-biology studies have succeeded in solving the high-resolution three-dimensional (3D) structure of CFTR in different conformations. Here, we provide a brief overview of some striking features of CFTR folding, function and pharmacology, in light of its specific structural features within the ABC-transporter superfamily. A particular focus is given to CFTR's first nucleotide-binding domain (NBD1), because folding of NBD1 constitutes a bottleneck in the CFTR protein biogenesis pathway, and ATP binding to this domain plays a unique role in the functional stability of CFTR. Unraveling the molecular basis of CFTR folding, function, and pharmacology would inspire the development of next-generation mutation-specific CFTR modulators.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France.
| |
Collapse
|
35
|
Zacarias S, Batista MSP, Ramalho SS, Victor BL, Farinha CM. Rescue of Rare CFTR Trafficking Mutants Highlights a Structural Location-Dependent Pattern for Correction. Int J Mol Sci 2023; 24:ijms24043211. [PMID: 36834620 PMCID: PMC9961391 DOI: 10.3390/ijms24043211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Currently, more than 2100 variants have been identified in the gene, with a large number being very rare. The approval of modulators that act on mutant CFTR protein, correcting its molecular defect and thus alleviating the burden of the disease, revolutionized the field of CF. However, these drugs do not apply to all patients with CF, especially those with rare mutations-for which there is a lack of knowledge on the molecular mechanisms of the disease and the response to modulators. In this work, we evaluated the impact of several rare putative class II mutations on the expression, processing, and response of CFTR to modulators. Novel cell models consisting of bronchial epithelial cell lines expressing CFTR with 14 rare variants were created. The variants studied are localized at Transmembrane Domain 1 (TMD1) or very close to the signature motif of Nucleotide Binding Domain 1 (NBD1). Our data show that all mutations analyzed significantly decrease CFTR processing and while TMD1 mutations respond to modulators, those localized in NBD1 do not. Molecular modeling calculations confirm that the mutations in NBD1 induce greater destabilization of CFTR structure than those in TMD1. Furthermore, the structural proximity of TMD1 mutants to the reported binding site of CFTR modulators such as VX-809 and VX-661, make them more efficient in stabilizing the CFTR mutants analyzed. Overall, our data suggest a pattern for mutation location and impact in response to modulators that correlates with the global effect of the mutations on CFTR structure.
Collapse
|
36
|
Ravatin M, Odolczyk N, Servel N, Guijarro JI, Tagat E, Chevalier B, Baatallah N, Corringer PJ, Lukács GL, Edelman A, Zielenkiewicz P, Chambard JM, Hinzpeter A, Faure G. Design of Crotoxin-Based Peptides with Potentiator Activity Targeting the ΔF508NBD1 Cystic Fibrosis Transmembrane Conductance Regulator. J Mol Biol 2023; 435:167929. [PMID: 36566799 DOI: 10.1016/j.jmb.2022.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
We have previously shown that the CBb subunit of crotoxin, a β-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.
Collapse
Affiliation(s)
- Marc Ravatin
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Norbert Odolczyk
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Nathalie Servel
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Biological NMR and HDX-MS Technological Platform, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Eric Tagat
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Benoit Chevalier
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Nesrine Baatallah
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Gergely L Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Aleksander Edelman
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Piotr Zielenkiewicz
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jean-Marie Chambard
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France.
| | - Grazyna Faure
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
37
|
Im J, Hillenaar T, Yeoh HY, Sahasrabudhe P, Mijnders M, van Willigen M, Hagos A, de Mattos E, van der Sluijs P, Braakman I. ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol Life Sci 2023; 80:33. [PMID: 36609925 PMCID: PMC9825563 DOI: 10.1007/s00018-022-04671-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023]
Abstract
The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.
Collapse
Affiliation(s)
- Jisu Im
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tamara Hillenaar
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hui Ying Yeoh
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Priyanka Sahasrabudhe
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Navigo Proteins GmbH, 06120 Halle, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Marcel van Willigen
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Present Address: Julius Clinical Ltd, 3703 CD Zeist, The Netherlands
| | - Azib Hagos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
38
|
Hillenaar T, Beekman J, van der Sluijs P, Braakman I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int J Mol Sci 2022; 23:15170. [PMID: 36499495 PMCID: PMC9735543 DOI: 10.3390/ijms232315170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands;
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| |
Collapse
|
39
|
Bacalhau M, Ferreira FC, Kmit A, Souza FR, da Silva VD, Pimentel AS, Amaral MD, Buarque CD, Lopes-Pacheco M. Identification of novel F508del-CFTR traffic correctors among triazole derivatives. Eur J Pharmacol 2022; 938:175396. [PMID: 36410419 DOI: 10.1016/j.ejphar.2022.175396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Arthur Kmit
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Felipe R Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - André S Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
40
|
Fiedorczuk K, Chen J. Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators. Science 2022; 378:284-290. [PMID: 36264792 PMCID: PMC9912939 DOI: 10.1126/science.ade2216] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The predominant mutation causing cystic fibrosis, a deletion of phenylalanine 508 (Δ508) in the cystic fibrosis transmembrane conductance regulator (CFTR), leads to severe defects in CFTR biogenesis and function. The advanced therapy Trikafta combines the folding corrector tezacaftor (VX-661), the channel potentiator ivacaftor (VX-770), and the dual-function modulator elexacaftor (VX-445). However, it is unclear how elexacaftor exerts its effects, in part because the structure of Δ508 CFTR is unknown. Here, we present cryo-electron microscopy structures of Δ508 CFTR in the absence and presence of CFTR modulators. When used alone, elexacaftor partially rectified interdomain assembly defects in Δ508 CFTR, but when combined with a type I corrector, did so fully. These data illustrate how the different modulators in Trikafta synergistically rescue Δ508 CFTR structure and function.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Corresponding author.
| |
Collapse
|
41
|
Miyano K, Okamoto S, Kajikawa M, Kiyohara T, Kawai C, Yamauchi A, Kuribayashi F. Regulation of Derlin-1-mediated degradation of NADPH oxidase partner p22 phox by thiol modification. Redox Biol 2022; 56:102479. [PMID: 36122532 PMCID: PMC9486109 DOI: 10.1016/j.redox.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1–4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1. Missense mutations in exon 3 of p22phox enhance the binding of p22phox to Derlin-1. Oxidation of the thiol group of p22phox Cys50 suppresses p22phox degradation. Serine substitution of Cys-50 increases the affinity of p22phox for Derlin-1. Stability of the p22phox protein is regulated by redox-sensitive Cys-50.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan; Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan.
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
42
|
Saha K, Chevalier B, Doly S, Baatallah N, Guilbert T, Pranke I, Scott MGH, Enslen H, Guerrera C, Chuon C, Edelman A, Sermet-Gaudelus I, Hinzpeter A, Marullo S. Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites. Cell Mol Life Sci 2022; 79:530. [PMID: 36167862 PMCID: PMC11802960 DOI: 10.1007/s00018-022-04554-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.
Collapse
Affiliation(s)
- Kusumika Saha
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Benoit Chevalier
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
| | - Stéphane Doly
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, 63000, Clermont-Ferrand, France
| | - Nesrine Baatallah
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
| | - Thomas Guilbert
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France
| | - Iwona Pranke
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
| | - Mark G H Scott
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France
| | - Hervé Enslen
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France
| | - Chiara Guerrera
- Proteomic Facility, Institut-Necker-Enfants-Malades, Université Paris Cité, 75015, Paris, France
| | - Cérina Chuon
- Proteomic Facility, Institut-Necker-Enfants-Malades, Université Paris Cité, 75015, Paris, France
| | - Aleksander Edelman
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
- Centre de Référence Maladies Rares Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, European Reference National (ERN) Lung Center, Paris, France
| | - Alexandre Hinzpeter
- Institut-Necker-Enfants-Malades, Université Paris Cité, INSERM U1151, CNRS UMR 8253, 75015, Paris, France
| | - Stefano Marullo
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014, Paris, France.
| |
Collapse
|
43
|
Elexacaftor/Tezacaftor/Ivacaftor Accelerates Wound Repair in Cystic Fibrosis Airway Epithelium. J Pers Med 2022; 12:jpm12101577. [PMID: 36294716 PMCID: PMC9605106 DOI: 10.3390/jpm12101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cystic fibrosis (CF) airway epithelium shows alterations in repair following damage. In vitro studies showed that lumacaftor/ivacaftor (Orkambi) may favor airway epithelial integrity in CF patients. Our aim was to evaluate the effect of the novel triple combination elexacaftor/tezacaftor/ivacaftor (ETI) on wound repair in CF airway epithelial cells. Methods: A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells overexpressing the F508del mutation. ETI was added during wound repair. Results: ETI efficiently rescued CFTR F508del maturation and activity, accelerated wound closure and increased wound healing rates of the injured CF cell monolayers. Conclusions: The triple corrector/potentiator combination ETI shows promise in ameliorating wound healing of the airway epithelium in F508del patients.
Collapse
|
44
|
Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27:229-239. [PMID: 35731915 DOI: 10.1080/14728214.2022.2092612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.
Collapse
Affiliation(s)
- Isabelle Fajac
- AP-HP. Centre - Université Paris Cité; Hôpital Cochin, Centre de Référence Maladie Rare- Mucoviscidose, Paris, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Faculté de Médecine, Université de Paris, Paris, France.,Institut Necker Enfants Malades, INSERM U 1151, Paris, France.,AP-HP. Centre - Université Paris Cité; Hôpital Necker Enfants Malades, Centre de Référence Maladie Rare - Mucoviscidose, Paris, France
| |
Collapse
|
45
|
Braccia C, Christopher JA, Crook OM, Breckels LM, Queiroz RML, Liessi N, Tomati V, Capurro V, Bandiera T, Baldassari S, Pedemonte N, Lilley KS, Armirotti A. CFTR Rescue by Lumacaftor (VX-809) Induces an Extensive Reorganization of Mitochondria in the Cystic Fibrosis Bronchial Epithelium. Cells 2022; 11:1938. [PMID: 35741067 PMCID: PMC9222197 DOI: 10.3390/cells11121938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome. METHODS We used high-resolution mass spectrometry, differential ultracentrifugation, machine learning and bioinformatics to investigate both changes in the expression and localization of the human bronchial epithelium CF model (F508del-CFTR CFBE41o-) proteome following treatment with VX-809 (Lumacaftor), a drug able to improve the trafficking of CFTR. RESULTS The data suggested no stark changes in protein expression, yet subtle localization changes of proteins of the mitochondria and peroxisomes were detected. We then used high-content confocal microscopy to further investigate the morphological and compositional changes of peroxisomes and mitochondria under these conditions, as well as in patient-derived primary cells. We profiled several thousand proteins and we determined the subcellular localization data for around 5000 of them using the LOPIT-DC spatial proteomics protocol. CONCLUSIONS We observed that treatment with VX-809 induces extensive structural and functional remodelling of mitochondria and peroxisomes that resemble the phenotype of healthy cells. Our data suggest additional rescue mechanisms of VX-809 beyond the correction of aberrant folding of F508del-CFTR and subsequent trafficking to the PM.
Collapse
Affiliation(s)
- Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (C.B.); (T.B.)
| | - Josie A. Christopher
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Oliver M. Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
- Department of Statistics, University of Oxford, 29 St Giles’, Oxford OX1 3LB, UK
| | - Lisa M. Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Rayner M. L. Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (C.B.); (T.B.)
| | - Simona Baldassari
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
46
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
47
|
Wang C, Anglès F, Balch WE. Triangulating variation in the population to define mechanisms for precision management of genetic disease. Structure 2022; 30:1190-1207.e5. [PMID: 35714602 PMCID: PMC9357173 DOI: 10.1016/j.str.2022.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
To understand mechanistically how the protein fold is shaped by therapeutics to inform precision management of disease, we developed variation-capture (VarC) mapping. VarC triangulates sparse sequence variation information found in the population using Gaussian process regression (GPR)-based machine learning to define the combined pairwise-residue interactions contributing to dynamic protein function in the individual in response to therapeutics. Using VarC mapping, we now reveal the pairwise-residue covariant relationships across the entire protein fold of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) to define the molecular mechanisms of clinically approved CF chemical modulators. We discover an energetically destabilized covariant core containing a di-acidic YKDAD endoplasmic reticulum (ER) exit code that is only weakly corrected by current therapeutics. Our results illustrate that VarC provides a generalizable tool to triangulate information from genetic variation in the population to mechanistically discover therapeutic strategies that guide precision management of the individual.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Frédéric Anglès
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Kim YJ, Nomakuchi T, Papaleonidopoulou F, Yang L, Zhang Q, Krainer AR. Gene-specific nonsense-mediated mRNA decay targeting for cystic fibrosis therapy. Nat Commun 2022; 13:2978. [PMID: 35624092 PMCID: PMC9142507 DOI: 10.1038/s41467-022-30668-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/06/2022] [Indexed: 12/20/2022] Open
Abstract
Low CFTR mRNA expression due to nonsense-mediated mRNA decay (NMD) is a major hurdle in developing a therapy for cystic fibrosis (CF) caused by the W1282X mutation in the CFTR gene. CFTR-W1282X truncated protein retains partial function, so increasing its levels by inhibiting NMD of its mRNA will likely be beneficial. Because NMD regulates the normal expression of many genes, gene-specific stabilization of CFTR-W1282X mRNA expression is more desirable than general NMD inhibition. Synthetic antisense oligonucleotides (ASOs) designed to prevent binding of exon junction complexes (EJC) downstream of premature termination codons (PTCs) attenuate NMD in a gene-specific manner. We describe cocktails of three ASOs that specifically increase the expression of CFTR-W1282X mRNA and CFTR protein upon delivery into human bronchial epithelial cells. This treatment increases the CFTR-mediated chloride current. These results set the stage for clinical development of an allele-specific therapy for CF caused by the W1282X mutation. The W1282X nonsense mutation in the CFTR gene causes cystic fibrosis by reducing its mRNA and functional protein levels. Here the authors developed antisense-oligonucleotide cocktails that restore CFTR protein function by gene-specific stabilization of CFTR mRNA.
Collapse
Affiliation(s)
- Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA.,Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Tomoki Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Foteini Papaleonidopoulou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Francis Crick Institute, London, 1140062, UK
| | - Lucia Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA.,Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
49
|
Padányi R, Farkas B, Tordai H, Kiss B, Grubmüller H, Soya N, Lukács GL, Kellermayer M, Hegedűs T. Nanomechanics combined with HDX reveals allosteric drug binding sites of CFTR NBD1. Comput Struct Biotechnol J 2022; 20:2587-2599. [PMID: 35685375 PMCID: PMC9160490 DOI: 10.1016/j.csbj.2022.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cystic fibrosis (CF) is a frequent genetic disease in Caucasians that is caused by the deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) of the CF transmembrane conductance regulator (CFTR). The ΔF508 compromises the folding energetics of the NBD1, as well as the folding of three other CFTR domains. Combination of FDA approved corrector molecules can efficiently but incompletely rescue the ΔF508-CFTR folding and stability defect. Thus, new pharmacophores that would reinstate the wild-type-like conformational stability of the ΔF508-NBD1 would be highly beneficial. The most prominent molecule, 5-bromoindole-3-acetic acid (BIA) that can thermally stabilize the NBD1 has low potency and efficacy. To gain insights into the NBD1 (un)folding dynamics and BIA binding site localization, we combined molecular dynamics (MD) simulations, atomic force spectroscopy (AFM) and hydrogen-deuterium exchange (HDX) experiments. We found that the NBD1 α-subdomain with three adjacent strands from the β-subdomain plays an important role in early folding steps, when crucial non-native interactions are formed via residue F508. Our AFM and HDX experiments showed that BIA associates with this α-core region and increases the resistance of the ΔF508-NBD1 against mechanical unfolding, a phenomenon that could be exploited in future developments of folding correctors.
Collapse
Affiliation(s)
- Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Naoto Soya
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Gergely L. Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- ELKH-SE Molecular Biophysics Research Group, ELKH, Budapest, Hungary
- Corresponding author at: Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
50
|
Wong SL, Awatade NT, Astore MA, Allan KM, Carnell MJ, Slapetova I, Chen PC, Setiadi J, Pandzic E, Fawcett LK, Widger JR, Whan RM, Griffith R, Ooi CY, Kuyucak S, Jaffe A, Waters SA. Molecular Dynamics and Theratyping in Airway and Gut Organoids Reveal R352Q-CFTR Conductance Defect. Am J Respir Cell Mol Biol 2022; 67:99-111. [PMID: 35471184 PMCID: PMC9273222 DOI: 10.1165/rcmb.2021-0337oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.
Collapse
Affiliation(s)
- Sharon L Wong
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Nikhil T Awatade
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Miro A Astore
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Katelin M Allan
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Michael J Carnell
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Iveta Slapetova
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Po-Chia Chen
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Jeffry Setiadi
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Cen, Sydney, New South Wales, Australia
| | - Laura K Fawcett
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - John R Widger
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - Renee M Whan
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Renate Griffith
- University of New South Wales, 7800, School of Chemistry, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Sydney Children's Hospital Randwick, Gastroenterology, Sydney, New South Wales, Australia
| | - Serdar Kuyucak
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Adam Jaffe
- Sydney Children`s Hospital, Respiratory Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, School of Women`s and Children`s Health, Sydney, New South Wales, Australia
| | - Shafagh A Waters
- Sydney Children's Hospital, Department of Respiratory Medicine, Sydney, New South Wales, Australia.,Univeristy of New South Wales, School of Women's and Children's Health, Sydney, New South Wales, Australia;
| |
Collapse
|